molecules-logo

Journal Browser

Journal Browser

Method Development and Validation in Food and Pharmaceutical Analysis II

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Analytical Chemistry".

Deadline for manuscript submissions: closed (31 December 2020) | Viewed by 41565

Special Issue Editors


E-Mail Website
Guest Editor
Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
Interests: bioanalysis; biopharmaceutics; DMPK; PBPK/PD modeling
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
Interests: spectroscopy; imaging analysis; formulation; drug delivery system
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Collegues,

Analytical chemistry is the study of the separation, identification, and quantification of natural and artificial materials constituted of one or more compounds or elements. The rapid increase in food and pharmaceutical industries, and the production of drugs and functional foods around the world have brought forward a rise in the inevitable demand to seek novel and systematic analytical techniques. As a consequence, analytical method development and validation have become a crucial prerequisite for achieving reliable analytical data required to support food and pharmaceutical development processes.

This Special Issue on “Method Development and Validation in Food and Pharmaceutical Analysis II” will cover a wide range of topics, including, but not limited to, new analytical and bioanalytical methods relevant to the separation, identification, and determination of substances in pharmaceutics, pharmacokinetics, nanobiotechnology, clinical chemistry, biomedical engineering, and related disciplines.

We warmly invite our colleagues to submit their original contributions to this Special Issue in order to provide recent updates regarding analytical methods for drugs, biologics, phytochemicals, and other organic/inorganic materials related to food and pharmaceutical sciences that are appealing to readers. We would be delighted if you could respond to confirm your contribution as well as the proposed title by 31 March 2020.

Prof. Dr. Hyun-Jong Cho
Prof. Dr. In-Soo Yoon
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • HPLC
  • Bioanalysis
  • Phytochemicals
  • Pharmacokinetics
  • Mass spectrometry
  • Functional food
  • Biopharmaceutics
  • Natural and synthetic polymers
  • Inorganic materials
  • Pharmaceutical formulations
  • Imaging analysis
  • Spectroscopy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1862 KiB  
Article
Development and Validation of a Bioanalytical LC-MS/MS Method for Simultaneous Determination of Sirolimus in Porcine Whole Blood and Lung Tissue and Pharmacokinetic Application with Coronary Stents
by Thi-Thao-Linh Nguyen, Van-An Duong, Dang-Khoa Vo, Jeongae Jo and Han-Joo Maeng
Molecules 2021, 26(2), 425; https://doi.org/10.3390/molecules26020425 - 15 Jan 2021
Cited by 17 | Viewed by 4418
Abstract
Sirolimus is a hydrophobic macrolide compound that has been used for long-term immunosuppressive therapy, prevention of restenosis, and treatment of lymphangioleiomyomatosis. In this study, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for the simultaneous determination of sirolimus [...] Read more.
Sirolimus is a hydrophobic macrolide compound that has been used for long-term immunosuppressive therapy, prevention of restenosis, and treatment of lymphangioleiomyomatosis. In this study, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for the simultaneous determination of sirolimus in both porcine whole blood and lung tissue. Blood and lung tissue homogenates were deproteinized with acetonitrile and injected into the LC-MS/MS system for analysis using the positive electrospray ionization mode. The drug was separated on a C18 reversed phase column with a gradient mobile phase (ammonium formate buffer (5 mM) with 0.1% formic acid and acetonitrile) at 0.2 mL/min. The selected reaction monitoring transitions of m/z 931.5 → 864.4 and m/z 809.5 → 756.5 were applied for sirolimus and ascomycin (the internal standard, IS), respectively. The method was selective and linear over a concentration range of 0.5–50 ng/mL. The method was validated for sensitivity, accuracy, precision, extraction recovery, matrix effect, and stability in porcine whole blood and lung tissue homogenates, and all values were within acceptable ranges. The method was applied to a pharmacokinetic study to quantitate sirolimus levels in porcine blood and its distribution in lung tissue following the application of stents in the porcine coronary arteries. It enabled the quantification of sirolimus concentration until 2 and 14 days in blood and in lung tissue, respectively. This method would be appropriate for both routine porcine pharmacokinetic and bio-distribution studies of sirolimus formulations. Full article
Show Figures

Figure 1

15 pages, 1341 KiB  
Article
Development and Validation of a Bioanalytical Method for 3′- and 6′-Sialyllactose in Minipig Liver and Kidney Using Liquid Chromatography-Tandem Mass Spectrometry and Its Application to Analysis of Tissue Distribution
by Han Young Eom, Seok-In Jang and Jong-Hwa Lee
Molecules 2020, 25(23), 5721; https://doi.org/10.3390/molecules25235721 - 3 Dec 2020
Cited by 2 | Viewed by 2588
Abstract
Breast milk contains human milk oligosaccharides (HMOs), including sialyllactose (SL). SL is composed of sialic acid and lactose, and is divided into 3′-SL and 6′-SL according to the binding position. SL has immunoprotective effects against bacteria and viruses, and acts as a probiotic [...] Read more.
Breast milk contains human milk oligosaccharides (HMOs), including sialyllactose (SL). SL is composed of sialic acid and lactose, and is divided into 3′-SL and 6′-SL according to the binding position. SL has immunoprotective effects against bacteria and viruses, and acts as a probiotic in the gastrointestinal tract. In this study, we developed a bioanalytical method for simultaneous analysis of 3′-SL and 6′-SL in liver and kidney tissues of Yucatan minipigs using liquid chromatography–tandem mass spectrometry (LC-MS/MS) under conditions optimized in our previous study. LC-MS/MS was performed using a hydrophilic interaction liquid chromatography (HILIC) column (50 mm × 2.1 mm, 3 μm) with a mobile phase consisting of 10 mM ammonium acetate in water (pH 4.5) and acetonitrile with gradient elution at a flow rate of 0.3 mL/min. A surrogate matrix method using water was applied for analysis of endogenous SL. The developed method was validated with regard to selectivity, linearity, precision, accuracy, the matrix effect, recovery, parallelism, dilution integrity, carryover, and stability according to the US Food and Drug Administration guidelines. We performed a tissue distribution study of minipigs, and analyzed liver and kidney tissues using the developed method to determine the tissue distribution of 3′-SL and 6′-SL. The tissue concentrations of 3′-SL and 6′-SL were readily measurable, suggesting that the method would be useful for evaluating the tissue distributions of these compounds in minipigs. Full article
Show Figures

Graphical abstract

18 pages, 1258 KiB  
Article
Simultaneous Qualitative and Quantitative Evaluation of the Coptidis Rhizoma and Euodiae Fructus Herbal Pair by Using UHPLC-ESI-QTOF-MS and UHPLC-DAD
by Yan-Ying Li, Min-Qun Guo, Xue-Mei Li and Xiu-Wei Yang
Molecules 2020, 25(20), 4782; https://doi.org/10.3390/molecules25204782 - 18 Oct 2020
Cited by 16 | Viewed by 5379
Abstract
The herbal pair of Coptidis Rhizoma (CR) and Euodiae Fructus (EF) is a classical traditional Chinese medicine formula used for treating gastro-intestinal disorders. In this study, we established a systematic method for chemical profiling and quantification analysis of the major constituents in the [...] Read more.
The herbal pair of Coptidis Rhizoma (CR) and Euodiae Fructus (EF) is a classical traditional Chinese medicine formula used for treating gastro-intestinal disorders. In this study, we established a systematic method for chemical profiling and quantification analysis of the major constituents in the CR-EF herbal pair. A method of ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) for qualitative analysis was developed. Sixty-five compounds, including alkaloids, phenolics, and limonoids, were identified or tentatively assigned by comparison with reference standards or literature data. The UHPLC fingerprints of 19 batches of the CR-EF herbal pair samples were obtained and the reference fingerprint chromatograms were established. Furthermore, nine compounds among 24 common peaks of fingerprints were considered as marker components, which either had high contents or significant bioactivities, were applied to quality control of the CR-EF herbal pair by quantitative analysis. This UHPLC-DAD analysis method was validated by precision, linearity, repeatability, stability, recovery, and so on. The method was simple and sensitive, and thus reliable for quantitative and chemical fingerprint analysis for the quality evaluation and control of the CR-EF herbal pair and related traditional Chinese medicines. Full article
Show Figures

Figure 1

15 pages, 4204 KiB  
Article
Photoluminescence as a Complementary Tool for UV-VIS Spectroscopy to Highlight the Photodegradation of Drugs: A Case Study on Melatonin
by Monica Daescu, N’ghaya Toulbe, Mihaela Baibarac, Alin Mogos, Adam Lőrinczi and C. Logofatu
Molecules 2020, 25(17), 3820; https://doi.org/10.3390/molecules25173820 - 22 Aug 2020
Cited by 6 | Viewed by 4398
Abstract
In this work, a complementary ultraviolet-visible (UV-VIS) spectroscopy and photoluminescence (PL) study on melatonin (MEL) hydrolysis in the presence of alkaline aqueous solutions and the photodegradation of MEL is reported. The UV-VIS spectrum of MEL is characterized by an absorption band with a [...] Read more.
In this work, a complementary ultraviolet-visible (UV-VIS) spectroscopy and photoluminescence (PL) study on melatonin (MEL) hydrolysis in the presence of alkaline aqueous solutions and the photodegradation of MEL is reported. The UV-VIS spectrum of MEL is characterized by an absorption band with a peak at 278 nm. This peak shifts to 272 nm simultaneously with an increase in the band absorbance at 329 nm in the presence of an NaOH solution. The isosbestic point localized at 308 nm indicates the generation of some chemical compounds in addition to MEL and NaOH. The MEL PL spectrum is characterized by a band at 365 nm. There is a gradual decrease in the MEL PL intensity as the alkaline solution concentration added at the drug solution is increased. In the case of the MEL samples interacting with an alkaline solution, a new photoluminescence excitation (PLE) band at 335 nm appears when the exposure time to UV light reaches 310 min. A down-shift in the MEL PLE band, from 321 to 311 nm, as a consequence of the presence of excipients, is also shown. These changes are explained in reference to the MEL hydrolytic products. Full article
Show Figures

Figure 1

15 pages, 7780 KiB  
Article
Determination of Ferulic Acid in Angelica sinensis by Temperature-Controlled Hydrophobic Ionic Liquids-Based Ultrasound/Heating-Assisted Extraction Coupled with High Performance Liquid Chromatography
by Hongwei Wu, Qianqian Huang, Shujun Chao, Jie Yu, Shengrui Xu, Feng Wang, Xuefang Shang and Yan Zhu
Molecules 2020, 25(15), 3356; https://doi.org/10.3390/molecules25153356 - 24 Jul 2020
Cited by 6 | Viewed by 2577
Abstract
Hydrophilic ionic liquids are often used to extract the active ingredients of medicinal plants, while hydrophobic ionic liquids are rarely used to directly extract solid samples. In this paper, a simple, novel and efficient temperature-controlled hydrophobic ionic liquids-based ultrasound/heating-assisted extraction (TC-ILs-UHAE) procedure coupled [...] Read more.
Hydrophilic ionic liquids are often used to extract the active ingredients of medicinal plants, while hydrophobic ionic liquids are rarely used to directly extract solid samples. In this paper, a simple, novel and efficient temperature-controlled hydrophobic ionic liquids-based ultrasound/heating-assisted extraction (TC-ILs-UHAE) procedure coupled with high-performance liquid chromatography (HPLC) was developed and applied to the determination of ferulic acid (FA) in Chinese herbal medicine Angelica sinensis. During the extraction procedure, hydrophobic ionic liquids (ILs) were dispersed into water to form cloudy solution (fine droplets) with the aid of ultrasound and heating simultaneous. After extraction, phase separation was easily achieved by centrifuging at 0 °C. Among all ILs used, 1-butyl-3-methylimidazolium bis(trifluoromethanesulphonyl)imide ([C4mim]NTf2) exhibited the highest extraction ability and the possible extraction mechanism was discussed. Additionally, the synergistic effect of heating and ultrasound on the extraction efficiency was investigated. Under the optimized conditions, a good linearity was observed with correlation coefficient (r) of 0.9995. The limit of detection of FA (LOD, S/N = 3) was 9.6 µg/L and the spiked recoveries of FA for real samples were in the range of 91.67 to 102.00% with relative standard deviation (RSD) lower than 3.87%. Compared with the traditional extraction methods, the proposed method gave the highest yield of FA and had the shortest extraction time. Therefore, this method is a potential simple, green and highly efficient technique and expected to be applied to the extraction of other bioactive ingredients in medicinal plants. Full article
Show Figures

Figure 1

11 pages, 1928 KiB  
Article
Bioanalytical Method Development and Validation of Veratraldehyde and Its Metabolite Veratric Acid in Rat Plasma: An Application for a Pharmacokinetic Study
by Hyun Wook Huh, Hee-Yong Song, Young-Guk Na, Minki Kim, Mingu Han, Thi Mai Anh Pham, Hyeonmin Lee, Jungkyu Suh, Seok-Jong Lee, Hong-Ki Lee and Cheong-Weon Cho
Molecules 2020, 25(12), 2800; https://doi.org/10.3390/molecules25122800 - 17 Jun 2020
Cited by 2 | Viewed by 3517
Abstract
A simple, sensitive, and rapid UHPLC-MS/MS method was developed for the simultaneous determination of veratraldehyde and its metabolite veratric acid in rat plasma. Cinnamaldehyde was used as an internal standard (IS) and the one-step protein precipitation method with 0.2% formic acid in acetonitrile [...] Read more.
A simple, sensitive, and rapid UHPLC-MS/MS method was developed for the simultaneous determination of veratraldehyde and its metabolite veratric acid in rat plasma. Cinnamaldehyde was used as an internal standard (IS) and the one-step protein precipitation method with 0.2% formic acid in acetonitrile (mobile phase B) was used for the sample extraction. Reversed C18 column (YMC-Triart C18 column, 50 mm × 2.0 mm, 1.9 µm) was used for chromatographic separation and was maintained at 30 °C. The total run time was 4.5 min and the electrospray ionization in positive mode was used with the transition m/z 167.07 → 139.00 for veratraldehyde, m/z 183.07 → 139.00 for veratric acid, and m/z 133.00 → 55.00 for IS. The developed method exhibited good linearity (r2  ≥  0.9977), and the lower limits of quantification ranged from 3 to 10 ng/mL for the two analytes. Intra-day precision and accuracy parameters met the criteria (within ±15%) during the validation. The bioanalytical method was applied for the determination of veratraldehyde and veratric acid in rat plasma after oral and percutaneous administration of 300 and 600 mg/kg veratraldehyde. Using the analytical methods established in this study, we can confirm the absorption and metabolism of veratraldehyde in rats for various routes. Full article
Show Figures

Figure 1

12 pages, 1630 KiB  
Article
Development of UHPLC-MS/MS Method for Indirubin-3′-Oxime Derivative as a Novel FLT3 Inhibitor and Pharmacokinetic Study in Rats
by Na Yoon Kim, Yong-Chul Kim and Yoon Gyoon Kim
Molecules 2020, 25(9), 2039; https://doi.org/10.3390/molecules25092039 - 27 Apr 2020
Cited by 1 | Viewed by 2868
Abstract
This study aimed to develop and validate a sensitive liquid chromatography-coupled tandem mass spectrometry method for the quantification of LDD-2614, an indirubin derivative and novel FLT3 inhibitor, in rat plasma. In addition, the developed analytical method was applied to observe the pharmacokinetic properties [...] Read more.
This study aimed to develop and validate a sensitive liquid chromatography-coupled tandem mass spectrometry method for the quantification of LDD-2614, an indirubin derivative and novel FLT3 inhibitor, in rat plasma. In addition, the developed analytical method was applied to observe the pharmacokinetic properties of LDD-2614. Chromatographic separation was achieved on a Luna omega C18 column using a mixture of water and acetonitrile, both containing 0.1% formic acid. Quantitation was performed using positive electrospray ionization in a multiple reaction monitoring (MRM) mode. The MRM transitions were optimized as m/z 426.2→113.1 for LDD-2614 and m/z 390.2→113.1 for LDD-2633 (internal standard), and the lower limit of quantification (LLOQ) for LDD-2614 was determined as 0.1 ng/mL. Including the LLOQ, the nine-point calibration curve was linear with a correlation coefficient greater than 0.9991. Inter- and intraday accuracies (RE) ranged from −3.19% to 8.72%, and the precision was within 9.02%. All validation results (accuracy, precision, matrix effect, recovery, stability, and dilution integrity) met the acceptance criteria of the U.S. Food and Drug Administration and the Korea Ministry of Food and Drug Safety guidelines. The proposed method was validated and demonstrated to be suitable for the quantification of LDD-2614 for pharmacokinetics studies. Full article
Show Figures

Graphical abstract

12 pages, 1934 KiB  
Article
Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Method for Pharmacokinetic Evaluation of 7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranon in Rats
by Nae-Won Kang, Jae-Young Lee, Kwangho Song, Min-Hwan Kim, Soyeon Yoon, Duy-Thuc Nguyen, Sungho Kim, Yeong Shik Kim and Dae-Duk Kim
Molecules 2020, 25(8), 1774; https://doi.org/10.3390/molecules25081774 - 13 Apr 2020
Cited by 2 | Viewed by 2657
Abstract
Recently, potent neuroprotective and anti-diabetic effects of 7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid isolated from Tussilago farfara Linnaeus, have been elucidated. To facilitate further pre-clinical evaluation in rats, an analytical method for the determination of ECN in rat plasma [...] Read more.
Recently, potent neuroprotective and anti-diabetic effects of 7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid isolated from Tussilago farfara Linnaeus, have been elucidated. To facilitate further pre-clinical evaluation in rats, an analytical method for the determination of ECN in rat plasma was developed and optimized by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plasma samples were pretreated by the protein precipitation method with an acetonitrile solution of losartan (LST) as the internal standard. Chromatographic separation was performed using a an Octadecyl-silica (ODS) column (2.6 µm, 100 x 4.6 mm) in the isocratic mode. The mobile phase, comprising 10 mM ammonium formate in water pH 5.75) and acetonitrile (11:89, v/v), was eluted at a flow rate of 0.4 mL/min. Mass spectrometric detection was performed in the multiple reaction monitoring mode with positive electrospray ionization, and the mass transitions of ECN and LST were m/z 431.3 to 97.3 and m/z 423.1 to 207.2, respectively. The calibration curves of spiked plasma samples were linear in the 10.0–10,000 ng/mL range (r2 > 0.996). The lower limit of quantification (LLOQ) was determined as 10.0 ng/mL. Validation was conducted in the LLOQ, and three quality control (QC) sample levels (10.0, 25.0, 3750, and 7500 ng/mL) were studied. Among them, the relative standard deviation for the within- and between-run precisions was under 9.90%, and the relative error of the accuracies was within the −8.13% to 0.42% range. The validated method was successfully employed to investigate the pharmacokinetic properties of ECN in rats, which revealed the linear pharmacokinetic behavior of ECN for the first time. Full article
Show Figures

Figure 1

13 pages, 1336 KiB  
Article
Determination of KD025 (SLx-2119), a Selective ROCK2 Inhibitor, in Rat Plasma by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Its Pharmacokinetic Application
by Jin-Ha Yoon, Thi-Thao-Linh Nguyen, Van-An Duong, Kwang-Hoon Chun and Han-Joo Maeng
Molecules 2020, 25(6), 1369; https://doi.org/10.3390/molecules25061369 - 17 Mar 2020
Cited by 20 | Viewed by 4549
Abstract
KD025 (SLx-2119), the first specific Rho-associated protein kinase 2 (ROCK2) inhibitor, is a potential new drug candidate currently undergoing several phase 2 clinical trials for psoriasis, idiopathic pulmonary fibrosis, chronic graft-versus-host disease, and systemic sclerosis. In this study, a bio-analytical method was developed [...] Read more.
KD025 (SLx-2119), the first specific Rho-associated protein kinase 2 (ROCK2) inhibitor, is a potential new drug candidate currently undergoing several phase 2 clinical trials for psoriasis, idiopathic pulmonary fibrosis, chronic graft-versus-host disease, and systemic sclerosis. In this study, a bio-analytical method was developed and fully validated for the quantification of KD025 in rat plasma and for application in pharmacokinetic studies. KD025 and GSK429286A (the internal standard) in rat plasma samples were analyzed by high-performance liquid chromatography-tandem mass spectrometry with m/z transition values of 453.10 → 366.10 and 433.00 → 178.00, respectively. The method was fully validated according to the United State Food and Drug Administration guidelines in terms of selectivity, linearity, accuracy, precision, sensitivity, matrix effects, extraction recovery, and stability. The method enabled the quantification of KD025 levels in rat plasma following oral administration of 5 mg/kg KD025 and intravenous administration of 2 mg/kg KD025 to rats, respectively. Our findings suggest that the developed method is practical and reliable for pharmacokinetic studies of KD025 in preclinical animals. Full article
Show Figures

Graphical abstract

13 pages, 2403 KiB  
Article
Liquid Chromatography–Tandem Mass Spectrometry for the Simultaneous Determination of Doxorubicin and its Metabolites Doxorubicinol, Doxorubicinone, Doxorubicinolone, and 7-Deoxydoxorubicinone in Mouse Plasma
by Won-Gu Choi, Dong Kyun Kim, Yongho Shin, Ria Park, Yong-Yeon Cho, Joo Young Lee, Han Chang Kang and Hye Suk Lee
Molecules 2020, 25(5), 1254; https://doi.org/10.3390/molecules25051254 - 10 Mar 2020
Cited by 16 | Viewed by 4478
Abstract
Doxorubicin, an anthracycline antitumor antibiotic, acts as a cancer treatment by interfering with the function of DNA. Herein, liquid chromatography-tandem mass spectrometry was for the first time developed and validated for the simultaneous determination of doxorubicin and its major metabolites doxorubicinol, doxorubicinone, doxorubicinolone, [...] Read more.
Doxorubicin, an anthracycline antitumor antibiotic, acts as a cancer treatment by interfering with the function of DNA. Herein, liquid chromatography-tandem mass spectrometry was for the first time developed and validated for the simultaneous determination of doxorubicin and its major metabolites doxorubicinol, doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma. The liquid–liquid extraction of a 10 μL mouse plasma sample with chloroform:methanol (4:1, v/v) and use of the selected reaction monitoring mode led to less matrix effect and better sensitivity. The lower limits of quantification levels were 0.5 ng/mL for doxorubicin, 0.1 ng/mL for doxorubicinol, and 0.01 ng/mL for doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone. The standard curves were linear over the range of 0.5–200 ng/mL for doxorubicin; 0.1–200 ng/mL for doxorubicinol; and 0.01–50 ng/mL for doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma. The intra and inter-day relative standard deviation and relative errors for doxorubicin and its four metabolites at four quality control concentrations were 0.9–13.6% and –13.0% to 14.9%, respectively. This method was successfully applied to the pharmacokinetic study of doxorubicin and its metabolites after intravenous administration of doxorubicin at a dose of 1.3 mg/kg to female BALB/c nude mice. Full article
Show Figures

Figure 1

16 pages, 922 KiB  
Article
Comparison of Sample Preparation and Determination of 60 Veterinary Drug Residues in Flatfish Using Liquid Chromatography-Tandem Mass Spectrometry
by Joohye Kim, Hyunjin Park, Hui-Seung Kang, Byung-Hoon Cho and Jae-Ho Oh
Molecules 2020, 25(5), 1206; https://doi.org/10.3390/molecules25051206 - 7 Mar 2020
Cited by 14 | Viewed by 3197
Abstract
This study was performed to optimize the analytical method for multi-residues of 60 compounds in flatfish samples. Three sample preparation methods were tested to identify the optimal recovery conditions for target analytes. As a result, 10 mL of water/acetonitrile (1:4, v/v [...] Read more.
This study was performed to optimize the analytical method for multi-residues of 60 compounds in flatfish samples. Three sample preparation methods were tested to identify the optimal recovery conditions for target analytes. As a result, 10 mL of water/acetonitrile (1:4, v/v) was used to extract analytes from fish samples. For purification, C18 and 10 mL of acetonitrile saturated hexane were used to treat the samples. After evaporation and reconstitution, the fish samples were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry. The proposed method was validated according to the CODEX guidelines (CAC/GL-71). Our results showed the recoveries of 73.2%–115% and coefficients of variation of 1.6%–22.1%. The limit of quantification was 0.0005–0.005 mg/kg in the fishery products. In analysis of real samples, no samples exceeded the limit of quantification. This analytical method can be used for multi-residue screening and confirmation of the residues of veterinary drugs in fishery products. Full article
Show Figures

Figure 1

Back to TopTop