Exploitation of HPLC Analytical Method for Simultaneous Determination of Six Principal Unsaturated Fatty Acids in Oviductus Ranae Based on Quantitative Analysis of Multi-Components by Single-Marker (QAMS)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of HPLC Separation Conditions
2.2. HPLC Method Validation
2.3. UPLC-MS/MS Component Analysis
2.4. Relative Correction Factor (RCF)
2.5. Robustness Test Based on Taguchi Design
2.6. Consistency Assessment of QAMS and ESM Results
3. Materials and Methods
3.1. Reagents and Samples
3.2. Preparation of Standard Solutions
3.3. Preparation of Samples
3.4. HPLC Analysis
3.4.1. Development of HPLC Analysis Method
3.4.2. Validation of HPLC Analysis Method
3.5. UPLC-MS/MS Component Identification
3.6. Development of QAMS Analysis Method
3.6.1. Validation of HPLC Analysis Method
3.6.2. Determination of UFAs in Oviductus Ranae Based on QAMS
3.7. Robustness Test Based on Taguchi Design
3.8. Consistency Assessment of QAMS and ESM Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wang, S.; Xu, Y.; Wang, Y.; Yang, H.; Lv, Z.; Jin, X.; Wang, Y. Simultaneous determination of six active components in Oviductus Ranae via quantitative analysis of multicomponents by single marker. J. Anal. Methods Chem. 2017, 2017, 9194847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Ni, S.; Wang, S.; Gan, Y.; Zhou, Y.; Guo, H.; Liu, M.; Wang, Z.; Wang, Y. Environmental influences on quality features of Oviductus Ranae in the Changbai Mountains. RSC Adv. 2019, 9, 36050–36057. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y.; Li, M.; Liu, S.; Yu, J.; Yan, Z.; Zhou, H. Traditional uses, bioactive constituents, biological functions, and safety properties of Oviductus Ranae as functional foods in China. Oxidative Med. Cell. Longev. 2019, 2019, 4739450. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Xiao, Y.; Wang, S.; Guo, H.; Liu, M.; Wang, Z.; Wang, Y. Protein-Based fingerprint analysis for the identification of Ranae Oviductus using RP-HPLC. Molecules 2019, 24, 1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Xu, Y.; Wang, Y.; Lv, Z.; Cui, Q.; Jin, X.; Wang, Y. HPLC fingerprint combined with quantitation of main effective components and chemometrics as an efficient method for quality evaluation of Oviductus Ranae. Nat. Prod. Commun. 2017, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, S.; Luo, Y.; Wang, Y.; Qu, X. Evaluation of the Merits of the New Method of Oviductus Ranae by HPLC-DAD. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1218–1222. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Hu, Y.; Zhang, L.; Wang, Z. Isolation and identification of two steroid compounds from Oviductus Ranae. Nat. Prod. Res. 2010, 24, 1518–1522. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, S.; Luo, Y.; Yang, H.; Hu, X.; Wang, Y.; Qu, X. Separation of steroidal constituents of Oviductus Ranae by one-step method high-speed counter-current chromatography. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1494–1498. [Google Scholar] [CrossRef]
- Yu, G.; Qin, J.; Li, J.; Wang, J.; Bi, Y.; Wang, Z.; Xiao, W. Determination of α-Linolenic Acid,Linoleic Acid and Oleic Acid in Oviductus Ranae by HPLC. Chin. J. Exp. Tradit. Med. 2013, 19, 82–85. [Google Scholar]
- Gan, Y.; Xu, D.; Zhang, J.; Wang, Z.; Wang, S.; Guo, H.; Zhang, K.; Li, Y.; Wang, Y. Rana chensinensis ovum oil based on CO2 supercritical fluid extraction: Response surface methodology optimization and unsaturated fatty acid ingredient analysis. Molecules 2020, 25, 4170. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Alcalá, L.M.; Calvo, M.V.; Fontecha, J.; Alonso, L. Alterations in the fatty acid composition in infant formulas and ω3-PUFA enriched uht milk during storage. Foods 2019, 8, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Gan, Y.; Liu, M.; Wang, S.; Ni, S.; Zhou, Y.; Xiao, Y.; Wang, Z.; Wang, Y. Quality evaluation of Oviductus Ranae based on PUFAs using HPLC fingerprint techniques combined with chemometric methods. Foods 2019, 8, 322. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, L.; Qiu, J.; Zhang, Y.; Wang, L.; Jiang, L.; Jiang, Y.; Liu, B. Simultaneous determination of six chromones in Saposhnikoviae Radix via quantitative analysis of multicomponents by single marker. J. Anal. Methods Chem. 2020, 2020, 7867046. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Li, J.; Liang, J.; Luo, P.; Qing, L.; Ding, L. Determination of contents of catechins in oolong teas by quantitative analysis of multi-components via a single marker (QAMS) method. Food Anal. Methods 2017, 10, 363–368. [Google Scholar] [CrossRef]
- Xu, R.; Mao, F.; Zhao, Y.; Wang, W.; Fan, L.; Gao, X.; Zhao, J.; Tian, H. UPLC quantitative analysis of multi-components by single marker and quality evaluation of Polygala tenuifolia Wild. extracts. Molecules 2017, 22, 2276. [Google Scholar] [CrossRef] [Green Version]
- Lai, P.H.; Paterson, A.H.J. Mathematical approach to lipid oxidation of goat infant formula powder. Int. Dairy J. 2020, 109, 104747. [Google Scholar] [CrossRef]
- Fu, M.; Shen, X.; Peng, H.; Zhou, Q.; Yun, J.; Sun, Y.; Ho, C.-T.; Cai, H.; Hou, R. Identification of rancidity markers in roasted sunflower seeds produced from raw materials stored for different periods of time. LWT 2020, 118, 108721. [Google Scholar] [CrossRef]
- El-Hadad, S.S.; Tikhomirova, N.A. Physicochemical properties and oxidative stability of butter oil supplemented with corn oil and dihydroquercetin. J. Food Process. Preserv. 2018, 42, e13765. [Google Scholar] [CrossRef]
- Li, D.; Zhu, M.; Shao, Y.; Shen, Z.; Weng, C.; Yan, W. Determination and quality evaluation of green tea extracts through qualitative and quantitative analysis of multi-components by single marker (QAMS). Food Chem. 2016, 197, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Shang, X.; Zhu, C.; Qin, S.; Zhou, Y.; Liao, Q.; Zhang, R.; Zhao, Z.; Zhang, L. Qualitative and quantitative evaluation of Oroxylum indicum (L.) Kurz by HPLC and LC-qTOF-MS/MS. Biomed. Chromatogr. 2019, 33, e4657. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Wu, Y.; Weng, Z.; Gao, Q.; Yang, G.; Chen, Z.; Cai, B.; Li, W. Development of an HPLC method for absolute quantification and QAMS of flavonoids components in Psoralea corylifolia L. J. Anal. Methods Chem. 2015, 2015, 792637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Li, Q.; Yang, L.; Zhang, Y.; Qiu, D.; Ding, X. Simultaneous determination of osthol, columbianadin, and isoimperatorin in Angelicae pubescentis Radix by high-performance liquid chromatography (HPLC) using a quantitative analysis of multi-components by single marker (QAMS) calibration method. Instrum. Sci. Technol. 2020, 48, 550–560. [Google Scholar] [CrossRef]
- Wang, C.; Jia, X.; Zhu, S.; Komatsu, K.; Wang, X.; Cai, S. A systematic study on the influencing parameters and improvement of quantitative analysis of multi-component with single marker method using notoginseng as research subject. Talanta 2015, 134, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Zhang, H.; Zhang, Q.; Wen, H.; Cui, X.; Peng, G.; Shan, C.; Chai, C.; Li, W.; Zuo, C.; et al. Chemical profile analysis of Ling-Gui-Zhu-Gan decoction by LC–QTOF MS and simultaneous determination of nine major components using QAMS method. Chromatographia 2020, 83, 1371–1389. [Google Scholar] [CrossRef]
- Yi, H.; Zhou, J.; Shang, X.; Zhao, Z.; Peng, Q.; Zhu, M.; Zhu, C.; Lin, C.; Liu, Q.; Liao, Q.; et al. Multi-component analysis of Ilex Kudingcha C. J. Tseng by a single marker quantification method and chemometric discrimination of HPLC fingerprints. Molecules 2018, 23, 854. [Google Scholar] [CrossRef] [Green Version]
- Luan, L.; Shen, X.; Liu, X.; Wu, Y.; Tan, M. Qualitative analysis of Psoraleae Fructus by HPLC-DAD/TOF-MS fingerprint and quantitative analysis of multiple components by single marker. Biomed. Chromatogr. 2018, 32, e4059. [Google Scholar] [CrossRef]
- McLaughlin, R.; Glennon, J.D. Analytical Methods | Spectroscopy, Overview. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 109–114. [Google Scholar]
- Li, J.; Deng, Y.; Yuan, C.; Pan, L.; Chai, H.; Keller, W.J.; Kinghorn, A.D. Antioxidant and quinone reductase-inducing constituents of black chokeberry (Aronia melanocarpa) fruits. J. Agric. Food Chem. 2012, 60, 11551–11559. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, P.; Bucheli, P.; Huang, T.; Wang, D. FT-IR methodology for quality control of arabinogalactan protein (AGP) extracted from green tea (camellia sinensis). J. Agric. Food Chem. 2009, 57, 5121–5128. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Cao, Y.; Wang, Y. Analysis of pharmaceutical samples of Resina Draconis by HPLC-PAD. Phytochem. Anal. 2008, 19, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Zhang, Y.; Shao, W.; Gao, D. Analysis of the HPLC fingerprint and QAMS from Pyrrosia species. Ind. Crop. Prod. 2016, 85, 29–37. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, Y.; Lu, J.; Tu, P. One single standard substance for the determination of multiple anthraquinone derivatives in rhubarb using high-performance liquid chromatography-diode array detection. J. Chromatogr. A 2009, 1216, 2118–2123. [Google Scholar] [CrossRef] [PubMed]
Composition | Precision RSD (%) | Stability RSD (%) | Repeatability RSD (%) | Accuracy | |
---|---|---|---|---|---|
Recovery Rate (%) | RSD (%) | ||||
EPA | 0.32 | 0.64 | 0.15 | 101.62 | 1.60 |
ALA | 0.32 | 0.41 | 0.18 | 99.00 | 1.51 |
DHA | 0.35 | 0.44 | 0.18 | 101.18 | 1.62 |
ARA | 0.33 | 0.20 | 0.19 | 100.20 | 1.49 |
LA | 0.21 | 0.20 | 0.16 | 100.30 | 1.33 |
OA | 0.27 | 0.22 | 0.12 | 104.14 | 1.88 |
Peak a | RT (min) | MS2 Mass Spectrum | [M − H]− | Molecular Formula | Proposed Compound |
---|---|---|---|---|---|
1 | 10.29 | Figure 2B | 301.2167 | C20H30O2 | EPA |
2 | 11.26 | Figure 2C | 277.2168 | C18H30O2 | ALA |
3 | 12.19 | Figure 2D | 327.2279 | C22H32O2 | DHA |
4 | 13.91 | Figure 2E | 303.2325 | C20H32O2 | ARA |
5 | 15.66 | Figure 2F | 279.2287 | C18H32O2 | LA |
6 | 22.53 | Figure 2G | 281.2446 | C18H34O2 | OA |
Injection Volume (μL) | FLA/EPA | FLA/ALA | FLA/DHA | FLA/ARA | FLA/OA |
---|---|---|---|---|---|
6 | 2.4906 | 1.4109 | 3.2059 | 2.3822 | 0.2053 |
8 | 2.4991 | 1.4144 | 3.2149 | 2.3760 | 0.2022 |
10 | 2.5257 | 1.4303 | 3.2661 | 2.4051 | 0.2013 |
12 | 2.5410 | 1.4366 | 3.2751 | 2.3968 | 0.1980 |
14 | 2.5631 | 1.4482 | 3.3205 | 2.4180 | 0.1982 |
18 | 2.6097 | 1.4731 | 3.3517 | 2.4335 | 0.1939 |
Mean | 2.5382 | 1.4356 | 3.2724 | 2.4019 | 0.1998 |
RSD (%) | 1.73 | 1.60 | 1.75 | 0.90 | 1.99 |
HPLC Instruments | Chromatographic Columns | FLA/LA | FLA/EPA | FLA/ALA | FLA/DHA | FLA/ARA | FLA/OA |
---|---|---|---|---|---|---|---|
Agilent-UVD | Agilent | 1 | 2.5228 | 1.4316 | 3.2654 | 2.4059 | 0.1999 |
Agilent-UVD | Waters | 1 | 2.5132 | 1.4023 | 3.2009 | 2.4014 | 0.2031 |
Agilent-UVD | Venusil | 1 | 2.5058 | 1.4180 | 3.1377 | 2.3661 | 0.2003 |
Agilent-DAD | Agilent | 1 | 2.5104 | 1.4052 | 3.1953 | 2.3889 | 0.1994 |
Agilent-DAD | Waters | 1 | 2.5033 | 1.4023 | 3.2901 | 2.4105 | 0.1973 |
Agilent-DAD | Venusil | 1 | 2.5123 | 1.4193 | 3.2195 | 2.4190 | 0.1983 |
Waters-E2695 | Agilent | 1 | 2.5916 | 1.4329 | 3.2130 | 2.4395 | 0.1939 |
Waters-E2695 | Waters | 1 | 2.5412 | 1.4032 | 3.2014 | 2.4511 | 0.2031 |
Waters-E2695 | Venusil | 1 | 2.4994 | 1.3857 | 3.1959 | 2.3498 | 0.1942 |
Mean | 1 | 2.5222 | 1.4112 | 3.2132 | 2.4036 | 0.1988 | |
RSD (%) | 0 | 1.08 | 1.03 | 1.28 | 1.27 | 1.58 |
Samples | LA (mg/g) | EPA (mg/g) | ALA (mg/g) | DHA (mg/g) | ARA (mg/g) | OA (mg/g) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
ESM | ESM | QAMS | ESM | QAMS | ESM | QAMS | ESM | QAMS | ESM | QAMS | |
S1 | 0.9628 | 0.1817 | 0.1808 | 0.4773 | 0.4755 | 0.0889 | 0.0888 | 0.4097 | 0.4090 | 4.8744 | 4.9100 |
S2 | 0.8547 | 0.0878 | 0.0874 | 0.2758 | 0.2747 | 0.0436 | 0.0435 | 0.2228 | 0.2231 | 3.6959 | 3.7229 |
S3 | 0.9825 | 0.1147 | 0.1141 | 0.1730 | 0.1724 | 0.0740 | 0.0738 | 0.4689 | 0.4696 | 4.6060 | 4.6397 |
S4 | 1.2238 | 0.2603 | 0.2590 | 0.4534 | 0.4517 | 0.1522 | 0.1519 | 0.6240 | 0.6248 | 4.2444 | 4.2754 |
S5 | 0.8017 | 0.1406 | 0.1399 | 0.3770 | 0.3756 | 0.0692 | 0.0690 | 0.3089 | 0.3093 | 3.8682 | 3.8966 |
S6 | 1.2719 | 0.2103 | 0.2093 | 0.4254 | 0.4239 | 0.1132 | 0.1130 | 0.5726 | 0.5734 | 4.8270 | 4.8623 |
S7 | 1.1836 | 0.2400 | 0.2388 | 0.5267 | 0.5248 | 0.1327 | 0.1324 | 0.5485 | 0.5492 | 4.6834 | 4.7176 |
S8 | 1.2175 | 0.1605 | 0.1597 | 0.2909 | 0.2898 | 0.1119 | 0.1117 | 0.5340 | 0.5347 | 3.7866 | 3.8143 |
S9 | 0.7895 | 0.1427 | 0.1420 | 0.1769 | 0.1762 | 0.0635 | 0.0634 | 0.3990 | 0.3994 | 2.9387 | 2.9602 |
S10 | 1.1225 | 0.1303 | 0.1296 | 0.5456 | 0.5435 | 0.0747 | 0.0746 | 0.3585 | 0.3590 | 4.3237 | 4.3553 |
S11 | 0.5216 | 0.1035 | 0.1030 | 0.1328 | 0.1323 | 0.0585 | 0.0584 | 0.2681 | 0.2684 | 2.4207 | 2.4384 |
S12 | 1.2792 | 0.2292 | 0.2281 | 0.2182 | 0.2174 | 0.1307 | 0.1305 | 0.7264 | 0.7274 | 3.3139 | 3.3381 |
S13 | 0.6013 | 0.1135 | 0.1129 | 0.1369 | 0.1364 | 0.0547 | 0.0546 | 0.3294 | 0.3299 | 2.0079 | 2.0226 |
S14 | 0.8133 | 0.2154 | 0.2143 | 0.1958 | 0.1951 | 0.0927 | 0.0925 | 0.4232 | 0.4237 | 2.3952 | 2.4127 |
S15 | 1.0127 | 0.2919 | 0.2904 | 0.3040 | 0.3029 | 0.1739 | 0.1736 | 0.6477 | 0.6486 | 2.4948 | 2.5131 |
Si | 0.999999987 | 0.999999992 | 0.999999930 | 0.999999780 | 0.999999999 |
NO. | Collection Location | Longitude (° E) | Latitude (° N) | Collection Data |
---|---|---|---|---|
S1 | Fusong, Baishan, Jilin | 127.29 | 42.51 | 2016.12 |
S2 | Huadian, Jilin, Jilin | 126.78 | 43.16 | 2016.12 |
S3 | Jiangyuan, Baishan, Jilin | 126.92 | 42.08 | 2016.12 |
S4 | Jingyu, Baishan, Jilin | 127.12 | 42.70 | 2015.11 |
S5 | Liuhe, Tonghua, Jilin | 125.76 | 42.29 | 2016.12 |
S6 | Huadian, Jilin, Jilin | 126.88 | 42.86 | 2016.12 |
S7 | Panshi, Jilin, Jilin | 126.21 | 43.33 | 2015.11 |
S8 | Huadian, Jilin, Jilin | 127.10 | 42.96 | 2016.12 |
S9 | Jingyu, Baishan, Jilin | 126.52 | 42.10 | 2016.12 |
S10 | Helong, Yanbian, Jilin | 129.01 | 42.55 | 2016.03 |
S11 | Huadian, Jilin, Jilin | 126.75 | 43.33 | 2016.12 |
S12 | Huadian, Jilin, Jilin | 126.68 | 43.27 | 2016.12 |
S13 | Jian, Tonghua, Jilin | 126.24 | 41.21 | 2016.01 |
S14 | Antu, Yanbian, Jilin | 128.78 | 43.20 | 2016.12 |
S15 | Dunhua, Yanbian, Jilin | 129.10 | 43.43 | 2016.03 |
Levels | Factor-1 (HPLC Instruments) | Factor-2 (Chromatographic Columns) |
---|---|---|
Level-1 | Agilent-UVD | Agilent |
Level-2 | Agilent-DAD | Waters |
Level-3 | Waters-E2695 | Venusil |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Gan, Y.; Kan, H.; Mao, X.; Wang, Y. Exploitation of HPLC Analytical Method for Simultaneous Determination of Six Principal Unsaturated Fatty Acids in Oviductus Ranae Based on Quantitative Analysis of Multi-Components by Single-Marker (QAMS). Molecules 2021, 26, 479. https://doi.org/10.3390/molecules26020479
Wang S, Gan Y, Kan H, Mao X, Wang Y. Exploitation of HPLC Analytical Method for Simultaneous Determination of Six Principal Unsaturated Fatty Acids in Oviductus Ranae Based on Quantitative Analysis of Multi-Components by Single-Marker (QAMS). Molecules. 2021; 26(2):479. https://doi.org/10.3390/molecules26020479
Chicago/Turabian StyleWang, Shihan, Yuanshuai Gan, Hong Kan, Xinxin Mao, and Yongsheng Wang. 2021. "Exploitation of HPLC Analytical Method for Simultaneous Determination of Six Principal Unsaturated Fatty Acids in Oviductus Ranae Based on Quantitative Analysis of Multi-Components by Single-Marker (QAMS)" Molecules 26, no. 2: 479. https://doi.org/10.3390/molecules26020479
APA StyleWang, S., Gan, Y., Kan, H., Mao, X., & Wang, Y. (2021). Exploitation of HPLC Analytical Method for Simultaneous Determination of Six Principal Unsaturated Fatty Acids in Oviductus Ranae Based on Quantitative Analysis of Multi-Components by Single-Marker (QAMS). Molecules, 26(2), 479. https://doi.org/10.3390/molecules26020479