Research Progress of NMR in Natural Product Quantification
Abstract
:1. Introduction
2. Overview of qNMR
2.1. Basic Principles
2.2. The Choice of Internal Standards
2.3. Main Types
3. Advantages of qNMR
4. Research Progress of qNMR Applied to Natural Products
4.1. Liquid State qNMR
4.1.1. 1H qNMR
4.1.2. 13C qNMR
4.1.3. 2D qNMR
4.2. Solid State qNMR
4.3. New Techniques and Methods
5. Latest Development of qNMR
5.1. Shortcomings and Improvements
5.2. Combination with Other Quantitative Techniques
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bloch, F. Nuclear induction. Phys. Rev. 1946, 70, 460–474. [Google Scholar] [CrossRef]
- Purcell, E.M.; Torrey, H.C.; Pound, R.V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 1946, 69, 37–38. [Google Scholar] [CrossRef]
- Markley, J.L.; Bruschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcone, M.F.; Wang, S.; Albabish, W.; Nie, S.; Somnarain, D.; Hill, A. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int. 2013, 51, 729–747. [Google Scholar] [CrossRef]
- Gougeon, L.; Da Costa, G.; Le Mao, I.; Ma, W.; Teissedre, P.-L.; Guyon, F.; Richard, T. Wine Analysis and Authenticity Using H-1-NMR Metabolomics Data: Application to Chinese Wines. Food Anal. Methods 2018, 11, 3425–3434. [Google Scholar] [CrossRef]
- Marçal, R.L.; Santos, F.D.D.; Gomes, R.T.; Domingues, N.C.E.; Braz, A.G. Sodium quantitation in soft drinks: A rapid methodology by qNMR. Magn. Reson. Chem. 2020, 58, 186–190. [Google Scholar] [CrossRef]
- Holzgrabe, U. Quantitative NMR spectroscopy in pharmaceutical applications. Prog. Nucl. Magn. Reson. Spectrosc. 2010, 57, 229–240. [Google Scholar] [CrossRef]
- Jaurila, H.; Koivukangas, V.; Koskela, M.; Gaddnas, F.; Myllymaa, S.; Kullaa, A.; Salo, T.; Ala-Kokko, T.I. H-1 NMR Based Metabolomics in Human Sepsis and Healthy Serum. Metabolites 2020, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Petras, M.; Kalenska, D.; Samos, M.; Bolek, T.; Sarlinova, M.; Racay, P.; Halasova, E.; Strbak, O.; Stasko, J.; Musak, L.; et al. NMR Plasma Metabolomics Study of Patients Overcoming Acute Myocardial Infarction: In the First 12 h After Onset of Chest Pain with Statistical Discrimination Towards Metabolomic Biomarkers. Physiol. Res. 2020, 69, 823–834. [Google Scholar] [CrossRef]
- Vignoli, A.; Santini, G.; Tenori, L.; Macis, G.; Mores, N.; Macagno, F.; Pagano, F.; Higenbottam, T.; Luchinat, C.; Montuschi, P. NMR-Based Metabolomics for the Assessment of Inhaled Pharmacotherapy in Chronic Obstructive Pulmonary Disease Patients. J. Proteome Res. 2020, 19, 64–74. [Google Scholar] [CrossRef]
- Oliveira, E.S.C.; Pontes, F.L.D.; Acho, L.D.R.; do Rosario, A.S.; da Silva, B.J.P.; Bezerra, J.d.A.; Campos, F.R.; Lima, E.S.; Machado, M.B. qNMR quantification of phenolic compounds in dry extract of Myrcia multiflora leaves and its antioxidant, anti-AGE, and enzymatic inhibition activities. J. Pharm. Biomed. Anal. 2021, 201, 114109. [Google Scholar] [CrossRef]
- Rizzo, V.; Pinciroli, V. Quantitative NMR in synthetic and combinatorial chemistry. J. Pharm. Biomed. Anal. 2005, 38, 851–857. [Google Scholar] [CrossRef]
- Jiang, C.-Y.; Wang, Y.-H. Quantitative metabolomics based on NMR. Yao Xue Xue Bao Acta Pharm. Sin. 2014, 49, 949–955. [Google Scholar]
- Marshall, D.D.; Powers, R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 100, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crook, A.A.; Powers, R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications. Molecules 2020, 25, 5128. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Lu, K.; Yang, W.; Zhu, J. Application of NMR-based Metabolomics in the Study of Ecotoxicology of Molluscs: A Review. Asian J. Ecotoxicol. 2016, 11, 36–46. [Google Scholar]
- Liu, X.; Wang, Y. The application of NMR-based metabolomics technique to medicinal plants. Acta Pharm. Sin. 2017, 52, 541–549. [Google Scholar]
- Pauli, G.F.; Goedecke, T.; Jaki, B.U.; Lankin, D.C. Quantitative H-1 NMR. Development and Potential of an Analytical Method: An Update. J. Nat. Prod. 2012, 75, 834–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Duynhoven, J.; van Velzen, E.; Jacobs, D.M. Quantification of Complex Mixtures by NMR. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 80, pp. 181–236. [Google Scholar]
- Barding, G.A., Jr.; Salditos, R.; Larive, C.K. Quantitative NMR for bioanalysis and metabolomics. Anal. Bioanal. Chem. 2012, 404, 1165–1179. [Google Scholar] [CrossRef]
- Goedecke, T.; Napolitano, J.G.; Rodriguez-Brasco, M.F.; Chen, S.-N.; Jaki, B.U.; Lankin, D.C.; Pauli, G.F. Validation of a Generic Quantitative H-1 NMR Method for Natural Products Analysis. Phytochem. Anal. 2013, 24, 581–597. [Google Scholar] [CrossRef] [Green Version]
- Pauli, G.F.; Jaki, B.U.; Lankin, D.C. Quantitative H-1 NMR: Development and potential of a method for natural products analysis. J. Nat. Prod. 2005, 68, 133–149. [Google Scholar] [CrossRef]
- Pauli, G.F. qNMR—A versatile concept for the validation of natural product reference compounds. Phytochem. Anal. 2001, 12, 28–42. [Google Scholar] [CrossRef]
- Simmler, C.; Napolitano, J.G.; McAlpine, J.B.; Chen, S.-N.; Pauli, G.F. Universal quantitative NMR analysis of complex natural samples. Curr. Opin. Biotechnol. 2014, 25, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Roy, R. The application of absolute quantitative H-1 NMR spectroscopy in drug discovery and development. Expert Opin. Drug Discov. 2016, 11, 695–706. [Google Scholar] [CrossRef]
- Mattes, A.O.; Russell, D.; Tishchenko, E.; Liu, Y.; Cichewicz, R.H.; Robinson, S.J. Application of F-19 quantitative NMR to pharmaceutical analysis. Concepts Magn. Reson. Part. A 2016, 45A. [Google Scholar] [CrossRef]
- Holzgrabe, U.; Deubner, R.; Schollmayer, C.; Waibel, B. Quantitative NMR spectroscopy—Applications in drug analysis. J. Pharm. Biomed. Anal. 2005, 38, 806–812. [Google Scholar] [CrossRef]
- Ma, X.-L.; Zou, P.-P.; Lei, W.; Tu, P.-F.; Jiang, Y. Optimization of experimental parameters for quantitative NMR (qNMR) and its application in quantitative analysis of traditional Chinese medicines. Yao Xue Xue Bao Acta Pharm. Sin. 2014, 49, 1248–1257. [Google Scholar]
- Fernandez-Pastor, I.; Luque-Munoz, A.; Rivas, F.; Medina-O’Donnell, M.; Martinez, A.; Gonzalez-Maldonado, R.; Haidour, A.; Parra, A. Quantitative NMR analysis of L-Dopa in seeds from two varieties of Mucuna pruriens. Phytochem. Anal. 2019, 30, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, A.; Sharma, R.J.; Singh, I.P. Determination of Major Sesquiterpene Lactones in Essential Oil of Inula racemosa and Saussurea lappa Using qNMR. J. Essent. Oil Bear. Plants. 2016, 19, 20–31. [Google Scholar] [CrossRef]
- Barantin, L.; LePape, A.; Akoka, S. A new method for absolute quantitation of MRS metabolites. Magn. Reson. Med. 1997, 38, 179–182. [Google Scholar] [CrossRef]
- Akoka, S.; Barantin, L.; Trierweiler, M. Concentration measurement by proton NMR using the ERETIC method. Anal. Chem. 1999, 71, 2554–2557. [Google Scholar] [CrossRef]
- Cullen, C.H.; Ray, G.J.; Szabo, C.M. A comparison of quantitative nuclear magnetic resonance methods: Internal, external, and electronic referencing. Magn. Reson. Chem. 2013, 51, 705–713. [Google Scholar] [CrossRef]
- Zoelch, N.; Hock, A.; Heinzer-Schweizer, S.; Avdievitch, N.; Henning, A. Accurate determination of brain metabolite concentrations using ERETIC as external reference. NMR Biomed. 2017, 30, e3731. [Google Scholar] [CrossRef]
- Heinzer-Schweizer, S.; De Zanche, N.; Pavan, M.; Mens, G.; Sturzenegger, U.; Henning, A.; Boesiger, P. In-vivo assessment of tissue metabolite levels using 1H MRS and the Electric REference To access In vivo Concentrations (ERETIC) method. NMR Biomed. 2010, 23, 406–413. [Google Scholar] [CrossRef]
- Albers, M.J.; Butler, T.N.; Rahwa, I.; Bao, N.; Keshari, K.R.; Swanson, M.G.; Kurhanewicz, J. Evaluation of the ERETIC Method as an Improved Quantitative Reference for H-1 HR-MAS Spectroscopy of Prostate Tissue. Magn. Reson. Med. 2009, 61, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Ding, P.-L.; Chen, L.-Q.; Lu, Y.; Li, Y.-G. Determination of protoberberine alkaloids in Rhizoma Coptidis by ERETIC H-1 NMR method. J. Pharm. Biomed. Anal. 2012, 60, 44–50. [Google Scholar] [CrossRef]
- Lane, D.; Skinner, T.E.; Gershenzon, N.I.; Bermel, W.; Soong, R.; Majumdar, R.D.; Mobarhan, Y.L.; Schmidt, S.; Heumann, H.; Monette, M.; et al. Assessing the potential of quantitative 2D HSQC NMR in C-13 enriched living organisms. J. Biomol. NMR 2019, 73, 31–42. [Google Scholar] [CrossRef]
- Rundlof, T.; Mathiasson, M.; Bekiroglu, S.; Hakkarainen, B.; Bowden, T.; Arvidsson, T. Survey and qualification of internal standards for quantification by H-1 NMR spectroscopy. J. Pharm. Biomed. Anal. 2010, 52, 645–651. [Google Scholar] [CrossRef]
- Pierens, G.K.; Carroll, A.R.; Davis, R.A.; Palframan, M.E.; Quinn, R.J. Determination of analyte concentration using the residual solvent resonance in H-1 NMR spectroscopy. J. Nat. Prod. 2008, 71, 810–813. [Google Scholar] [CrossRef]
- Muhamadejev, R.; Melngaile, R.; Paegle, P.; Zibarte, I.; Petrova, M.; Jaudzems, K.; Veliks, J. Residual Solvent Signal of CDCl3 as a qNMR Internal Standard for Application in Organic Chemistry Laboratory. J. Org. Chem. 2021, 86, 3890–3896. [Google Scholar] [CrossRef]
- Wang, T.; Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J. Exp. Bot. 2016, 67, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Mortimer, J.C. Unlocking the Architecture of Native Plant Cell Walls via solid-State Nuclear Magnetic Resonance. In Methods in Cell Biology—Plant Cell Biology; Anderson, C.T., Haswell, E.S., Dixit, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 160, pp. 121–143. [Google Scholar]
- Wang, Q.; Nielsen, U.G. Applications of solid-state NMR spectroscopy in environmental science. Solid State Nucl. Magn. Reson. 2020, 110, 101698. [Google Scholar] [CrossRef]
- Singh, C.; Rai, R.K.; Sinha, N. Experimental aspect of solid-state nuclear magnetic resonance studies of biomaterials such as bones. Solid State Nucl. Magn. Reson. 2013, 54, 18–25. [Google Scholar] [CrossRef]
- van der Wel, P.C.A. New applications of solid-state NMR in structural biology. Emerg. Top. Life Sci. 2018, 2, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Crowley, K.J.; Forbes, R.T.; York, P.; Apperley, D.C.; Nyqvist, H.; Camber, O. Characterization of oleic acid and propranolol oleate mesomorphism using (13)C solid-state nuclear magnetic resonance spectroscopy (SSNMR). J. Pharm. Sci. 2000, 89, 1286–1295. [Google Scholar] [CrossRef]
- Alberto Monti, G.; Karina Chattah, A.; Garro Linck, Y. Solid-State Nuclear Magnetic Resonance in Pharmaceutical Compounds. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 83, pp. 221–269. [Google Scholar]
- Paradowska, K.; Wawer, I. Solid-state NMR in the analysis of drugs and naturally occurring materials. J. Pharm. Biomed. Anal. 2014, 93, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, S.; Wang, S.; Lu, X. Application of nuclear magnetic resonance spectroscopy in food adulteration determination: The example of Sudan dye I in paprika powder. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Guo, Y.; Hu, Y.; Yu, B.; Qi, J. Quantitative analysis of highly similar salvianolic acids with H-1 qNMR for quality control of traditional Chinese medicinal preparation Salvianolate Lyophilized Injection. J. Pharm. Biomed. Anal. 2016, 124, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.Q.; Choi, Y.H.; Verpoorte, R.; van der Kooy, F. Comparative Quantitative Analysis of Artemisinin by Chromatography and qNMR. Phytochem. Anal. 2010, 21, 451–456. [Google Scholar] [CrossRef]
- Chauthe, S.K.; Sharma, R.J.; Aqil, F.; Gupta, R.C.; Singh, I.P. Quantitative NMR: An Applicable Method for Quantitative Analysis of Medicinal Plant Extracts and Herbal Products. Phytochem. Anal. 2012, 23, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Freitas, J.V.B.; Alves Filho, E.G.; Silva, L.M.A.; Zocolo, G.J.; de Brito, E.S.; Gramosa, N.V. Chemometric analysis of NMR and GC datasets for chemotype characterization of essential oils from different species of Ocimum. Talanta 2018, 180, 329–336. [Google Scholar] [CrossRef]
- Fan, G.; Zhang, M.Y.; Zhou, X.D.; Lai, X.R.; Yue, Q.H.; Tang, C.; Luo, W.Z.; Zhang, Y. Quality evaluation and species differentiation of Rhizoma coptidis by using proton nuclear magnetic resonance spectroscopy. Anal. Chim. Acta 2012, 747, 76–83. [Google Scholar] [CrossRef]
- Li, Z.Y.; Welbeck, E.; Wang, R.F.; Liu, Q.; Yang, Y.B.; Chou, G.X.; Bi, K.S.; Wang, Z.T. A Universal Quantitative H-1 Nuclear Magnetic Resonance (qNMR) Method for Assessing the Purity of Dammarane-type Ginsenosides. Phytochem. Anal. 2015, 26, 8–14. [Google Scholar] [CrossRef]
- Huang, B.-M.; Xiao, S.-Y.; Chen, T.-B.; Xie, Y.; Luo, P.; Liu, L.; Zhou, H. Purity assessment of ginsenoside Rg1 using quantitative H-1 nuclear magnetic resonance. J. Pharm. Biomed. Anal. 2017, 139, 193–204. [Google Scholar] [CrossRef]
- Yu, S.; Guo, Q.-S.; Wang, H.-L.; Gao, J.-P.; Xu, X. Simultaneous Determination of Resveratrol and Polydatin in Polygonum Cuspidatum by Quantitative Nuclear Magnetic Resonance Spectroscopy. Chin. J. Anal. Chem. 2015, 43, 69–74. [Google Scholar]
- Bertelli, D.; Brighenti, V.; Marchetti, L.; Reik, A.; Pellati, F. Nuclear magnetic resonance and high-performance liquid chromatography techniques for the characterization of bioactive compounds from Humulus lupulus L. (hop). Anal. Bioanal. Chem. 2018, 410, 3521–3531. [Google Scholar] [CrossRef] [PubMed]
- Pauli, G.F.; Jaki, B.U.; Lankin, D.C. A routine experimental protocol for qHNMR illustrated with taxol. J. Nat. Prod. 2007, 70, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchta, K.; Volk, R.B.; Rauwald, H.W. Stachydrine in Leonurus cardiaca, Leonurus japonicus, Leonotis leonurus: Detection and quantification by instrumental HPTLC and H-1-qNMR analyses. Pharmazie 2013, 68, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Kuchta, K.; Ortwein, J.; Hennig, L.; Wilhelm-Rauwald, H. H-1-qNMR for direct quantification of stachydrine in Leonurus japonicus and L. cardiaca. Fitoterapia 2014, 96, 8–17. [Google Scholar] [CrossRef]
- Bharti, S.K.; Roy, R. Quantitative H-1 NMR spectroscopy. TrAC Trends Anal. Chem. 2012, 35, 5–26. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, X.; Liu, M.; Chang, J. Solvent Suppression in NMR Spectroscopy. Chemistry 2005, 68, 179–185. [Google Scholar]
- Aiello, F.; Gerretzen, J.; Simons, M.G.; Davies, A.N.; Dani, P. A multivariate approach to investigate the NMR CPMG pulse sequence for analysing low MW species in polymers. Magn. Reson. Chem. 2021, 59, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, J.A.; Cassani, J.; Probert, F.; Palace, J.; Claridge, T.D.W.; Botana, A.; Kenwright, A.M. Reliable, high-quality suppression of NMR signals arising from water and macromolecules: Application to bio-fluid analysis. Analyst 2019, 144, 7270–7277. [Google Scholar] [CrossRef] [PubMed]
- Cicek, S.S.; Girreser, U.; Zidorn, C. Quantification of the total amount of black cohosh cycloartanoids by integration of one specific H-1 NMR signal. J. Pharm. Biomed. Anal. 2018, 155, 109–115. [Google Scholar] [CrossRef]
- Liang, T.; Miyakawa, T.; Yang, J.; Ishikawa, T.; Tanokura, M. Quantification of terpene trilactones in Ginkgo biloba with a H-1 NMR method. J. Nat. Med. 2018, 72, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.-W.; Li, X.-J.; Shi, J.-Y.; Liu, K.-Q. Application of a proton quantitative nuclear magnetic resonance spectroscopy method for the determination of actinodaphnine in Illigera aromatica and Illigera henryi. J. Nat. Med. 2019, 73, 312–317. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Hong, D.; Zeng, S.; Su, J.; Fan, G.; Zhang, Y. Metabolic Discrimination of Different Rhodiola Species Using H-1-NMR and GEP Combinational Chemometrics. Chem. Pharm. Bull. 2019, 67, 81–87. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Q.; Yang, L.; Zhang, Y.; Qiu, D. The Use of H-1-qNMR Method for Simultaneous Determination of Osthol, Columbianadin, and Isoimperatorin in Angelicae Pubescentis Radix. J. AOAC Int. 2020, 103, 851–856. [Google Scholar] [CrossRef]
- Li, W.; Zhao, F.; Pan, J.; Qu, H. Influence of ethanol concentration of extraction solvent on metabolite profiling for Salviae Miltiorrhizae Radix et Rhizoma extract by H-1 NMR spectroscopy and multivariate data analysis. Process. Biochem. 2020, 97, 158–167. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Z.; Su, F.; Chen, J.; Zhang, X.; Xu, L.; Yang, D.; Liang, Z. Quantitative Determination and Validation of Four Ketones in Salvia miltiorrhiza Bunge Using Quantitative Proton Nuclear Magnetic Resonance Spectroscopy. Molecules 2020, 25, 2043. [Google Scholar] [CrossRef]
- Tan, D.C.; Quek, A.; Kassim, N.K.; Ismail, I.S.; Lee, J.J. Rapid Quantification and Validation of Biomarker Scopoletin in Paederia foetida by qNMR and UV-Vis for Herbal Preparation. Molecules 2020, 25, 5162. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, Q.; Feng, Y.; Qiu, D. Simultaneous Determination of Three Coumarins in Angelica dahurica by H-1-qNMR Method: A Fast and Validated Method for Crude Drug Quality Control. J. Anal. Methods Chem. 2020, 2020, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Li, Q.; Feng, Y.; Yang, L.; Qiu, D.; Guo, Y. Multi-Index Quantitative Evaluation of Angelicae sinesis Radix Based on H-1-qNMR. J. AOAC Int. 2020, 103, 1633–1638. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Xiao, K.; Guo, Q.; Xu, X. Determination of chlorogenic acid in traditional Chinese prescription Shuanghuanglian capsule using quantitative nuclear magnetic resonance spectroscopy in combination with solid phase extraction. J. Chin. Pharm. Sci. 2020, 29, 227–235. [Google Scholar]
- Feng, Y.; Li, Q.; Qiu, D.; Li, G. Graphene Assisted in the Analysis of Coumarins in Angelicae Pubescentis Radix by Dispersive Liquid-Liquid Microextraction Combined with H-1-qNMR. Molecules 2021, 26, 2416. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, Q.; Ding, L.; Wu, X. Determination of active principles in Ligusticum chuanxiong by QNMR. W. China J. Pharm. Sci. 2013, 28, 192–194. [Google Scholar]
- Tanaka, R.; Shibata, H.; Sugimoto, N.; Akiyama, H.; Nagatsu, A. Application of a quantitative H-1-NMR method for the determination of paeonol in Moutan cortex, Hachimijiogan and Keishibukuryogan. J. Nat. Med. 2016, 70, 797–802. [Google Scholar] [CrossRef]
- Gao, W.; Sun, L.; Wang, Q.; Wang, X.; Zhang, C.; Huang, J. Determination of Phenanthrenes in the Anxiolytic Fraction of J uncus effusus L. by QNMR. Chin. Pharm. J. 2017, 52, 2042–2046. [Google Scholar]
- Zurn, M.; Toth, G.; Kraszni, M.; Solyomvary, A.; Mucsi, Z.; Deme, R.; Rozsa, B.; Fodor, B.; Molnar-Perl, I.; Horvati, K.; et al. Galls of European Fraxinus trees as new and abundant sources of valuable phenylethanoid and coumarin glycosides. Ind. Crop. Prod. 2019, 139, 111517. [Google Scholar] [CrossRef]
- Jiang, Z.Z.; Yang, J.; Jiao, Y.J.; Li, W.N.; Chai, X.; Zhang, L.; Jiang, M.M.; Wang, Y.F. Determination of scutellarin in breviscapine preparations using quantitative proton nuclear magnetic resonance spectroscopy. J. Food Drug Anal. 2016, 24, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, D.M.; Porzel, A.; Frolov, A.; El Seedi, H.R.; Wessjohann, L.A.; Farag, M.A. Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for alpha-glucosidase inhibition. Food Chem. 2018, 250, 236–244. [Google Scholar] [CrossRef]
- Hsieh, L.Y.; Chan, H.H.; Kuo, P.C.; Hung, H.Y.; Li, Y.C.; Kuo, C.L.; Peng, Y.; Zhao, Z.Z.; Kuo, D.H.; Sun, I.W.; et al. A feasible and practical H-1 NMR analytical method for the quality control and quantification of bioactive principles in Lycii Fructus. J. Food Drug Anal. 2018, 26, 1105–1112. [Google Scholar] [CrossRef]
- Cerceau, C.I.; Barbosa, L.C.A.; Alvarenga, E.S.; Ferreira, A.G.; Thomasi, S.S. A validated H-1 NMR method for quantitative analysis of alpha-bisabolol in essential oils of Eremanthus erythropappus. Talanta 2016, 161, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Cerceau, C.I.; Barbosa, L.C.A.; Filomeno, C.A.; Alvarenga, E.S.; Demuner, A.J.; Fidencio, P.H. An optimized and validated H-1 NMR method for the quantification of alpha-pinene in essentials oils. Talanta 2016, 150, 97–103. [Google Scholar] [CrossRef]
- Khatib, M.; Pieraccini, G.; Innocenti, M.; Melani, F.; Mulinacci, N. An insight on the alkaloid content of Capparis spinosa L. root by HPLC-DAD-MS, MS/MS and H-1 qNMR. J. Pharm. Biomed. Anal. 2016, 123, 53–62. [Google Scholar] [CrossRef]
- Miyazaki, A.; Shiokawa, T.; Tada, H.; Lian, Y.H.; Taniguchi, S.; Hatano, T. High-performance liquid chromatographic profile and H-1 quantitative nuclear magnetic resonance analyses for quality control of a Xinjiang licorice extract. Biosci. Biotechnol. Biochem. 2020, 84, 2128–2138. [Google Scholar] [CrossRef] [PubMed]
- Manoukian, P.; Melliou, E.; Liouni, M.; Magiatis, P. Identification and quantitation of benzoxazinoids in wheat malt beer by qNMR and GC-MS. LWT Food Sci. Technol. 2016, 65, 1133–1137. [Google Scholar] [CrossRef]
- Youn, I.; Wu, Z.L.; Papa, S.; Burdette, J.E.; Oyawaluja, B.O.; Lee, H.; Che, C.T. Limonoids and other triterpenoids from Entandrophragma angolense. Fitoterapia 2021, 150, 104846. [Google Scholar] [CrossRef]
- Shulha, O.; Cicek, S.S.; Wangensteen, H.; Kroes, J.; Mader, M.; Girreser, U.; Sendker, J.; Johrer, K.; Greil, R.; Schuhly, W.; et al. Lignans and sesquiterpene lactones from Hypochaeris radicata subsp. neapolitana (Asteraceae, Cichorieae). Phytochemistry 2019, 165, 112047. [Google Scholar] [CrossRef] [PubMed]
- Imai, A.; Lankin, D.C.; Godecke, T.; Chen, S.N.; Pauli, G.F. NMR based quantitation of cycloartane triterpenes in black cohosh extracts. Fitoterapia 2020, 141, 104846. [Google Scholar] [CrossRef]
- Finotello, C.; Forzato, C.; Gasparini, A.; Mammi, S.; Navarini, L.; Schievano, E. NMR quantification of 16-O-methylcafestol and kahweol in Coffea canephora var. robusta beans from different geographical origins. Food Control. 2017, 75, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, J.G.; Godecke, T.; Lankin, D.C.; Jaki, B.U.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F. Orthogonal analytical methods for botanical standardization: Determination of green tea catechins by qNMR and LC-MS/MS. J. Pharm. Biomed. Anal. 2014, 93, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, G.R.M.; Friesen, J.B.; Liu, Y.; Nikolic, D.; Lankin, D.C.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F. Preparation of DESIGNER extracts of red clover (Trifolium pratense L.) by centrifugal partition chromatography. J. Chromatogr. A 2019, 1605, 360277. [Google Scholar] [CrossRef]
- Lund, J.A.; Brown, P.N.; Shipley, P.R. Quantification of North American and European Crataegus flavonoids by nuclear magnetic resonance spectrometry. Fitoterapia 2020, 143, 104537. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Gowda, G.A.N.; Marquez, S.; Patil, B.S. Rapid separation and quantitation of curcuminoids combining pseudo two-dimensional liquid flash chromatography and NMR spectroscopy. J. Chromatogr. B 2013, 937, 25–32. [Google Scholar] [CrossRef] [Green Version]
- AbouZid, S.F.; Chen, S.N.; McAlpine, J.B.; Friesen, J.B.; Pauli, G.F. Silybum marianum pericarp yields enhanced silymarin products. Fitoterapia 2016, 112, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.W.; Li, X.J.; Cai, L.; Shi, J.Y.; Li, Y.F.; Yang, C.; Li, Z.J. Simultaneous determination of alkaloids dicentrine and sinomenine in Stephania epigeae by H-1 NMR spectroscopy. J. Pharm. Biomed. Anal. 2018, 160, 330–335. [Google Scholar] [CrossRef]
- AbouZid, S.F.; Chen, S.N.; Pauli, G.F. Silymarin content in Silybum marianum populations growing in Egypt. Ind. Crop. Prod. 2016, 83, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.R.; Huang, Y.J.; Liu, J.H.; Zhang, R.R.; Li, Z.R.; Zhou, L.; Qiu, M.H. 1H qNMR-based quantitative analysis of total macamides in five maca (Lepidium meyenii Walp.) dried naturally. J. Food Compos. Anal. 2021, 100, 103917. [Google Scholar] [CrossRef]
- Marchetti, L.; Brighenti, V.; Rossi, M.C.; Sperlea, J.; Pellati, F.; Bertelli, D. Use of C-13-qNMR Spectroscopy for the Analysis of Non-Psychoactive Cannabinoids in Fibre-Type Cannabis sativa L. (Hemp). Molecules 2019, 24, 1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, C.; Aupic, C.; Lewis, A.R.; Pinto, B.M. In Situ Determination of Fructose Isomer Concentrations in Wine Using C-13 Quantitative Nuclear Magnetic Resonance Spectroscopy. J. Agric. Food Chem. 2015, 63, 8551–8559. [Google Scholar] [CrossRef] [PubMed]
- Duquesnoy, E.; Castola, V.; Casanova, J. Identification and quantitative determination of carbohydrates in ethanolic extracts of two conifers using 13C NMR spectroscopy. Carbohydr. Res. 2008, 343, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Kazalaki, A.; Misiak, M.; Spyros, A.; Dais, P. Identification and quantitative determination of carbohydrate molecules in Greek honey by employing C-13 NMR spectroscopy. Anal. Methods 2015, 7, 5962–5972. [Google Scholar] [CrossRef]
- Golowicz, D.; Urbanczyk, M.; Shchukina, A.; Kazimierczuk, K. SCoT: Swept coherence transfer for quantitative heteronuclear 2D NMR. J. Magn. Reson. 2018, 294, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fardus-Reid, F.; Warren, J.; Le Gresley, A. Validating heteronuclear 2D quantitative NMR. Anal. Methods 2016, 8, 2013–2019. [Google Scholar] [CrossRef] [Green Version]
- Puig-Castellvi, F.; Perez, Y.; Pina, B.; Tauler, R.; Alfonso, I. Comparative analysis of H-1 NMR and H-1-C-13 HSQC NMR metabolomics to understand the effects of medium composition in yeast growth. Anal. Chem. 2018, 90, 12422–12430. [Google Scholar] [CrossRef]
- Martin, G.E.; Sunseri, D. Establishing the carbon skeleton of pharmaceutical agents using HSQC-ADEQUATE spectra. J. Pharm. Biomed. Anal. 2011, 55, 895–901. [Google Scholar] [CrossRef]
- Wang, H.; Dong, W.H.; Zuo, W.J.; Wang, H.; Zhong, H.M.; Mei, W.L.; Dai, H.F. Three new phenolic compounds from Dalbergia odorifera. J. Asian Nat. Prod. Res. 2014, 16, 1109–1118. [Google Scholar] [CrossRef]
- Ma, Q.Y.; Huang, S.Z.; Hu, L.L.; Guo, Z.K.; Dai, H.F.; Zhao, Y.X. Two New Tirucallane Triterpenoids from the Fruiting Bodies of Ganoderma tropicum. Chem. Nat. Compd. 2016, 52, 656–659. [Google Scholar] [CrossRef]
- Bao, X.H.; Wang, Q.H.; Bao, B.; Han, J.J.; Ao, W.L.J. Antibacterial and Antioxidant Activities of Megastigmane Glycosides from Hosta plantaginea. Chem. Nat. Compd. 2017, 53, 614–617. [Google Scholar] [CrossRef]
- Ahmad, V.U.; Mohammad, F.V.; Tareen, R.B. Laceioside, a new cycloartane saponin from Astragalus tephrosioides Boiss. var. lacei (Ali) Kirchoff. Nat. Prod. Res. 2019, 33, 393–399. [Google Scholar] [CrossRef]
- Dong, S.H.; Wu, Y.; Yue, J.M. Chemical constituents from Vernonia bockiana. Chin. J. Nat. Med. 2019, 17, 924–927. [Google Scholar] [CrossRef]
- Cheng, M.J.; Wu, H.C.; Wu, M.D.; Hsun Hsuo, C. A New Compound from Monascus Floridanus. Chem. Nat. Compd. 2020, 56, 286–288. [Google Scholar] [CrossRef]
- Hanoglu, A.; Hanoglu, D.Y.; Demirel, N.; Yusufoglu, H.S.; Calis, I. Secondary Metabolites from Teucrium creticum L. Rec. Nat. Prod. 2021, 15, 487–502. [Google Scholar] [CrossRef]
- Shahriar, K.R.; Hossain, M.E.; Rahman, K.M.; Ahsan, M.; Hasan, C.M. A New Cyclohexanone Derivative from the Leaves of Bridelia stipularis. Chem. Nat. Compd. 2021, 57, 455–458. [Google Scholar] [CrossRef]
- Cicek, S.S.; Ugolini, T.; Girreser, U. Two-dimensional qNMR of anthraquinones in Frangula alnus (Rhamnus frangula) using surrogate standards and delay time adaption. Anal. Chim. Acta 2019, 1081, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.F.; Wyche, T.P.; Bugni, T.S.; Markley, J.L. Selective Quantification by 2D HSQC(0) Spectroscopy of Thiocoraline in an Extract from a Sponge-Derived Verrucosispora sp. J. Nat. Prod. 2011, 74, 2295–2298. [Google Scholar] [CrossRef] [Green Version]
- Cicek, S.S.; Barbosa, A.L.P.; Girreser, U. Quantification of diterpene acids in Copaiba oleoresin by UHPLC-ELSD and heteronuclear two-dimensional qNMR. J. Pharm. Biomed. Anal. 2018, 160, 126–134. [Google Scholar] [CrossRef]
- Cicek, S.S.; Esposito, T.; Girreser, U. Prediction of the sweetening effect of Siraitia grosvenorii (luo han guo) fruits by two-dimensional quantitative NMR. Food Chem. 2021, 335, 127622. [Google Scholar] [CrossRef]
- Giraudeau, P. Quantitative 2D liquid-state NMR. Magn. Reson. Chem. 2014, 52, 259–272. [Google Scholar] [CrossRef]
- Jezequel, T.; Deborde, C.; Maucourt, M.; Zhendre, V.; Moing, A.; Giraudeau, P. Absolute quantification of metabolites in tomato fruit extracts by fast 2D NMR. Metabolomics 2015, 11, 1231–1242. [Google Scholar] [CrossRef]
- Le, P.M.; Milande, C.; Martineau, E.; Giraudeau, P.; Farjon, J. Quantification of natural products in herbal supplements: A combined NMR approach applied on goldenseal. J. Pharm. Biomed. Anal. 2019, 165, 155–161. [Google Scholar] [CrossRef]
- Berendt, R.T.; Sperger, D.M.; Isbester, P.K.; Munson, E.J. Solid-state NMR spectroscopy in pharmaceutical research and analysis. TrAC Trends Anal. Chem. 2006, 25, 977–984. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Yu, Z.; Wang, J. Nuclear magnetic resonance technology for biological complex systems: Opportunities and challenges. Chin. Sci. Bull. 2019, 64, 773–787. [Google Scholar] [CrossRef] [Green Version]
- Bryce, D.L.; Bernard, G.M.; Gee, M.; Lumsden, M.D.; Eichele, K.; Wasylishen, R.E. Practical aspects of modern routine solid-state multinuclear magnetic resonance spectroscopy: One-dimensional experiments. Can. J. Anal. Sci. Spectrosc. 2001, 46, 46–82. [Google Scholar] [CrossRef]
- Li, M.; Xu, W.; Su, Y. Solid-state NMR spectroscopy in pharmaceutical sciences. TrAC Trends Anal. Chem. 2021, 135, 116152. [Google Scholar] [CrossRef]
- Narasimhan, S.; Pinto, C.; Paioni, A.L.; van der Zwan, J.; Folkers, G.E.; Baldus, M. Characterizing proteins in a native bacterial environment using solid-state NMR spectroscopy. Nat. Protoc. 2021, 16, 893–918. [Google Scholar] [CrossRef] [PubMed]
- Espargaro, A.; Antonia Busquets, M.; Estelrich, J.; Sabate, R. Amyloids in solid-state nuclear magnetic resonance: Potential causes of the usually low resolution. Int. J. Nanomed. 2015, 10, 6975–6983. [Google Scholar] [CrossRef] [Green Version]
- Loquet, A.; El Mammeri, N.; Stanek, J.; Berbon, M.; Bardiaux, B.; Pintacuda, G.; Habenstein, B. 3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 2018, 138, 26–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaroniec, C.P. Two decades of progress in structural and dynamic studies of amyloids by solid-state NMR. J. Magn. Reson. 2019, 306, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Laskar, D.D.; Zeng, J.J.; Helms, G.L.; Chen, S.L. A C-13 CP/MAS-Based Nondegradative Method for Lignin Content Analysis. ACS Sustain. Chem. Eng. 2015, 3, 153–162. [Google Scholar] [CrossRef]
- Bernardinelli, O.D.; Lima, M.A.; Rezende, C.A.; Polikarpov, I.; deAzevedo, E.R. Quantitative C-13 MultiCP solid-state NMR as a tool for evaluation of cellulose crystallinity index measured directly inside sugarcane biomass. Biotechnol. Biofuels 2015, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Fernando, L.D.; Zhao, W.; Widanage, M.C.D.; Mentink-Vigier, F.; Wang, T. Solid-state NMR and DNP Investigations of Carbohydrates and Cell-wall Biomaterials. Emagres 2020, 9, 251–258. [Google Scholar] [CrossRef]
- Zhu, X.L.; Liu, B.Z.; Zheng, S.J.; Gao, Y. Quantitative and structure analysis of pectin in tobacco by C-13 CP/MAS NMR spectroscopy. Anal. Methods 2014, 6, 6407–6413. [Google Scholar] [CrossRef]
- Bhinderwala, F.; Evans, P.; Jones, K.; Laws, B.R.; Smith, T.G.; Morton, M.; Powers, R. Phosphorus NMR and Its Application to Metabolomics. Anal. Chem. 2020, 92, 9536–9545. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lin, Y.; Wang, Y.; Jiang, T.-F.; Lv, Z. Determination of fipronil and its metabolites in chicken egg by dispersive liquid-liquid microextraction with F-19 quantitative nuclear magnetic resonance spectroscopy. Microchem. J. 2021, 160, 105547. [Google Scholar] [CrossRef]
- Sette, M.; Wechselberger, R.; Crestini, C. Elucidation of Lignin Structure by Quantitative 2D NMR. Chem. Eur. J. 2011, 17, 9529–9535. [Google Scholar] [CrossRef] [PubMed]
- Martineau, E.; Akoka, S.; Boisseau, R.; Delanoue, B.; Giraudeau, P. Fast Quantitative H-1-C-13 Two-Dimensional NMR with Very High Precision. Anal. Chem. 2013, 85, 4777–4783. [Google Scholar] [CrossRef] [PubMed]
- Girreser, U.; Ugolini, T.; Cicek, S.S. Quality control of Aloe vera (Aloe barbadensis) and Aloe ferox using band-selective quantitative heteronuclear single quantum correlation spectroscopy (bs-qHSQC). Talanta 2019, 205, 120109. [Google Scholar] [CrossRef]
- Le Guennec, A.; Giraudeau, P.; Caldarelli, S. Evaluation of Fast 2D NMR for Metabolomics. Anal. Chem. 2014, 86, 5946–5954. [Google Scholar] [CrossRef]
- Giraudeau, P.; Massou, S.; Robin, Y.; Cahoreau, E.; Portais, J.C.; Akoka, S. Ultrafast Quantitative 2D NMR: An Efficient Tool for the Measurement of Specific Isotopic Enrichments in Complex Biological Mixtures. Anal. Chem. 2011, 83, 3112–3119. [Google Scholar] [CrossRef]
- Gouilleux, B.; Rouger, L.; Giraudeau, P. Ultrafast 2D NMR: Methods and Applications. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 93, pp. 75–144. [Google Scholar]
- Huang, T.; Li, H.; Zhang, W.; Numata, M.; Mackay, L.; Warren, J.; Jiao, H.; Westwood, S.; Song, D. Advanced approaches and applications of qNMR. Metrologia 2020, 57, 14004. [Google Scholar] [CrossRef]
- Coulibaly, F.S.; Alnafisah, A.S.; Oyler, N.A.; Youan, B.-B.C. Direct and Real-Time Quantification of Bortezomib Release From Alginate Microparticles Using Boron (B-11) Nuclear Magnetic Resonance Spectroscopy. Mol. Pharm. 2019, 16, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Moreno, A.; Fieber, W.; Brauchli, R.; Sommer, H. Spectroscopic separation of C-13 NMR spectra of complex isomeric mixtures by the CSSF-TOCSY-INEPT experiment. Magn. Reson. Chem. 2015, 53, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Middleton, D.A. Solid-state NMR spectroscopy as a tool for drug design: From membrane-embedded targets to amyloid fibrils. Biochem. Soc. Trans. 2007, 35, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Mandala, V.S.; Williams, J.K.; Hong, M. Structure and Dynamics of Membrane Proteins from Solid-State NMR. Ann. Rev. Biophys. 2018, 47, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Lee, K. Recent NMR developments for pharmaceutical research. J. Korean Magn. Reson. Soc. 2016, 20, 27–35. [Google Scholar] [CrossRef]
- Wekre, M.E.; Kasin, K.; Underhaug, J.; Holmelid, B.; Jordheim, M. Quantification of Polyphenols in Seaweeds: A Case Study of Ulva intestinalis. Antioxidants 2019, 8, 612. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-T.; Yu, S.; Yuan, M.; Guo, Q.-S.; Gong, C.; Xu, X. Determination of Epigoitrin in Radix Isatidis by Solid Phase Extraction-Quantitative Nuclear Magnetic Resonance Spectroscopy. Chin. J. Anal. Chem. 2017, 45, 1059–1064. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Xiao, K.; Guo, Q.; Xu, X. Determination of Icariin in Ruzengning Capsule by Solid Phase Extraction/Quantitative Nuclear Magnetic Resonance Spectroscopy. J. Instrum. Anal. 2018, 37, 452–458. [Google Scholar]
- Fan, Y.; Emami, S.; Munro, R.; Ladizhansky, V.; Brown, L.S. Isotope Labeling of Eukaryotic Membrane Proteins in Yeast for Solid-State NMR. Methods Enzymol. 2015, 565, 193–212. [Google Scholar] [PubMed]
- Watson, H.R.; Apperley, D.C.; Dixon, D.P.; Edwards, R.; Hodgson, D.R.W. An Efficient Method for N-15-Labeling of Chitin in Fungi. Biomacromolecules 2009, 10, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-X.; Zhanga, C.-X.; Hu, Y.; Zhang, M.-H.; Wang, Y.-N.; Qian, Y.-X.; Yang, J.; Yang, W.-Z.; Jiang, M.-M.; Guo, D.-A. Application of multiple chemical and biological approaches for quality assessment of Carthamus tinctorius L. (safflower) by determining both the primary and secondary metabolites. Phytomedicine 2019, 58, 152826. [Google Scholar] [CrossRef]
- Masumoto, N.; Nishizaki, Y.; Maruyama, T.; Igarashi, Y.; Nakajima, K.; Yamazaki, T.; Kuroe, M.; Numata, M.; Ihara, T.; Sugimoto, N.; et al. Determination of perillaldehyde in perilla herbs using relative molar sensitivity to single-reference diphenyl sulfone. J. Nat. Med. 2019, 73, 566–576. [Google Scholar] [CrossRef] [PubMed]
Object of Study | Quantified Component | Internal Standard | Deuterated Solvent | Reference |
---|---|---|---|---|
Artemisia annua | artemisinin | maleid acid | Methanol-d4 (CD3OD) | [52] |
Black cohosh (Actaea racemosa) rhizomes | cycloartanoids | 1,2,4,5-tetrachloro-3-nitrobenzene | DMSO-d6, CD3OD | [67] |
Ginkgo biloba L. | terpene trilactone components | HMDSO | CD3OD, benzene-d6 | [68] |
I. aromatica and I. henryi. | actinodaphnine | 1,4-dinitrobenzene | DMSO-d6 | [69] |
three species of Rhodiola | the metabolites of rhodiola | 3-(trimethylsilyl) propionic-2, 2, 3, 3-d4 (TMSP) | CD3OD, deuterium oxide (D2O), CDCl3, DMSO-d6 | [70] |
Angelicae Pubescentis Radix | osthol, isoimperatorin, and columbianadin | pyrazine | DMSO-d6 | [71] |
Danshen | 22 metabolites | tetramethyl silane (TSP-d4), TMSP | D2O, CD3OD | [72] |
Salvia mltiorrhiza Bunge | Tanshinone I, tanshinone IIA, dihydrotanshinone, and cryptotanshinone | 3,4,5-trichloropyridine | CDCl3 | [73] |
Paederia foetida | scopoletin | TSP-d4 | CD3OD, CDCl3, DMSO-d6, TSP-d4 | [74] |
Angelica a dahurica | imperatorin, byakangelicin, and oxypeucedanin | hydroquinone | DMSO-d6 | [75] |
Angelicae sinesis | ferulic acid, coniferyl ferulate, and ligustilide | pyrazine | DMSO-d6 | [76] |
Shuanghuanglian capsule | chlorogenic acid | 1,4-phthalaldehyde | DMSO-d6 | [77] |
Angelicae Pubescentis Radix | osthole, columbianadin, and isoimperatorin | pyrazine | DMSO-d6 | [78] |
Myrcia multiflora (Lam.) DC. | 6 extract phenolic compounds | TMSP | CD3OD | [11] |
Ligusticum chuanxiong Hort | Z-ligustilide and senkyunolide A | 1,4-dinitrobenzol | CDCl3 | [79] |
Moutancortex, Hachimijiogan, Keishibukuryogan | Paeonol | Hexamethyldisilane (HMD) | CD3OD | [80] |
Anxiolytic fraction of Juncus effusus L. | phenanthrenes | terephthalic acid | DMSO-d6 | [81] |
Fraxinus angustifolia, Fraxinus ornus | acteoside | 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) | CD3OD | [82] |
Rhizoma Coptidis | berberine, coptisine, jatrorrhizine, palmatine, and epiberberine | Electronic reference | CD3OD | [37] |
breviscapine preparations | scutellarin | TSP-d4 | DMSO-d6 | [83] |
Hibiscus sabdariffa | metabolites in different hibiscus teas | TSP-d4 | CD3OD | [84] |
Lycium | betaine | maleic acid, succinic acid | D2O | [85] |
essential oils of Eremanthus erythropappus | α-bisabolol | Octamethylcyclotetrasiloxane (OMCTS) | CDCl3 | [86] |
oils of eucalyptus, pink pepper and turpentine | α-pinene | OMCTS | CDCl3 | [87] |
Capparis spinosa L. root | stachydrine | maleic acid | D2O | [88] |
Xinjiang licorice | licochalcone A, licochalcone B, glabrone, echinatin | 1,4-bis(trimethylsilyl)benzene-d4 (1,4-BTMSB-d4) | Acetone-d6 | [89] |
wheat malt beer | 6-methoxy-2-(3H)-benzoxazolone | syringaldehyde | CDCl3 | [90] |
Entandrophragma angolense | 23- O-deethylanderolide S. | residual solvent | CDCl3 | [91] |
Hypochaeris radicata | 4-(3,4-dihydroxybenzyl)-2-(3,4-dihydroxyphenyl) tetrahydrofuran-3-carboxy-O-β-D-glucopyranoside, hypochoeroside C, hypochoeroside D, 5-O-caffeoylshikimic acid | Dimethyl terephthalate | DMSO-d6 | [92] |
Actaea racemosa, A. podocarpa, A. cordifolia | cycloartane triterpenes | residual solvent signal (DMSO-d5) | DMSO-d6 | [93] |
Coffea canephora var. robusta beans | 16-O-methylcafestol and kahweol | N, N-dimethylformamide (DMF) | D2O | [94] |
Camellia sinensis (L.) Kuntze | green tea catechins | TMS | DMSO-d6 | [95] |
Trifolium pratense L. | isoflavones | 3,5-Dinitrobenzoic acid internal calibrant | DMSO-d6 | [96] |
Crataegus monogyna, C. laevigata, C. douglasii, C. okanaganensis | naringenin, hyperoside, rutin, vitexin-2″-O-rhamnoside | DSS | CD3OD | [97] |
Turmeric oleoresin | curcuminoids | TSP-d4 | DMSO-d6, Acetone-d6 | [98] |
Silybum marianum pericarp | silymarin | residual solvent signal (DMSO-d5) | DMSO-d6 | [99] |
Stephania epigeae | dicentrine, sinomenine | Dimethyl terephthalate | DMSO-d6 | [100] |
Silybum marianum | silymarin | residual solvent signal (DMSO-d5) | DMSO-d6 | [101] |
Lepidium meyenii Walp. | total macamides | 1,3-dinitrobenzene | CDCl3 | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-F.; You, Y.-L.; Li, F.-F.; Kong, W.-R.; Wang, S.-Q. Research Progress of NMR in Natural Product Quantification. Molecules 2021, 26, 6308. https://doi.org/10.3390/molecules26206308
Wang Z-F, You Y-L, Li F-F, Kong W-R, Wang S-Q. Research Progress of NMR in Natural Product Quantification. Molecules. 2021; 26(20):6308. https://doi.org/10.3390/molecules26206308
Chicago/Turabian StyleWang, Zhi-Fan, Yu-Lin You, Fei-Fei Li, Wen-Ru Kong, and Shu-Qi Wang. 2021. "Research Progress of NMR in Natural Product Quantification" Molecules 26, no. 20: 6308. https://doi.org/10.3390/molecules26206308