Identifying Chemical Composition, Safety and Bioactivity of Thai Rice Grass Extract Drink in Cells and Animals
Abstract
:1. Introduction
2. Results
2.1. Catechin Contents
2.2. Microbiological Test
2.3. Stoichiometric Analysis of Metals
2.4. Free-Radical Scavenging Activity
2.4.1. DPPH Radical Scavenging Activity
2.4.2. Hepatic ROS Scavenging and Anti-Lipid Peroxidation Activities
2.4.3. Serum SOD Activity in Rats
2.5. Iron-Chelating Activity
2.6. Toxicity
2.6.1. Toxicity in Hepatocyte Culture
2.6.2. Acute Toxicity in Mice
2.6.3. Sub-Chronic Toxicity in Rats
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of Sukhothai-1 Rice Grass Extract and Drink
4.3. HPLC-DAD Quantification of Catechins
4.4. Microbiological Test
4.5. Metal Analysis
4.6. Antioxidant Activity Assay
4.6.1. DPPH• Scavenging Assay
4.6.2. Assay of Cellular ROS Scavenging Activity
4.6.3. Anti-Lipid Peroxidation Activity Assay
4.6.4. Determination of Serum SOD Activity in Rats
4.7. Assay of Iron-Chelating Activity
4.8. Toxicity Study
4.8.1. Cytotoxicity
4.8.2. Acute Toxicity in Mice
4.8.3. Sub-Chronic Oral Toxicity in Rats
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging 2007, 2, 219–236. [Google Scholar] [PubMed]
- Puertollano, M.A.; Puertollano, E.; Alvarez de Cienfuegos, G.; de Pablo, M.A. Dietary antioxidants: Immunity and host defense. Curr. Top. Med. Chem. 2011, 11, 1752–1766. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Nifli, A.-P.; Notas, G.; Castanas, E. Polyphenols and cancer cell growth. Rev. Physiol. Biochem. Pharmacol. 2007, 159, 79–113. [Google Scholar] [CrossRef] [PubMed]
- Srichairatanakool, S.; Ounjaijean, S.; Thephinlap, C.; Khansuwan, U.; Phisalpong, C.; Fucharoen, S. Iron-Chelating and Free-Radical Scavenging Activities of Microwave-Processed Green Tea in Iron Overload. Hemoglobin 2006, 30, 311–327. [Google Scholar] [CrossRef]
- Heijnen, C.G.; Haenen, G.; Vekemans, J.A.; Bast, A. Peroxynitrite scavenging of flavonoids: Structure activity relationship. Environ. Toxicol. Pharmacol. 2001, 10, 199–206. [Google Scholar] [CrossRef]
- Janeiro, P.; Brett, A.M.O. Catechin electrochemical oxidation mechanisms. Anal. Chim. Acta 2004, 518, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Cren-Olivé, C.; Hapiot, P.; Pinson, J.; Rolando, C. Free Radical Chemistry of Flavan-3-ols: Determination of Thermodynamic Parameters and of Kinetic Reactivity from Short (ns) to Long (ms) Time Scale. J. Am. Chem. Soc. 2002, 124, 14027–14038. [Google Scholar] [CrossRef]
- Srichairatanakool, S.; Kulprachakarn, K.; Pangjit, K.; Pattanapanyasat, K.; Fuchaeron, S. Green tea extract and epigallocatechin 3-gallate reduced labile iron pool and protected oxidative stress in iron-loaded cultured hepatocytes. Adv. Biosci. Biotechnol. 2012, 03, 1140–1150. [Google Scholar] [CrossRef] [Green Version]
- Verstraeten, S.V.; Fraga, C.G.; Oteiza, P.I. Interactions of flavan-3-ols and procyanidins with membranes: Mechanisms and the physiological relevance. Food Funct. 2014, 6, 32–40. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Zaima, N.; Moriyama, T.; Kawamura, Y. Different Localization Patterns of Anthocyanin Species in the Pericarp of Black Rice Revealed by Imaging Mass Spectrometry. PLoS ONE 2012, 7, e31285. [Google Scholar] [CrossRef]
- Lucca, P.; Hurrell, R.; Potrykus, I. Fighting Iron Deficiency Anemia with Iron-Rich Rice. J. Am. Coll. Nutr. 2002, 21, 184S–190S. [Google Scholar] [CrossRef] [PubMed]
- Chomchan, R.; Puttarak, P.; Brantner, A.; Siripongvutikorn, S. Selenium-Rich Ricegrass Juice Improves Antioxidant Properties and Nitric Oxide Inhibition in Macrophage Cells. Antioxidants 2018, 7, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chomchan, R.; Siripongvutikorn, S.; Maliyam, P.; Saibandith, B.; Puttarak, P. Protective Effect of Selenium-Enriched Ricegrass Juice against Cadmium-Induced Toxicity and DNA Damage in HEK293 Kidney Cells. Foods 2018, 7, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiliç, S.; Cengiz, M.F.; Kilic, M. Monitoring of metallic contaminants in energy drinks using ICP-MS. Environ. Monit. Assess. 2018, 190, 202. [Google Scholar] [CrossRef]
- Zhang, M.W.; Zhang, R.F.; Zhang, F.X.; Liu, R.H. Phenolic Profiles and Antioxidant Activity of Black Rice Bran of Different Commercially Available Varieties. J. Agric. Food Chem. 2010, 58, 7580–7587. [Google Scholar] [CrossRef]
- Rahman, A.; Hossain, S.; Mahmud, J.-A.; Nahar, K.; Hasanuzzaman, M.; Fujita, M. Manganese-induced salt stress tolerance in rice seedlings: Regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiol. Mol. Biol. Plants 2016, 22, 291–306. [Google Scholar] [CrossRef]
- Wangcharoen, W.; Phimphilai, S. Chlorophyll and total phenolic contents, antioxidant activities and consumer acceptance test of processed grass drinks. J. Food Sci. Technol. 2016, 53, 4135–4140. [Google Scholar] [CrossRef]
- Du, S.; Huang, X.; Cai, Y.; Hao, Y.; Qiu, S.; Liu, L.; Cui, M.; Luo, L. Differential Antioxidant Compounds and Activities in Seedlings of Two Rice Cultivars under Chilling Treatment. Front. Plant Sci. 2021, 12, 257. [Google Scholar] [CrossRef]
- He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin Ggllate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity. Med. Sci. Monit. 2018, 24, 8198–8206. [Google Scholar] [CrossRef]
- Rathore, K.; Choudhary, S.; Odoi, A.; Wang, H.-C.R. Green tea catechin intervention of reactive oxygen species-mediated ERK pathway activation and chronically induced breast cell carcinogenesis. Carcinogenesis 2011, 33, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Saewong, T.; Ounjaijean, S.; Mundee, Y.; Pattanapanyasat, K.; Fucharoen, S.; Porter, J.; Srichairatanakool, S. Effects of Green Tea on Iron Accumulation and Oxidative Stress in Livers of Iron-Challenged Thalassemic Mice. Med. Chem. 2010, 6, 57–64. [Google Scholar] [CrossRef]
- Koonyosying, P.; Uthaipibull, C.; Fucharoen, S.; Koumoutsea, E.V.; Porter, J.B.; Srichairatanakool, S. Decrement in Cellular Iron and Reactive Oxygen Species, and Improvement of Insulin Secretion in a Pancreatic Cell Line Using Green Tea Extract. Pancreas 2019, 48, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Renzetti, A.; Betts, J.W.; Fukumoto, K.; Rutherford, R.N. Antibacterial green tea catechins from a molecular perspective: Mechanisms of action and structure–activity relationships. Food Funct. 2020, 11, 9370–9396. [Google Scholar] [CrossRef]
- Thephinlap, C.; Ounjaijean, S.; Khansuwan, U.; Fucharoen, S.; Porter, J.; Srichairatanakool, S. Epigallocatechin-3-gallate and Epicatechin-3-gallate from Green Tea Decrease Plasma Non-Transferrin Bound Iron and Erythrocyte Oxidative Stress. Med. Chem. 2007, 3, 289–296. [Google Scholar] [CrossRef]
- Koonyosying, P.; Kongkarnka, S.; Uthaipibull, C.; Svasti, S.; Fucharoen, S.; Srichairatanakool, S. Green tea extract modulates oxidative tissue injury in beta-thalassemic mice by chelation of redox iron and inhibition of lipid peroxidation. Biomed. Pharmacother. 2018, 108, 1694–1702. [Google Scholar] [CrossRef]
- Kučera, O.; Mezera, V.; Moravcova, A.; Endlicher, R.; Lotková, H.; Drahota, Z.; Červinková, Z. In Vitro Toxicity of Epigallocatechin Gallate in Rat Liver Mitochondria and Hepatocytes. Oxidative Med. Cell. Longev. 2015, 2015, 476180. [Google Scholar] [CrossRef] [Green Version]
- Yuet Ping, K.; Darah, I.; Chen, Y.; Sreeramanan, S.; Sasidharan, S. Acute and subchronic toxicity study of Euphorbia hirta L. methanol extract in rats. Biomed. Res. Int. 2013, 2013, 182064. [Google Scholar] [CrossRef] [Green Version]
- Evan, G.O. Animal Clinical Chemistry: A Practical Guide for Toxicologists and Biomedical Researchers; CRC Press: Boca Raton, FL, USA, 2009; pp. 321–331. [Google Scholar]
- Risner, C.H. Simultaneous Determination of Theobromine, (+)-Catechin, Caffeine, and (-)-Epicatechin in Standard Reference Material Baking Chocolate 2384, Cocoa, Cocoa Beans, and Cocoa Butter. J. Chromatogr. Sci. 2008, 46, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Kotan, R.; Cakir, A.; Dadasoglu, F.; Aydin, T.; Cakmakci, R.; Ozer, H.; Kordali, S.; Mete, E.; Dikbas, N. Antibacterial activities of essential oils and extracts of Turkish Achillea, Satureja and Thymus species against plant pathogenic bacteria. J. Sci. Food Agric. 2010, 90, 145–160. [Google Scholar] [CrossRef]
- Niedwetzki, G.; Lach, G.; Geschwill, K. Determination of aflatoxins in food by use of an automatic work station. J. Chromatogr. A 1994, 661, 175–180. [Google Scholar] [CrossRef]
- Martone, N.; Rahman, G.M.M.; Pamuku, M.; Kingston, H.M.S. Determination of Chromium Species in Dietary Supplements Using Speciated Isotope Dilution Mass Spectrometry with Mass Balance. J. Agric. Food Chem. 2013, 61, 9966–9976. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.B.D.; Dos Santos, C.G.; Yokomizo, C.H.; Sood, R.; Vitovic, P.; Kinnunen, P.K.J.; Rodrigues, T.; Nantes, I.L. Characterization of hydrophobic interaction and antioxidant properties of the phenothiazine nucleus in mitochondrial and model membranes. Free Radic. Res. 2010, 44, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Bak, M.-J.; Jeong, W.-S.; Kim, K.-B. Detoxifying effect of fermented black ginseng on H2O2-induced oxidative stress in HepG2 cells. Int. J. Mol. Med. 2014, 34, 1516–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.; Cheng, R.; Zhang, J.; Qian, J.; Diao, C.; Ran, J.; Zhang, H.; Li, L. Interferon-α2b gene-modified human bone marrow mesenchymal stem cells inhibit hepatocellular carcinoma by reducing the Notch1 levels. Life Sci. 2015, 143, 18–26. [Google Scholar] [CrossRef]
- Potter, T.M.; Neun, B.W.; Stern, S.T. Assay to Detect Lipid Peroxidation upon Exposure to Nanoparticles. Methods Mol. Biol. 2010, 697, 181–189. [Google Scholar] [CrossRef]
- Peskin, A.; Winterbourn, C.C. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin. Chim. Acta 2000, 293, 157–166. [Google Scholar] [CrossRef]
- Garbowski, M.W.; Ma, Y.; Fucharoen, S.; Srichairatanakool, S.; Hider, R.; Porter, J. Clinical and methodological factors affecting non-transferrin-bound iron values using a novel fluorescent bead assay. Transl. Res. 2016, 177, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Pongjanta, A.; Pangjit, K.; Srichairatanakool, S. Antioxidant Activity and Cytotoxic Effect of Ventilago denticulata Willd Leaves Extracts. J. Med. Assoc. Thail. 2016, 99 (Suppl. 1), S51–S57. [Google Scholar]
- Warheit, D.; Brown, S.; Donner, E. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food Chem. Toxicol. 2015, 84, 208–224. [Google Scholar] [CrossRef]
Sample | Extract (mg/g) | Drink (mg/40 mL Serving) | ||||
---|---|---|---|---|---|---|
C | EGCG | EC | C | EGCG | EC | |
ST1-RG (lot 1) | 13.7 ± 5.1 | 102.9 ± 4.6 | 7.1 ± 1.1 | 3.57 | 26.77 | 1.85 |
ST1-RG (lot 2) | 10.4 ± 4.9 | 98.0 ± 4.5 | 3.8 ± 0.9 * | 2.71 | 25.47 | 0.98 |
ST1-RG (lot 3) | 11.5± 0.2 | 106.0 ± 6.8 | 4.4 ± 1.1 * | 3.01 | 27.55 | 1.13 |
(a) ST1-RGE | As (mg/kg) | Cu (mg/kg) | Pb (mg/kg) | Hg (mg/kg) | Sn (mg/kg) | Zn (mg/kg) |
---|---|---|---|---|---|---|
ST1-RGE (lot 2) | 4.26 | 18.26 | 0.98 | ND | 3.15 | 75.93 |
ST1-RGE (lot 3) | 3.80 | 16.66 | 0.27 | ND | 5.81 | 61.90 |
Mean ± SD | 4.03 ± 0.33 | 17.46 ± 1.13 | 0.63 ± 0.50 | ND | 4.48 ± 1.88 | 68.92 ± 9.92 |
(b) ST1-RG Drink | As (μg/Serving) | Cu (μg/Serving) | Pb (μg/Serving) | Hg (μg/Serving) | Sn (μg/Serving) | Zn (μg/Serving) |
ST1 RG (1/1) | 1.11 | 4.75 | 0.25 | ND | 0.82 | 19.74 |
ST1 RG (1/2) | 0.99 | 4.33 | 0.07 | ND | 1.51 | 16.09 |
Mean ± SD | 1.05 ± 0.08 | 4.53 ± 0.30 | 0.16 ± 0.13 | ND | 1.16 ± 0.40 | 17.92 ± 2.58 |
(a) WBC Indices | DI | ST1-RGE (5 mg EGCG Equivalent/kg BW) | ST1-RGE (10 mg EGCG Equivalent/kg BW) | ST1-RGE (10 mg EGCG Equivalent/kg BW) S | ||||
---|---|---|---|---|---|---|---|---|
Day 0 | Days 90 | Day 0 | Days 90 | Day 0 | Days 90 | Day 0 | Days 90 | |
WBC number (×103/μL) | 1.95 ± 1.11 | 2.93 ± 1.72 | 5.89 ± 1.68 | 1.79 ± 8.3 | 6.12 ± 2.61 | 2.69 ± 1.39 | 3.74 ± 1.67 | 1.85 ± 0.88 |
Neutrophil (%) | 18.8 ± 1.3 | 10.1 ± 4.6 | 11.1 ± 2.7 | 17.4 ± 2.8 | 13.7 ± 2.8 | 8.8 ± 4.4 | 13.7 ± 2.9 | 18.0 ± 3.9 |
Lymphocyte (%) | 70.8 ± 5.9 | 79.8 ± 7.2 | 84.8 ± 3.0 | 73.4 ± 6.4 | 81.9 ± 3.4 | 81.2 ± 8.5 | 80.4 ± 3.8 | 69.1 ± 3.4 |
Monocyte (%) | 8.1 ± 4.6 | 7.5 ± 3.9 | 3.0 ± 1.8 | 7.6 ± 5.9 | 2.2 ± 1.5 | 8.3 ± 5.7 | 4.7 ± 2.5 | 11.1 ± 9.0 |
Eosinophil (%) | 2.3 ± 0.6 | 1.3 ± 0.8 | 1.2 ± 0.5 | 1.6 ± 0.6 | 2.1 ± 1.6 | 1.6 ± 0.6 | 1.1 ± 0.3 | 1.8 ± 1.2 |
Basophil (%) | 0 | 0 | 0 | 0 | 0.1 ± 0.1 | 0 | 0 | 0 |
(b) RBC Indices | DI | ST1-RGE (5 mg EGCG Equivalent/kg BW) | ST1-RGE (10 mg EGCG Equivalent/kg BW) | ST1-RGE (10 mg EGCG Equivalent/kg BW) S | ||||
Day 0 | Days 30 | Day 0 | Days 30 | Day 0 | Days 30 | Day 0 | Days 30 | |
RBC number (×106/μL) | 7.85 ± 0.96 | 8.15 ± 0.51 | 7.82 ± 0.38 | 7.28 ± 0.54 | 7.73 ± 1.10 | 7.69 ± 7.3 | 8.76 ± 0.39 | 6.79 ± 1.04 |
Hb (g/dL) | 15.1 ± 1.7 | 15.8 ± 0.5 | 15.2 ± 0.5 | 14.8 ± 0.7 | 14.2 ± 1.6 | 15.5 ± 1.1 | 16.3 ± 0.9 | 14.1 ± 2.0 |
Hct (%) | 46.5 ± 5.7 | 49.1 ± 2.4 | 46.0 ± 1.8 | 43.2 ± 3.0 | 45.0 ± 5.8 | 46.2 ± 4.4 | 51.6 ± 3.0 | 41.6 ± 6.5 |
MCV (fL) | 59.2 ± 1.4 | 60.3 ± 1.4 | 58.8 ± 1.1 | 59.4 ± 0.9 | 58.3 ± 1.1 | 60.1 ± 0.9 | 58.9 ± 2.1 | 61.3 ± 1.0 |
MCH (pg) | 19.2 ± 0.5 | 19.4 ± 0.8 | 19.5 ± 0.6 | 20.4 ± 0.6 | 19.0 ± 0.5 | 20.3 ± 0.7 | 18.6 ± 0.6 | 20.8 ± 0.5 |
MCHC (g/dL) | 32.5 ± 0.5 | 32.2 ± 0.9 | 33.1 ± 0.7 | 34.3 ± 0.9 | 32.6 ± 0.7 | 33.7 ± 1.1 | 31.6 ± 0.4 | 34.1 ± 0.9 |
RDW (%) | 12.1 ± 1.1 | 12.1 ± 0.7 | 11.8 ± 0.8 | 11.9 ± 0.6 | 11.5 ± 0.5 | 12.3 ± 0.4 | 11.4 ± 0.7 | |
RDW (fL) | 29.5 ± 2.9 | 31.5 ± 1.5 | 28.9 ± 2.2 | 28.9 ± 2.2 | 28.8 ± 1.2 | 28.4 ± 1.2 | 29.8 ± 1.0 | 29.1 ± 1.7 |
(c) PLT Indices | DI | ST1-RGE(5 mg EGCG Equivalent/kg BW) | ST1-RGE (10 mg EGCG Equivalent/kg BW) | ST1-RGE (10 mg EGCG Equivalent/kg BW) S | ||||
Day 0 | Days 30 | Day 0 | Days 30 | Day 0 | Days 30 | Day 0 | Days 30 | |
PLT (×103/μL) | 664 ± 319 | 791 ± 73 | 612 ± 219 | 792 ± 229 | 333 ± 351 | 962 ± 812 | 511 ± 284 | 554 ± 351 |
MPV (fL) | 6.2 ± 0.3 | 6.2 ± 0.3 | 6.1 ± 0.5 | 5.5 ± 0.1 | 6.6 ± 0.4 | 5.9 ± 0.2 | 6.4 ± 0.6 | 5.8 ± 0.2 |
PDW | 15.3 ± 0.6 | 15.3 ± 0.6 | 15.1 ± 0.2 | 15.1 ± 0.2 | 15.6 ± 0.9 | 15.2 ± 0.1 | 15.1 ± 0.3 | 15.3 ± 0.2 |
Pct (%) | 0.41 ± 0.20 | 0.41 + 0.20 | 0.37 ± 0.12 | 0.43 ± 0.12 | 0.21 ± 0.23 | 0.36 ± 0.14 | 0.31 ± 0.16 | 0.37 ± 0.19 |
Parameters | DI | ST1-RGE (50 mg EGCG Equivalent/kg BW) | ST1-RGE (100 mg EGCG Equivalent/kg BW) | ST1-RGE (100 mg EGCG Equivalent/kg BW) S | ||||
---|---|---|---|---|---|---|---|---|
Day 0 | Days 90 | Day 0 | Days 90 | Day 0 | Days 90 | Day 0 | Days 90 | |
BUN (mg.dL) | 26.6 ± 5.1 | 25.4 ± 3.6 | 23.8 ± 6.2 | 22.4 ± 2.3 | 25.6 ± 4.2 | 22.2 ± 2.3 | 22.9 ± 1.8 | 23.9 ± 2.6 |
CRE (mg/dL) | 0.8 ± 0.1 | 0.6 ± 0.1 | 0.8 ± 0.1 | 0.5 ± 0.2 * | 0.7 ± 0.0 | 0.6 ± 0.1 | 0.7 ± 0.1 | 0.5 ± 0.1 * |
AST activity (U/L) | 127.3 ± 11.5 | 241.7 ± 43.8 | 110.9 ± 11.2 | 295.5 ± 89.3 * | 111.6 ± 18.3 | 231.7 ± 63.8 | 126.4 ± 25.1 | 336.2 ± 173.6 * |
ALT activity (U/L) | 41.8 ± 15.2 | 66.1 ± 16.3 | 32.0 ± 7.0 | 72.8 ± 35.2 * | 32.4 ± 5.9 | 65.0 ± 11.1 | 31.2 ± 7.3 | 86.4 ± 28.3 * |
ALP activity (U/L) | 110.6 ± 28.4 | 61.4 ± 9.8 * | 105.8 ± 27.1 | 59.4 ± 12.5 * | 110.3 ± 19.3 | 66.7 ± 8.2 * | 114.7 ± 21.1 | 72.8 ± 14.5 * |
Alb (g/dL) | 3.8 ± 0.1 | 3.5 ± 0.2 | 3.8 ± 0.2 | 3.3 ± 0.2 * | 3.8 ± 0.1 | 3.4 ± 0.3 | 3.7 ± 0.1 | 3.5 ± 0.5 |
TB (mg/dL) | 0.76 ± 0.11 | 0.59 ± 0.10 | 0.79 ± 0.11 | 0.51 ± 0.16 | 0.73 ± 0.05 | 0.60 ± 0.11 | 0.72 ± 0.11 | 0.51 ± 0.10 |
TC (mg/dL) | 100.5 ± 10.9 | 95.2 ± 12.7 | 95.0 ± 8.8 | 97.2 ± 6.1 | 93.5 ± 7.1 | 98.5 ± 9.5 | 98.0 ± 6.4 | 105.7 ± 19.1 |
TG (mg/dL) | 86.3 ± 41.4 | 63.6 ± 11.5 | 75.5 ± 24.0 | 50.8 ± 12.9 | 86.5 ± 14.0 | 54.2 ± 18.8 | 69.5 ± 11.0 | 59.5 ± 13.4 |
HDL-C (mg/dL) | 27.7 ± 3.1 | 24.9 ± 5.3 | 26.3 ± 2.4 | 25.1 ± 3.2 | 24.9 ± 2.6 | 26.7 ± 3.6 | 25.5 ± 2.7 | 39.9 ± 5.6 |
LDL-C (mg/dL) | 8.5 ± 1.9 | 5.9 ± 1.9 | 7.9 ± 2.5 | 12.5 ± 2.5 * | 9.1 ± 3.1 | 12.2 ± 3.2 | 7.3 ± 2.1 | 7.1 ± 1.7 |
Organs | Organ Wet Weight (g) | |||
---|---|---|---|---|
DI | ST1-RGE (50 mg EGCG Equivalent/kg BW) | ST1-RGE (100 mg EGCG Equivalent/kg BW) | ST1-RGE (100 mg EGCG Equivalent/kg BW) S | |
Heart | 1.36 ± 0.38 | 1.44 ± 0.41 | 1.36 ± 0.30 | 1.33 ± 0.24 |
Liver | 10.60 ± 3.84 | 11.3 ± 4.86 | 10.63 ± 3.48 | 12.36 ± 2.86 |
Lungs | 2.79 ± 3.38 | 1.67 ± 0.28 | 1.57 ± 0.32 | 1.50 ± 0.20 |
Spleen | 0.78 ± 0.14 | 0.88 ± 0.23 | 0.77 ± 0.20 | 0.87 ± 0.11 |
Left kidney | 1.30 ± 0.47 | 1.28 ± 0.67 | 1.36 ± 0.45 | 1.36 ± 0.33 |
Right kidney | 1.22 ± 0.40 | 1.42 ± 0.44 | 1.28 ± 0.39 | 1.38 ± 0.36 |
Kidneys | 2.52 ± 0.83 | 2.7 ± 1.08 * | 2.63 ± 0.83 * | 2.74 ± 0.69 * |
Left adrenal gland | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 |
Right adrenal gland | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.04 ± 0.00 | 0.03 ± 0.01 |
Adrenal glands | 0.07 ± 0.01 | 0.07 ± 0.02 * | 0.07 ± 0.01 * | 0.06 ± 0.01 * |
Brain | 2.09 ± 0.12 | 2.12 ± 0.11 | 2.05 ± 0.09 | 2.08 ± 0.09 |
Left testis | 2.10 ± 0.06 | 0.12 ± 0.02 | 0.15 ± 0.05 | 0.14 ± 0.01 |
Right testis | 2.09 ± 0.10 | 1.44 ± 0.41 | 1.36 ± 0.30 | 1.33 ± 0.24 |
Testes | 4.19 ± 0.15 | 1.67 ± 0.28 | 1.57 ± 0.32 | 1.50 ± 0.20 |
Left ovary | 0.04 ± 0.01 | 1.28 ± 0.67 | 1.36 ± 0.45 | 1.36 ± 0.33 |
Right ovary | 0.05 ± 0.02 | 1.42 ± 0.44 | 1.28 ± 0.39 | 1.38 ± 0.36 |
Ovaries | 0.09 ± 0.01 | 2.70 ± 1.08 | 2.63 ± 0.83 | 2.74 ± 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phimphilai, S.; Koonyosying, P.; Hutachok, N.; Kampoun, T.; Daw, R.; Chaiyasut, C.; Prasartthong-osoth, V.; Srichairatanakool, S. Identifying Chemical Composition, Safety and Bioactivity of Thai Rice Grass Extract Drink in Cells and Animals. Molecules 2021, 26, 6887. https://doi.org/10.3390/molecules26226887
Phimphilai S, Koonyosying P, Hutachok N, Kampoun T, Daw R, Chaiyasut C, Prasartthong-osoth V, Srichairatanakool S. Identifying Chemical Composition, Safety and Bioactivity of Thai Rice Grass Extract Drink in Cells and Animals. Molecules. 2021; 26(22):6887. https://doi.org/10.3390/molecules26226887
Chicago/Turabian StylePhimphilai, Suthaya, Pimpisid Koonyosying, Nuntouchaporn Hutachok, Tanyaluk Kampoun, Rufus Daw, Chaiyavat Chaiyasut, Vanli Prasartthong-osoth, and Somdet Srichairatanakool. 2021. "Identifying Chemical Composition, Safety and Bioactivity of Thai Rice Grass Extract Drink in Cells and Animals" Molecules 26, no. 22: 6887. https://doi.org/10.3390/molecules26226887
APA StylePhimphilai, S., Koonyosying, P., Hutachok, N., Kampoun, T., Daw, R., Chaiyasut, C., Prasartthong-osoth, V., & Srichairatanakool, S. (2021). Identifying Chemical Composition, Safety and Bioactivity of Thai Rice Grass Extract Drink in Cells and Animals. Molecules, 26(22), 6887. https://doi.org/10.3390/molecules26226887