Evaluation of the Removal of Selected Phthalic Acid Esters (PAEs) in Municipal Wastewater Treatment Plants Supported by Constructed Wetlands
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of the Analytical Method for Determining the Target Compounds in Sewage Samples
2.2. Evaluation of the Analytical Method for Determining the Target Compounds in Plant Materials
2.3. Validation Parameters of the Proposed SPE–G–MS(SIM) and UAE–SPE–GC–MS(SIM) Methods for Determining Phthalates in Wastewater and Plants
Validation Parameters | Calibration Curves | R2 | Intermediate Precision Measurement (RSD) % | MR [%] | ME [% ± SD] | MQL; MDL [ng × L−1 or ng × g−1 d.w.] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | UW | TW | Plants | UW | TW | Plants | UW | TW | Plants | |||
DMP | 17988.73X + 683.92 | 0.9960 | 2.0–5.8 | 80–111 | 84–119 | 83–111 | +17 ± 9 | +34 ± 9 | −24 ± 4 | 5; 2 | 6; 2 | 30; 10 |
DEP | 45676.99X + 1352.61 | 0.9965 | 1.3–5.9 | 90–120 | 80–118 | 80–112 | +45 ± 11 | +8 ± 2 | −17 ± 3 | 6; 2 | 7; 2 | 23; 8 |
DBP | 117497.40X + 348.26 | 0.9956 | 2.3–9.2 | 85–114 | 90–111 | 90–113 | −25 ± 6 | −13 ± 4 | −10 ± 1 | 5; 2 | 6; 2 | 12; 4 |
BBP | 51801.06X − 711.14 | 0.9960 | 0.2–8.0 | 90–118 | 95–105 | 90–114 | +40 ± 17 | +14 ± 4 | −6 ± 1 | 3; 1 | 4; 1 | 12; 4 |
DOP | 110988.50X − 1483.44 | 0.9986 | 0.8–8.1 | 95–106 | 90–108 | 94–108 | +50 ± 14 | −35 ± 7 | −10 ± 2 | 5; 2 | 7; 2 | 8; 3 |
DEHP | 144296.80X − 6362.41 | 0.9941 | 1.8–5.9 | 80–104 | 85–115 | 90–103 | +29 ± 8 | −30 ± 5 | 3 ± 1 | 6; 2 | 4; 1 | 14; 5 |
2.4. Determination of Selected Phthalates in Wastewater and Plant Materials from an MWWTP
2.4.1. Assessment of the Presence of Phthalates in Raw and Treated Wastewater
2.4.2. Assessment of the Uptake of Phthalates in Hydroponically Cultivated Plants
2.4.3. Assessment of the Usefulness of Hydroponically Cultivated Plants for Removing Phthalates from the Sewage Stream
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Characterization of the Studied Full-Scale MWWTP with CWs
3.3. Sampling Wastewater and Plant Materials from CWs
3.4. Development of the Analytical Method for Determining Target Compounds in Wastewater Samples
3.5. Development of the Analytical Method for Determining Target Compounds in Plant Materials
3.6. Chromatographic Conditions of GC–MS Measurements
3.7. Validation of the Proposed Methods for Determining Target Compounds in wastewater and Plant Samples
3.8. Application of the Proposed Methods for the Determination of Target Compounds in Wastewater and Plants Collected from an MWWTP
3.9. Evaluation of the Effectiveness of Removing Phthalic acid Esters in an MWWTP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gao, D.W.; Wen, Z.D. Phthalate Esters in the Environment: A Critical Review of Their Occurrence, Biodegradation, and Removal during Wastewater Treatment Processes. Sci. Total Environ. 2016, 541, 986–1001. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Dong, Y.; Zhang, Z.; Song, Z. Metabolism and Distribution of Dibutyl Phthalate in Wheat Grown on Different Soil Types. Chemosphere 2019, 236, 124293. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Hens, A.; Aguilar-Caballos, M.P. Social and Economic Interest in the Control of Phthalic Acid Esters. TrAC Trends Anal. Chem. 2003, 22, 847–857. [Google Scholar] [CrossRef]
- Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, M.F.; Parvez, S.; Akhtar, M.; Raisuddin, S. Molecular Docking Reveals the Potential of Phthalate Esters to Inhibit the Enzymes of the Glucocorticoid Biosynthesis Pathway. J. Appl. Toxicol. 2017, 37, 265–277. [Google Scholar] [CrossRef]
- Sicińska, P. Di-n-Butyl Phthalate, Butylbenzyl Phthalate and Their Metabolites Induce Haemolysis and Eryptosis in Human Erythrocytes. Chemosphere 2018, 203, 44–53. [Google Scholar] [CrossRef]
- European Commission Commission Regulation 2018/2005 of 17 December 2018 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Bi. 2018, Volume 6, pp. L 322/14–L 322/19. Available online: https://op.europa.eu/en/publication-detail/-/publication/f1630f96-029e-11e9-adde-01aa75ed71a1/language-en (accessed on 7 June 2021).
- Net, S.; Delmont, A.; Sempéré, R.; Paluselli, A.; Ouddane, B. Reliable Quantification of Phthalates in Environmental Matrices (Air, Water, Sludge, Sediment and Soil): A Review. Sci. Total Environ. 2015, 515–516, 162–180. [Google Scholar] [CrossRef]
- Lubecki, L.; Kowalewska, G. Plastic-Derived Contaminants in Sediments from the Coastal Zone of the Southern Baltic Sea. Mar. Pollut. Bull. 2019, 146, 255–262. [Google Scholar] [CrossRef]
- Gorito, A.M.; Ribeiro, A.R.; Almeida, C.M.R.; Silva, A.M.T. A Review on the Application of Constructed Wetlands for the Removal of Priority Substances and Contaminants of Emerging Concern Listed in Recently Launched EU Legislation. Environ. Pollut. 2017, 227, 428–443. [Google Scholar] [CrossRef]
- Chen, H.; Mao, W.; Shen, Y.; Feng, W.; Mao, G.; Zhao, T.; Yang, L.; Yang, L.; Meng, C.; Li, Y.; et al. Distribution, Source, and Environmental Risk Assessment of Phthalate Esters (PAEs) in Water, Suspended Particulate Matter, and Sediment of a Typical Yangtze River Delta City, China. Environ. Sci. Pollut. Res. 2019, 26, 24609–24619. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Medeiros, P.M.; Didyk, B.M. Combustion Products of Plastics as Indicators for Refuse Burning in the Atmosphere. Environ. Sci. Technol. 2005, 39, 6961–6970. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Biswas, D.K.; Nian, Y.; Jiang, G. Potential of Constructed Wetlands in Treating the Eutrophic Water: Evidence from Taihu Lake of China. Bioresour. Technol. 2008, 99, 1656–1663. [Google Scholar] [CrossRef]
- Verlicchi, P.; Zambello, E. How Efficient Are Constructed Wetlands in Removing Pharmaceuticals from Untreated and Treated Urban Wastewaters? A Review. Sci. Total. Environ. 2014, 470–471, 1281–1306. [Google Scholar] [CrossRef]
- Sim, C.H.; Yusoff, M.K.; Shutes, B.; Ho, S.C.; Mansor, M. Nutrient Removal in a Pilot and Full Scale Constructed Wetland, Putrajaya City, Malaysia. J. Environ. Manag. 2008, 88, 307–317. [Google Scholar] [CrossRef]
- Li, T.; Fan, Y.; Cun, D.; Song, X.; Dai, Y.; Wang, F.; Wu, C.; Liang, W. Treatment Performance and Microbial Response to Dibutyl Phthalate Contaminated Wastewater in Vertical Flow Constructed Wetland Mesocosms. Chemosphere 2020, 246, 125635. [Google Scholar] [CrossRef]
- Qi, X.; Li, T.; Wang, F.; Dai, Y.; Liang, W. Removal Efficiency and Enzymatic Mechanism of Dibutyl Phthalate (DBP) by Constructed Wetlands. Environ. Sci. Pollut. Res. 2018, 25, 23009–23017. [Google Scholar] [CrossRef]
- Witthayaphirom, C.; Chiemchaisri, C.; Chiemchaisri, W. Optimization of Reactive Media for Removing Organic Micro-Pollutants in Constructed Wetland Treating Municipal Landfill Leachate. Environ. Sci. Pollut. Res. 2020, 27, 24627–24638. [Google Scholar] [CrossRef]
- Kotowska, U.; Karpinska, J.; Kapelewska, J.; Kowejsza, E.M.; Piotrowska-Niczyporuk, A.; Piekutin, J.; Kotowski, A. Removal of Phthalates and Other Contaminants from Municipal Wastewater during Cultivation of Wolffia Arrhiza. Process. Saf. Environ. Prot. 2018, 120, 268–277. [Google Scholar] [CrossRef]
- Xiaoyan, T.; Suyu, W.; Yang, Y.; Ran, T.; Yunv, D.; Dan, A.; Li, L. Removal of Six Phthalic Acid Esters (PAEs) from Domestic Sewage by Constructed Wetlands. Chem. Eng. J. 2015, 275, 198–205. [Google Scholar] [CrossRef]
- Zavoda, J.; Cutright, T.; Szpak, J.; Fallon, E. Uptake, Selectivity, and Inhibition of Hydroponic Treatment of Contaminants. J. Environ. Eng. 2001, 127, 502–508. [Google Scholar] [CrossRef]
- Reyes-Contreras, C.; Matamoros, V.; Ruiz, I.; Soto, M.; Bayona, J.M. Evaluation of PPCPs Removal in a Combined Anaerobic Digester-Constructed Wetland Pilot Plant Treating Urban Wastewater. Chemosphere 2011, 84, 1200–1207. [Google Scholar] [CrossRef]
- Liang, W.; Deng, J.; Zhan, F.; Wu, Z. Effects of Constructed Wetland System on the Removal of Dibutyl Phthalate (DBP). Microbiol. Res. 2009, 164, 206–211. [Google Scholar] [CrossRef]
- Masi, F.; Conte, G.; Lepri, L.; Martellini, T.; del Bubba, M.; Florence, I. Endocrine Disrupting Chemicals (EDCs) and Pathogens Removal in an Hybrid CW System for a Tourist Facility Wastewater Treatment and Reuse. Proc. 9th IWA Int. Conf. Wetl. Syst. Water Pollut. Control. 2004, 2, 461–468. [Google Scholar]
- Zhao, W.Y.; Wu, Z.B.; Zhou, Q.H.; Cheng, S.P.; Fu, G.P.; He, F. Removal of Dibutyl Phthalate by a Staged, Vertical-Flow Constructed Wetland. Wetlands 2004, 24, 202–206. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, S.; Xing, L.; Shi, P.; Shi, W.; Zhou, Q.; Pan, Y.; Song, M.-Y.; Li, A. Fate of Organic Micropollutants and Their Biological Effects in a Drinking Water Source Treated by a Field-Scale Constructed Wetland. Sci. Total Environ. 2019, 682, 756–764. [Google Scholar] [CrossRef]
- Diepenheim, G.; Gift, S.C.; Harb, C.; Wallace, M.; Layshock, J. Survey of Phthalate Mitigation and Distribution in Water, Sediment, and Typha in a Fully Operational Constructed Wetland: A Pilot Study. Bull. Environ. Contam. Toxicol. 2020, 105, 205–210. [Google Scholar] [CrossRef]
- Zhou, Q.H.; Wu, Z.B.; Cheng, S.P.; He, F.; Fu, G.P. Enzymatic Activities in Constructed Wetlands and Di-n-Butyl Phthalate (DBP) Biodegradation. Soil Biol. Biochem. 2005, 37, 1454–1459. [Google Scholar] [CrossRef]
- Liao, C.-S.; Nishikawa, Y.; Shih, Y.-T. Characterization of Di-n-Butyl Phthalate Phytoremediation by Garden Lettuce (Lactuca Sativa L. Var. Longifolia) through Kinetics and Proteome Analysis. Sustainability 2019, 11, 1625. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Du, Q. Uptake of Di-(2-Ethylhexyl) Phthalate of Vegetables from Plastic Film Greenhouses. J. Agric. Food Chem. 2011, 59, 11585–11588. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Dong, Y.; Zhang, Z.; Song, W.; Qi, Y. Growth and Antioxidant Defense Responses of Wheat Seedlings to Di-n-Butyl Phthalate and Di-(2-Ethylhexyl) Phthalate Stress. Chemosphere 2017, 172, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.T.; Christie, P.; Luo, Y.M.; Teng, Y. Phthalate Esters Contamination in Soil and Plants on Agricultural Land near an Electronic Waste Recycling Site. Environ. Geochem. Health 2013, 35, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wu, X.; Gan, J. Uptake and Metabolism of Phthalate Esters by Edible Plants. Environ. Sci. Technol. 2015, 49, 8471–8478. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Mu, D.; Ding, M.; Zhang, S.; Zhang, H.; Hu, J. Simultaneous Determination of Primary and Secondary Phthalate Monoesters in the Taihu Lake: Exploration of Sources. Chemosphere 2018, 202, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, O.; Zafra, A.; Navalón, A.; Vílchez, J.L. Sensitive Gas Chromatographic–Mass Spectrometric Method for the Determination of Phthalate Esters, Alkylphenols, Bisphenol A and Their Chlorinated Derivatives in Wastewater Samples. J. Chromatogr. A 2006, 1121, 154–162. [Google Scholar] [CrossRef]
- Adewuyi, G.O. High Performance Liquid Chromatographic Identification and Estimation of Phthalates in Sewer Waste and a Receiving River in Ibadan City, Southwestern Nigeria. J. Water Resour. Prot. 2012, 04, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Borecka, M.; Białk-Bielińska, A.; Siedlewicz, G.; Kornowska, K.; Kumirska, J.; Stepnowski, P.; Pazdro, K. A New Approach for the Estimation of Expanded Uncertainty of Results of an Analytical Method Developed for Determining Antibiotics in Seawater Using Solid-Phase Extraction Disks and Liquid Chromatography Coupled with Tandem Mass Spectrometry Technique. J. Chromatogr. A 2013, 1304, 138–146. [Google Scholar] [CrossRef]
- Sablayrolles, C.; Montréjaud-Vignoles, M.; Benanou, D.; Patria, L.; Treilhou, M. Development and Validation of Methods for the Trace Determination of Phthalates in Sludge and Vegetables. J. Chromatogr. A 2005, 1072, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Holadová, K.; Hajšlová, J. A Comparison of Different Ways of Sample Preparation for the Determination of Phthalic Acid Esters in Water and Plant Matrices. Int. J. Environ. Anal. Chem. 1995, 59, 43–57. [Google Scholar] [CrossRef]
- de Bièvre, P. The 2012 International Vocabulary of Metrology: “VIM”. Accredit. Qual. Assur. 2012, 17, 231–232. [Google Scholar] [CrossRef]
- Wolecki, D.; Caban, M.; Pazda, M.; Stepnowski, P.; Kumirska, J. Evaluation of the Possibility of Using Hydroponic Cultivations for the Removal of Pharmaceuticals and Endocrine Disrupting Compounds in Municipal Sewage Treatment Plants. Molecules 2020, 25, 162. [Google Scholar] [CrossRef] [Green Version]
- Caban, M.; Migowska, N.; Stepnowski, P.; Kwiatkowski, M.; Kumirska, J. Matrix Effects and Recovery Calculations in Analyses of Pharmaceuticals Based on the Determination of β-Blockers and β-Agonists in Environmental Samples. J. Chromatogr. A 2012, 1258, 117–127. [Google Scholar] [CrossRef]
- Fernández-González, V.; Moscoso-Pérez, C.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Reliable, Rapid and Simple Method for the Analysis of Phthalates in Sediments by Ultrasonic Solvent Extraction Followed by Head Space-Solid Phase Microextraction Gas Chromatography Mass Spectrometry Determination. Talanta 2017, 162, 648–653. [Google Scholar] [CrossRef]
- Gao, D.; Li, Z.; Wen, Z.; Ren, N. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere 2014, 95, 24–32. [Google Scholar] [CrossRef]
- Gani, K.M.; Kazmi, A.A. Evaluation of Three Full Scale Sewage Treatment Plants for Occurrence and Removal Efficacy of Priority Phthalates. J. Environ. Chem. Eng. 2016, 4, 2628–2636. [Google Scholar] [CrossRef]
Phthalates | Raw Sewage | Treated Sewage |
---|---|---|
Mean ± SD (%) | ||
DMP | 126 ± 5 | 118 ± 6 |
DEP | 109 ± 17 | 121 ± 6 |
DBP | 120 ± 25 | 113 ± 11 |
BBP | 189 ± 25 | 137 ± 9 |
DOP | 115 ± 13 | 39 ± 2 |
DEHP | 108 ± 14 | 36 ± 2 |
Type of Solvents/Phthalates | MeOH | EtOAc | DCM |
---|---|---|---|
Value of Absolute Recovery [% ± SD (%)] | |||
DMP | 29 ± 8 | 29 ± 16 | 32 ± 4 |
DEP | 39 ± 10 | 60 ± 16 | 43 ± 8 |
DBP | 62 ± 7 | 102 ± 31 | 83 ± 6 |
BBP | 61 ± 6 | 80 ± 21 | 80 ± 4 |
DOP | 120 ± 23 | <MDL | 130 ± 31 |
DEHP | 14 ± 3 | 69 ± 26 | 68 ± 3 |
Phthalates | Concentration in Raw Sewage | Concentration in Treated Sewage |
---|---|---|
(mean ± SD) [ng × L−1] | ||
DMP | <MDL | <MDL |
DEP | 10,097 ± 202 | 178 ± 0 |
DBP | 6196 ± 805 | 397 ± 8 |
BBP | 204 ± 2 | 89 ± 0 |
DOP | 221 ± 7 | 264 ± 3 |
DEHP | 136 ± 0 | 41 ± 0 |
Phthalates | Cyperus papirus (Papyrus) | Lysimachia nemorum (Yellow Pimpernel) | Euonymus europaeus (European Spindle) | EE |
---|---|---|---|---|
(Mean ± SD) [ng × g−1 Dry Weight] | % | |||
DMP | <MDL | 98 ± 2 | 397 ± 12 | - 1 |
DEP | 400 ± 24 | 313 ± 38 | 477 ± 83 | 98 |
DBP | 1596 ± 215 | 1697 ± 140 | 1284 ± 278 | 94 |
BBP | 1913 ± 146 | <MDL | 218 ± 19 | 56 |
DOP | 1828 ± 196 | 1343 ± 193 | 6562 ± 1065 | 0 2 |
DEHP | <MDL | 53 ± 22 | <MDL | 70 |
Plant Species | Cyperus papyrus | Lysimachia nemorum | Euonymus europaeus |
---|---|---|---|
∑selected PAEs | [ng × g−1 dry weight] | ||
5737 | 3504 | 8938 |
Number | Phthalates | Retention Time (Rt) [min] | Characteristic Ions (m/z) (Quantitative and Confirmation Ions) | Time Windows [min] |
---|---|---|---|---|
1 | DMP | 13.250 | 163; 135; 164 | 12.95–14.35 |
2 | DEP | 15.060 | 149; 150; 177 | 14.35–15.73 |
3 | DBP | 19.225 | 149; 205; 223 | 18.63–21.34 |
4 | BBP | 23.015 | 149; 123; 206 | 21.34–24.02 |
5 | DOP | 24.575 | 149; 150; 279 | 24.02–25.54 |
6 | DEHP | 26.035 | 149; 167; 261 | 25.54–26.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolecki, D.; Trella, B.; Qi, F.; Stepnowski, P.; Kumirska, J. Evaluation of the Removal of Selected Phthalic Acid Esters (PAEs) in Municipal Wastewater Treatment Plants Supported by Constructed Wetlands. Molecules 2021, 26, 6966. https://doi.org/10.3390/molecules26226966
Wolecki D, Trella B, Qi F, Stepnowski P, Kumirska J. Evaluation of the Removal of Selected Phthalic Acid Esters (PAEs) in Municipal Wastewater Treatment Plants Supported by Constructed Wetlands. Molecules. 2021; 26(22):6966. https://doi.org/10.3390/molecules26226966
Chicago/Turabian StyleWolecki, Daniel, Barbara Trella, Fei Qi, Piotr Stepnowski, and Jolanta Kumirska. 2021. "Evaluation of the Removal of Selected Phthalic Acid Esters (PAEs) in Municipal Wastewater Treatment Plants Supported by Constructed Wetlands" Molecules 26, no. 22: 6966. https://doi.org/10.3390/molecules26226966
APA StyleWolecki, D., Trella, B., Qi, F., Stepnowski, P., & Kumirska, J. (2021). Evaluation of the Removal of Selected Phthalic Acid Esters (PAEs) in Municipal Wastewater Treatment Plants Supported by Constructed Wetlands. Molecules, 26(22), 6966. https://doi.org/10.3390/molecules26226966