New Models to Predict the Acute and Chronic Toxicities of Representative Species of the Main Trophic Levels of Aquatic Environments
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. The Datasets
- Algae (Raphidocelis subcapitata, previously known as Pseudokirchneriella subcapitata): EC50 72 h (growth rate);
- Algae (Raphidocelis subcapitata, previously known as Pseudokirchneriella subcapitata): NOEC 72 h (growth rate);
- Daphnids (Daphnia magna): EC50 48 h, acute effect (immobilization);
- Daphnids (Daphnia magna): NOEC 21 d, chronic effect (reproduction);
- Fish (Oryzias latipes): LC50 96 h, acute effect (mortality);
- Fish (Oryzias latipes): NOEC, chronic effect, as in the early-life stage toxicity test [43].
- Taxonomic: animals, fish, and standard test species.
- Test results: endpoint (NOEC) and effect measurement (mortality).
- Test conditions: test location (laboratory), exposure media (freshwater), and exposure types (flow-through, renewal).
- Chemical analysis: measured.
- Purity > 80% and “not reported”; if the purity was “not reported,” we checked the chemical grade (eliminated: experimental, practical, and technical grades).
- Organism life stage: egg(s), embryo(s), blastula, eyed egg or stage, and eyed embryo.
- Organism age: Pimephales promelas by 5 d, Danio rerio by 5 d, and Oncorhynchus mykiss by 35 d.
- Number of doses: 4 or more.
- Duration: 28 d post-hatch (Pimephales promelas), 30 d post-hatch (Danio rerio), and 60 d post-hatch (Oncorhynchus mykiss).
- Inorganics were eliminated.
4.2. The QSAR Models
- All the descriptors with constant values (var(X) = 0) were eliminated;
- All the descriptors that correlated higher than 0.95 (Pearson) with at least one other descriptor were eliminated;
- A genetic algorithm (gaselect) or variable selection using random forest (VSURF) was applied.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The Challenge of Micropollutants in Aquatic Systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, S.M.; Smith, M.T. Environment and Disease Risks. Science 2010, 330, 460–461. [Google Scholar] [CrossRef] [Green Version]
- Prüss-Ustün, A.; Vickers, C.; Haefliger, P.; Bertollini, R. Knowns and Unknowns on Burden of Disease Due to Chemicals: A Systematic Review. Environ. Health 2011, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Wang, Z.; Yang, X.; Shi, L.; Liu, J.; Chen, G. Development of Classification Models for Predicting Chronic Toxicity of Chemicals to Daphnia Magna and Pseudokirchneriella Subcapitata. SAR QSAR Environ. Res. 2019, 30, 39–50. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union REGULATION (EC) No 1907/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410 (accessed on 5 October 2021).
- Singh, K.P.; Gupta, S.; Kumar, A.; Mohan, D. Multispecies QSAR Modeling for Predicting the Aquatic Toxicity of Diverse Organic Chemicals for Regulatory Toxicology. Chem. Res. Toxicol. 2014, 27, 741–753. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008R1272 (accessed on 5 October 2021).
- Moermond, C.T.; Janssen, M.P.; de Knecht, J.A.; Montforts, M.H.; Peijnenburg, W.J.; Zweers, P.G.; Sijm, D.T. PBT Assessment Using the Revised Annex XIII of REACH: A Comparison with Other Regulatory Frameworks. Integr. Environ. Assess. Manag. 2012, 8, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Card, M.L.; Gomez-Alvarez, V.; Lee, W.-H.; Lynch, D.G.; Orentas, N.S.; Lee, M.T.; Wong, E.M.; Boethling, R.S. History of EPI SuiteTM and Future Perspectives on Chemical Property Estimation in US Toxic Substances Control Act New Chemical Risk Assessments. Environ. Sci Process. Impacts 2017, 19, 203–212. [Google Scholar] [CrossRef]
- Hartung, T. Toxicology for the Twenty-First Century. Nature 2009, 460, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Shen, J.; Yu, Y.; Li, W.; Liu, G.; Lee, P.W.; Tang, Y. In Silico Prediction of Tetrahymena Pyriformis Toxicity for Diverse Industrial Chemicals with Substructure Pattern Recognition and Machine Learning Methods. Chemosphere 2011, 82, 1636–1643. [Google Scholar] [CrossRef]
- Schüürmann, G.; Ebert, R.-U.; Kühne, R. Quantitative Read-Across for Predicting the Acute Fish Toxicity of Organic Compounds. Environ. Sci. Technol. 2011, 45, 4616–4622. [Google Scholar] [CrossRef]
- Cassani, S.; Kovarich, S.; Papa, E.; Roy, P.P.; van der Wal, L.; Gramatica, P. Daphnia and Fish Toxicity of (Benzo)Triazoles: Validated QSAR Models, and Interspecies Quantitative Activity–Activity Modelling. J. Hazard. Mater. 2013, 258, 50–60. [Google Scholar] [CrossRef]
- Kühne, R.; Ebert, R.-U.; von der Ohe, P.C.; Ulrich, N.; Brack, W.; Schüürmann, G. Read-Across Prediction of the Acute Toxicity of Organic Compounds toward the Water Flea Daphnia Magna. Mol. Inform. 2013, 32, 108–120. [Google Scholar] [CrossRef]
- Lyakurwa, F.; Yang, X.; Li, X.; Qiao, X.; Chen, J. Development and Validation of Theoretical Linear Solvation Energy Relationship Models for Toxicity Prediction to Fathead Minnow (Pimephales promelas). Chemosphere 2014, 96, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Villain, J.; Lozano, S.; Halm-Lemeille, M.-P.; Durrieu, G.; Bureau, R. Quantile Regression Model for a Diverse Set of Chemicals: Application to Acute Toxicity for Green Algae. J. Mol. Model. 2014, 20, 2508. [Google Scholar] [CrossRef]
- Liu, H.; Sun, P.; Liu, H.; Yang, S.; Wang, L.; Wang, Z. Acute Toxicity of Benzophenone-Type UV Filters for Photobacterium Phosphoreum and Daphnia Magna: QSAR Analysis, Interspecies Relationship and Integrated Assessment. Chemosphere 2015, 135, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Aalizadeh, R.; von der Ohe, P.C.; Thomaidis, N.S. Prediction of Acute Toxicity of Emerging Contaminants on the Water Flea Daphnia Magna by Ant Colony Optimization–Support Vector Machine QSTR Models. Environ. Sci. Process. Impacts 2017, 19, 438–448. [Google Scholar] [CrossRef]
- Önlü, S.; Saçan, M.T. An in Silico Algal Toxicity Model with a Wide Applicability Potential for Industrial Chemicals and Pharmaceuticals. Environ. Toxicol. Chem. 2017, 36, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Bakire, S.; Yang, X.; Ma, G.; Wei, X.; Yu, H.; Chen, J.; Lin, H. Developing Predictive Models for Toxicity of Organic Chemicals to Green Algae Based on Mode of Action. Chemosphere 2018, 190, 463–470. [Google Scholar] [CrossRef]
- Li, J.J.; Zhang, X.J.; Yang, Y.; Huang, T.; Li, C.; Su, L.; Zhao, Y.H.; Cronin, M.T.D. Development of Thresholds of Excess Toxicity for Environmental Species and Their Application to Identification of Modes of Acute Toxic Action. Sci. Total Environ. 2018, 616–617, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Claeys, L.; Iaccino, F.; Janssen, C.R.; Van Sprang, P.; Verdonck, F. Development and Validation of a Quantitative Structure-Activity Relationship for Chronic Narcosis to Fish. Environ. Toxicol. Chem. 2013, 32, 2217–2225. [Google Scholar] [CrossRef]
- Austin, T.J.; Eadsforth, C.V. Development of a Chronic Fish Toxicity Model for Predicting Sub-Lethal NOEC Values for Non-Polar Narcotics. SAR QSAR Environ. Res. 2014, 25, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Liu, J.; Wang, L.; Yang, X.; Zhang, S.; Zhang, Y.; Shi, L. Development of Quantitative Structure-Activity Relationship Models for Predicting Chronic Toxicity of Substituted Benzenes to Daphnia Magna. Bull. Environ. Contam Toxicol. 2016, 96, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Baderna, D.; Cappelli, C.; Toma, C.; Lombardo, A.; Roy, K.; Benfenati, E. Ecotoxicological QSAR Modeling of Organic Compounds against Fish: Application of Fragment Based Descriptors in Feature Analysis. Aquat. Toxicol. 2019, 212, 162–174. [Google Scholar] [CrossRef] [PubMed]
- QSARCHE Model. Available online: https://www.arche-consulting.be/tools/qsarche-model/ (accessed on 5 October 2021).
- Cronin, M.T.D. (Q)SARs to Predict Environmental Toxicities: Current Status and Future Needs. Environ. Sci. Process. Impacts 2017, 19, 213–220. [Google Scholar] [CrossRef]
- OECD Series on Principles of Good Laboratory Practice (GLP) and Compliance Monitoring-OECD. 1998. Available online: https://www.oecd.org/chemicalsafety/testing/oecdseriesonprinciplesofgoodlaboratorypracticeglpandcompliancemonitoring.htm (accessed on 5 October 2021).
- Pizzo, F.; Lombardo, A.; Manganaro, A.; Cappelli, C.I.; Petoumenou, M.I.; Albanese, F.; Roncaglioni, A.; Brandt, M.; Benfenati, E. Integrated in Silico Strategy for PBT Assessment and Prioritization under REACH. Environ. Res. 2016, 151, 478–492. [Google Scholar] [CrossRef] [PubMed]
- Aruoja, V.; Moosus, M.; Kahru, A.; Sihtmäe, M.; Maran, U. Measurement of Baseline Toxicity and QSAR Analysis of 50 Non-Polar and 58 Polar Narcotic Chemicals for the Alga Pseudokirchneriella Subcapitata. Chemosphere 2014, 96, 23–32. [Google Scholar] [CrossRef]
- Lu, G.-H.; Yuan, X.; Zhao, Y.-H. QSAR Study on the Toxicity of Substituted Benzenes to the Algae (Scenedesmus obliquus). Chemosphere 2001, 44, 437–440. [Google Scholar] [CrossRef]
- Benfenati, E.; Lombardo, A. VEGAHUB for Ecotoxicological QSAR Modeling. In Ecotoxicological QSARs; Roy, K., Ed.; Methods in Pharmacology and Toxicology; Springer: New York, NY, USA, 2020; pp. 759–787. ISBN 978-1-07-160150-1. [Google Scholar]
- Khan, K.; Benfenati, E.; Roy, K. Consensus QSAR Modeling of Toxicity of Pharmaceuticals to Different Aquatic Organisms: Ranking and Prioritization of the DrugBank Database Compounds. Ecotoxicol Environ. Saf. 2019, 168, 287–297. [Google Scholar] [CrossRef]
- Khan, K.; Khan, P.M.; Lavado, G.; Valsecchi, C.; Pasqualini, J.; Baderna, D.; Marzo, M.; Lombardo, A.; Roy, K.; Benfenati, E. QSAR Modeling of Daphnia Magna and Fish Toxicities of Biocides Using 2D Descriptors. Chemosphere 2019, 229, 8–17. [Google Scholar] [CrossRef]
- Golbamaki, A.; Cassano, A.; Lombardo, A.; Moggio, Y.; Colafranceschi, M.; Benfenati, E. Comparison of in Silico Models for Prediction of Daphnia Magna Acute Toxicity. SAR QSAR Environ. Res. 2014, 25, 673–694. [Google Scholar] [CrossRef]
- Cappelli, C.I.; Cassano, A.; Golbamaki, A.; Moggio, Y.; Lombardo, A.; Colafranceschi, M.; Benfenati, E. Assessment of in Silico Models for Acute Aquatic Toxicity towards Fish under REACH Regulation. SAR QSAR Environ. Res. 2015, 26, 977–999. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Ecological Structure Activity Relationships (ECOSAR) Predictive Model. Available online: https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model (accessed on 4 October 2021).
- VEGA HUB. Virtual Models for Property Evaluation of Chemicals within a Global Architecture. Available online: https://www.vegahub.eu/ (accessed on 7 October 2021).
- Results of Aquatic Toxicity Tests of Chemicals Conducted by Ministry of the Environment in Japan (March 2016). Available online: https://www.env.go.jp/en/chemi/sesaku/aquatic_Mar_2016.pdf (accessed on 5 October 2021).
- OECD. Test No. 202: Daphnia Sp. Acute Immobilisation Test. 2004. Available online: https://www.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en (accessed on 5 October 2021).
- OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. 2011. Available online: https://www.oecd-ilibrary.org/environment/test-no-201-alga-growth-inhibition-test_9789264069923-en (accessed on 5 October 2021).
- OECD. Test No. 211: Daphnia Magna Reproduction Test. 2012. Available online: https://read.oecd-ilibrary.org/environment/test-no-211-daphnia-magna-reproduction-test_9789264185203-en#page1 (accessed on 5 October 2021).
- OECD. Test No. 210: Fish, Early-Life Stage Toxicity Test. 2013. Available online: https://www.oecd-ilibrary.org/environment/test-no-210-fish-early-life-stage-toxicity-test_9789264070103-en (accessed on 5 October 2021).
- OECD. Test No. 203: Fish, Acute Toxicity Test. 2019. Available online: https://www.oecd-ilibrary.org/environment/test-no-203-fish-acute-toxicity-test_9789264069961-en (accessed on 5 October 2021).
- Weininger, D. SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Cdd/Chemcell. Available online: https://github.com/cdd/chemcell (accessed on 5 October 2021).
- ChemAxon-Software Solutions and Services for Chemistry & Biology. Available online: https://chemaxon.com/ (accessed on 5 October 2021).
- ChemIDplus Advanced-Chemical Information with Searchable Synonyms, Structures, and Formulas. Available online: https://chem.nlm.nih.gov/chemidplus/ (accessed on 5 October 2021).
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 5 October 2021).
- ChemSpider | Search and Share Chemistry. Available online: http://www.chemspider.com/ (accessed on 5 October 2021).
- United States Environmental Protection Agency. Distributed Structure-Searchable Toxicity (DSSTox) Database. Available online: https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database (accessed on 5 October 2021).
- ECHA Guidance on Information Requirements and Chemical Safety Assessment-Chapter R.10: Characterisation of Dose [Concentration]-Response for Environment. 2008. Available online: https://echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-chemical-safety-assessment (accessed on 5 October 2021).
- ECOTOX | Home. Available online: https://cfpub.epa.gov/ecotox/ (accessed on 5 October 2021).
- EChemPortal Provides Free Public Access to Information on Properties of Chemicals. Available online: https://www.echemportal.org/echemportal/ (accessed on 5 October 2021).
- QSAR Toolbox. Available online: https://qsartoolbox.org/ (accessed on 5 October 2021).
- Tukey, J.W. On the Comparative Anatomy of Transformations. Ann. Math. Stat. 1957, 28, 602–632. [Google Scholar] [CrossRef]
- Kode Chemoinformatics. Available online: https://chm.kode-solutions.net/ (accessed on 5 October 2021).
- JChem for Office|ChemAxon. Available online: https://chemaxon.com/products/jchem-for-office (accessed on 5 October 2021).
- Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B. KNIME-the Konstanz Information Miner: Version 2.0 and Beyond. SIGKDD Explor. Newsl. 2009, 11, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Ghose, A.K.; Crippen, G.M. Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure-Activity Relationships I. Partition Coefficients as a Measure of Hydrophobicity. J. Comput. Chem. 1986, 7, 565–577. [Google Scholar] [CrossRef] [Green Version]
R. subcapitata | Daphnia magna | Fish | |||||
---|---|---|---|---|---|---|---|
EC50 a | NOEC b | EC50 a | NOEC b | LC50 a | NOEC b | ||
Training set | R2 c | 0.96 | 0.95 | 0.94 | 0.95 | 0.95 | 0.96 |
MAE d | 0.41 | 0.56 | 0.49 | 0.42 | 0.27 | 0.54 | |
RMSE e | 0.52 | 0.74 | 0.64 | 0.56 | 0.37 | 0.68 | |
Validation set without AD f | R2 c | 0.59 | 0.58 | 0.56 | 0.74 | 0.65 | 0.74 |
MAE d | 0.96 | 1.36 | 0.99 | 0.83 | 0.68 | 1.75 | |
RMSE e | 1.25 | 1.73 | 1.31 | 1.13 | 0.87 | 2.45 | |
Validation set with AD f | R2 c | 0.6 | 0.63 | 0.69 | 0.78 | 0.65 | 0.76 |
MAE d | 0.97 | 1.29 | 0.84 | 0.8 | 0.64 | 1.79 | |
RMSE e | 1.26 | 1.66 | 1.09 | 1.07 | 0.83 | 2.54 | |
Coverage | 0.89 | 0.93 | 0.84 | 0.81 | 0.81 | 0.89 | |
Details of the model | Feature selection | VSURF | GASELECT | GASELECT | VSURF | VSURF | GASELECT |
No. of descriptors | 13 | 40 | 12 | 17 | 13 | 12 | |
Distance mode | Euclidean-5 | Euclidean-5 | Euclidean-1 | Euclidean-1 | Euclidean-5 | Euclidean-5 | |
Distance threshold | 0.9 | 0.975 | 0.9 | 0.975 | 0.9 | 0.975 | |
Error percentile | 0.9 | 1 | 0.75 | 0.75 | 1 | 1 |
Acute Toxicity Test | Chronic Toxicity Test | |
---|---|---|
Number of chemicals for Raphidocelis subcapitata | 315 (372) | 408 (577) |
Number of chemicals for Daphnia magna | 428 (509) | 306 (372) |
Number of chemicals for fish | 331 (393) | 35 (37) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toma, C.; Cappelli, C.I.; Manganaro, A.; Lombardo, A.; Arning, J.; Benfenati, E. New Models to Predict the Acute and Chronic Toxicities of Representative Species of the Main Trophic Levels of Aquatic Environments. Molecules 2021, 26, 6983. https://doi.org/10.3390/molecules26226983
Toma C, Cappelli CI, Manganaro A, Lombardo A, Arning J, Benfenati E. New Models to Predict the Acute and Chronic Toxicities of Representative Species of the Main Trophic Levels of Aquatic Environments. Molecules. 2021; 26(22):6983. https://doi.org/10.3390/molecules26226983
Chicago/Turabian StyleToma, Cosimo, Claudia I. Cappelli, Alberto Manganaro, Anna Lombardo, Jürgen Arning, and Emilio Benfenati. 2021. "New Models to Predict the Acute and Chronic Toxicities of Representative Species of the Main Trophic Levels of Aquatic Environments" Molecules 26, no. 22: 6983. https://doi.org/10.3390/molecules26226983
APA StyleToma, C., Cappelli, C. I., Manganaro, A., Lombardo, A., Arning, J., & Benfenati, E. (2021). New Models to Predict the Acute and Chronic Toxicities of Representative Species of the Main Trophic Levels of Aquatic Environments. Molecules, 26(22), 6983. https://doi.org/10.3390/molecules26226983