Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries from Different Varieties in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Reagents
2.2. Drying Processes
2.3. Preparation of Samples for Analysis
2.4. Determination of Total Phenolic (TPC) and Total Flavonoids (TFC) Contents
2.5. Quantitative Determination of 12 Compound Contents by UPLC-DAD
2.6. Identification of Phenolic Compounds by UPLC-PDA-Q/TOF-MS
2.7. Antioxidant Activity by DPPH, ABTS and FRAP Assays
2.8. Data Analysis
3. Results and Discussion
3.1. Total Phenolic Content (TPC) and Total Flavonoids Content (TFC)
3.2. Quantitative Determination of Twelve Components in Sea Buckthorn Berries
3.3. Identification of Phytochemicals
3.4. Marker Compounds in Berries of Different Varieties and Different Drying Methods
3.5. Correlations between Antioxidant Activity (AOA) and Phenolic Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sytařová, I.; Orsavová, J.; Snopek, L.; Mlček, J.; Byczyński, Ł.; Mišurcová, L. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chem. 2020, 310, 125784. [Google Scholar] [CrossRef]
- Pundir, S.; Garg, P.; Dviwedi, A.; Ali, A.; Kapoor, V.K.; Kapoor, D.; Kulshrestha, S.; Lal, U.R.; Negi, P. Ethnomedicinal uses, phytochemistry and dermatological effects of Hippophae rhamnoides L.: A review. J. Ethnopharmacol. 2021, 266, 113434. [Google Scholar] [CrossRef] [PubMed]
- Suryakumar, G.; Gupta, A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. 2011, 138, 268–278. [Google Scholar] [CrossRef]
- Jaśniewska, A.; Diowksz, A. Wide spectrum of active compounds in sea buckthorn (Hippophae rhamnoides) for disease prevention and food production. Antioxidants 2021, 10, 1279. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, Ľ.; Panovská, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef] [PubMed]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Ferreres, F.; Moreno, D.A.; Nowicka, P. UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Food Chem. 2019, 309, 125766. [Google Scholar] [CrossRef] [PubMed]
- Olas, B.; Skalski, B.; Ulanowska, K. The anticancer activity of sea buckthorn [Elaeagnus rhamnoides (L.) A. Nelson]. Front. Pharmacol. 2018, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Puganen, A.; Alakomi, H.L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef]
- Zhao, L.; Li, M.; Sun, K.; Su, S.; Geng, T.; Sun, H. Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation, apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-κB signaling pathway. Int. J. Biol. Macromol. 2020, 155, 1202–1215. [Google Scholar] [CrossRef]
- Marciniak, B.; Kontek, R.; Żuchowski, J.; Stochmal, A. Novel bioactive properties of low-polarity fractions from sea-buckthorn extracts (Elaeagnus rhamnoides (L.) A. Nelson)–(in vitro). Biomed. Pharmacother. 2021, 135. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.F.; Shang, X.; Zhang, Z.J.; Zhang, Y.N. Phytochemical composition and antibacterial activity of the essential oils from different parts of sea buckthorn (Hippophae rhamnoides L.). J. Food Drug Anal. 2017, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, W.; Gao, T.; Wang, H.; Du, Y.; Li, J.; Li, C.; Wei, L.; Bi, H. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants. J. Ethnopharmacol. 2013, 150, 529–535. [Google Scholar] [CrossRef]
- Yang, B.; Halttunen, T.; Raimo, O.; Price, K.; Kallio, H. Flavonol glycosides in wild and cultivated berries of three major subspecies of Hippophaë rhamnoides and changes during harvesting period. Food Chem. 2009, 115, 657–664. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A.; Rudzińska, M.; Oszmiański, J.; Golis, T. Analysis of lipophilic and hydrophilic bioactive compounds content in sea buckthorn (Hippophaë rhamnoides L.) berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Laaksonen, O.; Zheng, J.; Yang, W.; Trépanier, M.; Kallio, H.; Yang, B. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Food Chem. 2016, 200, 189–198. [Google Scholar] [CrossRef]
- Yao, N.N.; Che, F.B.; Zhang, T.; Li, Y.H.; Zhang, Q.; Zhang, H.; Zhou, J.J.; Wu, X. Comparative Analysis of Different Pretreatment on Improving Hot Air Drying Effect of Seabuckthorn (Hippophae rhamnoides L.) (Chinese). Mod. Food Sci. Technol. 2020, 36. [Google Scholar] [CrossRef]
- Ursache, F.M.; Ghinea, I.O.; Turturică, M.; Aprodu, I.; Râpeanu, G.; Stănciuc, N. Phytochemicals content and antioxidant properties of sea buckthorn (Hippophae rhamnoides L.) as affected by heat treatment–Quantitative spectroscopic and kinetic approaches. Food Chem. 2017, 233, 442–449. [Google Scholar] [CrossRef]
- Araya-Farias, M.; Makhlouf, J.; Ratti, C. Drying of Seabuckthorn (Hippophae rhamnoides L.) Berry: Impact of Dehydration Methods on Kinetics and Quality. Dry. Technol. 2011, 29, 351–359. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Pappa, A.; Krokida, M.; Detsi, A.; Kefalas, P. Effects of Drying and Extraction Methods on the Quality and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides) Berries and Leaves. Dry. Technol. 2013, 31, 1063–1076. [Google Scholar] [CrossRef]
- Orsavová, J.; Hlaváčová, I.; Mlček, J.; Snopek, L.; Mišurcová, L. Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits. Food Chem. 2019, 284, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; He, C.; Ma, Y.; Shen, J.; Zhang, L.H.; Peng, Y.; Xiao, P. Investigation of free amino acid, total phenolics, antioxidant activity and purine alkaloids to assess the health properties of non-Camellia tea. Acta Pharm. Sin. B 2016, 6, 170–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.Y.; Luo, M.; Wang, W.; Zhao, C.J.; Gu, C.B.; Zu, Y.G.; Fu, Y.J.; Yao, X.H.; Duan, M.H. Variation of active constituents and antioxidant activity in pyrola [P. incarnata Fisch.] from different sites in Northeast China. Food Chem. 2013, 141, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Li, L.; Kong, L. Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of their antioxidant activities. Food Chem. 2012, 131, 1056–1062. [Google Scholar] [CrossRef]
- Peng, L.P.; Men, S.Q.; Liu, Z.A.; Tong, N.N.; Imran, M.; Shu, Q.Y. Fatty acid composition, phytochemistry, antioxidant activity on seed coat and kernel of paeonia ostii from main geographic production areas. Foods 2020, 9, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ficzek, G.; Mátravölgyi, G.; Furulyás, D.; Rentsendavaa, C.; Jócsák, I.; Papp, D.; Simon, G.; Végvári, G.; Stéger-Máté, M. Analysis of bioactive compounds of three sea buckthorn cultivars (Hippophaë rhamnoides L. ‘Askola’, ‘Leikora’, and ‘Orangeveja’) with HPLC and spectrophotometric methods. Eur. J. Hortic. Sci. 2019, 84, 31–38. [Google Scholar] [CrossRef]
- An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 2016, 197, 1292–1300. [Google Scholar] [CrossRef]
- Raudone, L.; Puzerytė, V.; Vilkickyte, G.; Niekyte, A.; Lanauskas, J.; Viskelis, J.; Viskelis, P. Sea buckthorn leaf powders: The impact of cultivar and drying mode on antioxidant, phytochemical, and chromatic profile of valuable resource. Molecules 2021, 26, 4765. [Google Scholar] [CrossRef] [PubMed]
- Pop, R.M.; Socaciu, C.; Pintea, A.; Buzoianu, A.D.; Sanders, M.G.; Gruppen, H.; Vincken, J.P. UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different Carpathian Hippophaë rhamnoides L. Varieties. Phytochem. Anal. 2013, 24, 484–492. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Zarrabi, A.; Mirzaei, S.; Hashemi, F.; Samarghandian, S.; Zabolian, A.; Hushmandi, K.; Ang, H.L.; Sethi, G.; Kumar, A.P.; et al. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem. Toxicol. 2021, 157, 112576. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lin, Y.; Li, Q.; Gu, Y. The contribution ratio of various characteristic tea compounds in antioxidant capacity by DPPH assay. J. Food Biochem. 2020, 44. [Google Scholar] [CrossRef] [PubMed]
- Criste, A.; Urcan, A.C.; Bunea, A.; Furtuna, F.R.P.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical composition and biological activity of berries and leaves from four romanian sea buckthorn (Hippophae Rhamnoides L.) varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef] [Green Version]
- Radenkovs, V.; Püssa, T.; Juhnevica-Radenkova, K.; Anton, D.; Seglina, D. Phytochemical characterization and antimicrobial evaluation of young leaf/shoot and press cake extracts from Hippophae rhamnoides L. Food Biosci. 2018, 24, 56–66. [Google Scholar] [CrossRef]
- Kachlicki, P.; Einhorn, J.; Muth, D.; Kerhoas, L.; Stobiecki, M. Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling. J. Mass Spectrom. 2008, 43, 572–586. [Google Scholar] [CrossRef] [PubMed]
- Rösch, D.; Krumbein, A.; Mügge, C.; Kroh, L.W. Structural investigations of flavonol glycosides from sea buckthorn (Hippophaë rhamnoides) pomace by NMR spectroscopy and HPLC-ESI-MS n. J. Agric. Food Chem. 2004, 52, 4039–4046. [Google Scholar] [CrossRef] [PubMed]
- Arimboor, R.; Arumughan, C. HPLC-DAD-MS/MS profiling of antioxidant flavonoid glycosides in sea buckthorn (Hippophae rhamnoides L.) Seeds. Int. J. Food Sci. Nutr. 2012, 63, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Su, J.; Nian, H.; Shen, H.; Zhai, X.; Xin, H.; Qin, L.; Han, T. Chemical fingerprint and quantitative analysis of flavonoids for quality control of Sea buckthorn leaves by HPLC and UHPLC-ESI-QTOF-MS. J. Funct. Foods 2017, 37, 513–522. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, P.; Kuang, Y.; Hao, J.; Huang, T.; Liu, E. Flavonoids from sea buckthorn: A review on phytochemistry, pharmacokinetics and role in metabolic diseases. J. Food Biochem. 2021, 45. [Google Scholar] [CrossRef]
- Chen, C. Resources and Quality Evaluation of genus Hippophae on Qinghai-Tibet Plateau. Ph.D. Thesis, Sichuan University, Cheng Du, China, 2007. [Google Scholar]
- Ran, B.B.; Li, W.D. Research progress on chemical constituents and their differences between sea buckthorn berries and leaves. China J. Chin. Mater. Medica 2019, 44, 1767–1773. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Xiao, W.; Yong, Z.P.; Bai, N. High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries. J. Chromatogr. A 2007, 1154, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xu, X.M.; Chen, Y.; Yu, M.Y.; Wen, F.Y.; Zhang, H. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis). Food Chem. 2013, 141, 1573–1579. [Google Scholar] [CrossRef]
- Tian, Y.; Liimatainen, J.; Alanne, A.L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Lan, K.; Zhang, Y.; Yang, J.; Xu, L. Simple quality assessment approach for herbal extracts using high performance liquid chromatography-UV based metabolomics platform. J. Chromatogr. A 2010, 1217, 1414–1418. [Google Scholar] [CrossRef]
- Huang Quan, Z.Y. Breeding and characteristics of seabuckthorn varieties “Wuxufeng” and “Shenqiuhong” (Chinese). Hippophae 2004, 17, 7–9. [Google Scholar]
- Ma, X.; Moilanen, J.; Laaksonen, O.; Yang, W.; Tenhu, E.; Yang, B. Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophaë rhamnoides) leaves. Food Chem. 2019, 272, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Guan, Y.Y.; Zhang, Z.L.; Rahman, K.; Wang, S.J.; Zhou, S.; Luan, X.; Zhang, H. Isorhamnetin: A review of pharmacological effects. Biomed. Pharmacother. 2020, 128, 110301. [Google Scholar] [CrossRef]
- Teng, B.; Lu, Y.H.; Wang, Z.T.; Tao, X.Y.; Wei, D.Z. In vitro anti-tumor activity of isorhamnetin isolated from Hippophae rhamnoides L. against BEL-7402 cells. Pharmacol. Res. 2006, 54, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Park, J.Y.; Lee, S.; Kang, K.S. In vitro studies to assess the α-glucosidase inhibitory activity and insulin secretion effect of isorhamnetin 3-o-glucoside and quercetin 3-o-glucoside isolated from Salicornia herbacea. Processes 2021, 9, 483. [Google Scholar] [CrossRef]
- Zhang, T.; Bai, G.; Han, Y.; Xu, J.; Gong, S.; Li, Y.; Zhang, H.; Liu, C. The method of quality marker research and quality evaluation of traditional Chinese medicine based on drug properties and effect characteristics. Phytomedicine 2018, 44, 204–211. [Google Scholar] [CrossRef]
- Guo, R.; Guo, X.; Li, T.; Fu, X.; Liu, R.H. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chem. 2017, 221, 997–1003. [Google Scholar] [CrossRef] [PubMed]
Varieties | TPC (mg GAE·g−1) | TFC (mg RE·g−1) | ||||||
---|---|---|---|---|---|---|---|---|
L | H | S | D | L | H | S | D | |
W1 | 33.51 ± 0.51 a | 14.23 ± 0.13 b | 11.28 ± 0.23 c | 14.67 ± 0.11 b | 8.96 ± 0.45 a | 5.36 ± 0.08 c | 5.84 ± 0.08 c | 6.65 ± 0.23 b |
W2 | 32.20 ± 0.36 a | 13.12 ± 0.22 c | 15.57 ± 0.07 b | 15.26 ± 0.25 b | 3.52 ± 0.19 b | 4.36 ± 0.13 a | 3.50 ± 0.04 b | 3.54 ± 0.08 b |
ZYH | 15.95 ± 0.59 a | 7.49 ± 0.23 b | 7.18 ± 0.12 b | 7.34 ± 0.24 b | 2.86 ± 0.05 a | 1.72 ± 0.01 d | 2.45 ± 0.01 b | 2.08 ± 0.02 c |
SQH | 11.80 ± 0.29 a | 7.53 ± 0.04 b | 5.32 ± 0.13 c | 5.40 ± 0.11 c | 2.59 ± 0.08 a | 2.35 ± 0.12 b | 1.91 ± 0.06 c | 1.72 ± 0.03 c |
SG | 11.83 ± 0.28 a | 7.57 ± 0.19 b | 7.21 ± 0.11 bc | 7.02 ± 0.12 c | 1.98 ± 0.09 a | 1.95 ± 0.04 a | 2.02 ± 0.03 a | 2.09 ± 0.03 a |
C | 8.48 ± 0.22 | 1.81 ± 0.03 |
No. a | No. b | Rt (min) | λmax (nm) | m/z | Adducts | Formula | MS/MS Fragment Ions (m/z) | Tentative Identification cd | References |
---|---|---|---|---|---|---|---|---|---|
1 | - | 1.23 | 203, 275 | 169.0135 | M-H | C7H6O5 | 125.02 | Gallic acid * | - |
2 | - | 2.11 | 208, 270 | 153.0180 | M-H | C7H6O4 | 152.01, 137.02, 121.02 | Protocatechuic acid * | - |
3 | - | 2.18 | 208, 276 | 335.0755 | M-H2O-H | C16H18O9 | 305.06, 201.03, 191.05, 125.02 | Neochlorogenic acid * | - |
4 | - | 2.93 | 206, 270 | 305.0643 | M-H | C15H14O7 | 179.03, 125.02 | Epigallocatechin * | - |
5 | - | 3.63 | 209, 275 | 289.0709 | M-H | C15H14O6 | 245.08, 205.05, 125.02 | Catechin * | - |
6 | 4 | 4.13 | 230, 276 | 163.0390 | M-H | C9H8O3 | 120.05, 119.04, 117.03 | Hydroxycinnamic acid | - |
7 | 5 | 4.34 | 265, 365 | 625.1393 | M-H | C27H30O17 | 463.08, 301.03 | Quercetin-O-dihexoside | [32] |
8 | 9 | 5.56 | 253, 354 | 771.1980 | M-H | C33H40O21 | 625.14, 609.14, 446.08, 305.06 | Quercetin-3-O-sophoroside-7-O-rhamnoside | [6,28] |
9 | 10 | 5.78 | 233, 276 | 289.0710 | M-H | C15H14O6 | 245.08, 203.07, 125.02, 109.02 | Epicatechin | [32] |
10 | 11 | 6.21 | 266, 348 | 755.2031 | M-H | C33H40O20 | 609.1470 | Quercetin-3-O-rhamnosyl-glucoside-7-O-rhamnoside | [28,33] |
11 | - | 6.54 | 265, 348 | 639.1567 | M-H | C28H32O17 | 609.14, 477.10, 315.05 | Isorhamnetin-3,7-O-dihexoside | [6,28] |
12 | 12 | 6.55 | 265, 348 | 755.2054 | M-H | C33H40O20 | 609.14, 430.09, 257.04 | Kaempferol-3-O-sophoroside-7-O-rhamnoside | [34,35] |
13 | 13 | 6.81 | 252, 349 | 785.2142 | M-H | C34H42O21 | 623.16, 477.10, 315.05 | Isorhamnetin-3-O-rutinoside-7-O-glucoside | [28] |
14 | - | 6.82 | 252, 349 | 623.1612 | M-H | C28H32O16 | 477.10, 357.06, 315.05 | Isorhamnetin-3-O-glucoside-7-O-rhamnoside | [15] |
15 | 16 | 7.43 | 253, 353 | 785.2145 | M-H | C34H42O21 | 639.15, 315.05 | Isorhamnetin-3-O-sophroside-7-O-rhamnoside | [6,28,36] |
16 | - | 8.53 | 255, 353 | 609.1450 | M-H | C27H30O16 | 463.08, 300.02, 299.01 | Quercetin-3-O-hexoside-7-O-rhamnoside | [6,37] |
17 | 21 | 8.58 | 254, 348 | 753.1872 | M-H2O-H | C33H40O21 | 591.13, 489.10 | Isorhamnetin 3-O-rutinoside-7-O-rhamnoside | [38] |
18 | 25 | 9.52 | 260, 348 | 609.1446 | M-H | C27H30O16 | 300.02, 271.02, | Quercetin-3-O-rhamnosyl-glucoside | [28] |
19 | 28 | 10.42 | 265,348 | 739.2073 | M-H | C33H40O19 | 576.15, 284.03 | Kaempferol-glucoside-dirhamnoside | [37,39] |
20 | - | 10.71 | 263, 348 | 593.1499 | M-H | C27H30O15 | 447.09, 285.04 | Kaempferol-3-O-hexoside-7-O-rhamnoside | [6] |
21 | - | 10.75 | 246, 342 | 917.2352 | M-H | C42H46O23 | 771.18, 623.16, 201.04 | Quercetin-3-coumaroyl-diglucoside-7-O-rhamnoside | [34] |
22 | 32 | 10.98 | 254, 354 | 609.1456 | M-H | C27H30O16 | 300.03, 271.02 | Rutin * | - |
23 | 34 | 11.58 | 254, 348 | 463.0878 | M-H | C21H20O12 | 300.03, 271.02, 255.03 | Isoquercitrin * | - |
24 | 35 | 11.78 | 254, 349 | 623.1616 | M-H | C28H32O16 | 477.10, 461.11, 315.05 | Isorhamnetin-3-O-(2-rhamnosyl)hexoside | [6] |
25 | - | 11.82 | 251, 349 | 477.1022 | M+FA-H | C21H20O10 | 461.11, 285.04 | Kaempferol-7-O-rhamnoside | [40] |
26 | 36 | 12.18 | 250, 349 | 639.1544 | M+FA-H | C27H30O15 | 330.04 | Kaempferol-3-glucoside-rhamnoside | [28] |
27 | - | 12.49 | 246, 339 | 961.2596 | M-H | C44H50O24 | 837.19, 815.20, 431.10, 284.03 | Kaempferol-3-O-(6-O-sinapoyl)glucose-glucoside-7-O-rhamnoside | [41] |
28 | 37 | 12.94 | 246, 341 | 991.2716 | M-H | C45H52O25 | 845.21, 639.16, 460.10 | Isorhamnetin-3-O-(6-O-sinapoyl)glucose-glucoside -7-O-rhamnoside | [28,41] |
29 | 38 | 13.06 | 253, 349 | 623.1604 | M-H | C28H32O16 | 314.04 | Isorhamnetin-3-O-neohesperidoside * | - |
30 | 41 | 13.61 | 247, 336 | 931.2506 | M-H | C43H48O23 | 785.20, 639.16, 460.10, 314.04 | Isorhamnetin-3-coumaroyl-diglucoside-7-rhamnoside | [34] |
31 | 43 | 14.93 | 265, 348 | 593.1490 | M-H | C27H30O15 | 285.04, 255.03 | Kaempferol-3-O-rutinoside * | - |
32 | 44 | 15.22 | 252, 347 | 623.1604 | M-H | C28H32O16 | 314.04, 299.02 | Isorhamnetin-3-O-(6-rhamnosyl)hexoside | [6] |
33 | 45 | 15.42 | 265, 348 | 447.0920 | M-H | C21H20O11 | 284.03, 255.03 | Kaempferol 3-O-glucoside * | - |
34 | 46 | 16.06 | 254, 354 | 623.1628 | M-H | C28H32O16 | 357.06, 315.05, 314.04 | Narcissin * | - |
35 | - | 16.07 | 254, 354 | 639.1557 | M-H | C28H32O17 | 315.05, 314.04 | Isorhamnetin-O-dihexoside | [6,28] |
36 | 47 | 16.67 | 253, 349 | 477.1049 | M-H | C22H22O12 | 314.04 | Isorhamnetin-3-O-glucoside * | - |
37 | - | 16.72 | 251, 348 | 653.1713 | M-H | C29H34O17 | 447.09, 345.06 | Syringetin 3-O-rutinoside | [37] |
38 | 48 | 17.05 | 250, 348 | 507.1142 | M-H | C23H24O13 | 344.0 | Syringetin-3-O-hexoside | [37,42] |
39 | 61 | 24.82 | 254, 363 | 301.0369 | M-H | C15H10O7 | - | Quercetin * | - |
40 | 70 | 28.63 | 265, 367 | 285.0385 | M-H | C15H10O6 | - | Kaempferol * | - |
41 | 73 | 29.25 | 253, 367 | 315.0484 | M-H | C16H12O7 | 271.01 | Isorhamnetin * | - |
DPPH (mmol TE·g−1) | ABTS (mmol TE·g−1) | FRAP (mmol TE·g−1) | |
---|---|---|---|
W1 | |||
L | 71.80 ± 2.94 a | 97.95 ± 1.10 a | 67.83 ± 0.14 a |
H | 17.05 ± 0.20 c | 19.80 ± 0.62 c | 23.34 ± 1.38 bc |
S | 12.09 ± 0.74 d | 21.95 ± 1.36 c | 19.89 ± 1.18 c |
D | 22.35 ± 1.36 b | 26.99 ± 1.24 b | 27.07 ± 2.33 b |
W2 | |||
L | 86.30 ± 1.71 a | 89.75 ± 2.14 a | 61.06 ± 0.70 a |
H | 17.24 ± 0.63 c | 21.70 ± 0.62 c | 24.85 ± 1.88 b |
S | 27.18 ± 1.36 b | 26.90 ± 0.24 b | 20.24 ± 0.67 c |
D | 29.27 ± 0.74 b | 28.30 ± 1.78 b | 25.86 ± 2.04 b |
ZYH | |||
L | 32.11 ± 1.06 a | 34.60 ± 1.12 a | 29.14 ± 1.31 a |
H | 4.85 ± 0.09 d | 8.81 ± 0.22 c | 7.88 ± 0.15 c |
S | 6.92 ± 0.12 c | 8.96 ± 0.52 c | 8.07 ± 0.46 c |
D | 8.68 ± 0.18 b | 11.56 ± 0.60 b | 11.71 ± 0.73 b |
SQH | |||
L | 14.58 ± 0.25 a | 18.59 ± 0.61 a | 18.52 ± 1.06 a |
H | 4.36 ± 0.07 b | 9.14 ± 0.87 b | 8.16 ± 0.12 bc |
S | 3.68 ± 0.25 c | 5.60 ± 0.14 c | 6.30 ± 0.88 c |
D | 3.64 ± 0.22 c | 6.22 ± 0.28 c | 9.75 ± 0.17 b |
SG | |||
L | 13.12 ± 0.69 a | 17.70 ± 0.92 a | 16.54 ± 1.24 a |
H | 4.62 ± 0.04 b | 6.37 ± 0.20 b | 7.49 ± 0.44 b |
S | 3.33 ± 0.19 c | 5.98 ± 0.51 b | 7.67 ± 0.77 b |
D | 4.35 ± 0.07 b | 5.79 ± 0.36 b | 8.36 ± 0.34 b |
C | 4.52 ± 0.17 |
DPPH | ABTS | FRAP | |
---|---|---|---|
DPPH | - | 0.982 ** | 0.970 ** |
ABTS | 0.982 ** | - | 0.987 ** |
FRAP | 0.970 ** | 0.987 ** | - |
TPC | 0.980 ** | 0.986 ** | 0.988 ** |
TFC | 0.577 ** | 0.664 ** | 0.727 ** |
GA | 0.740 ** | 0.713 ** | 0.734 ** |
PA | −0.496 * | −0.490 * | −0.548 |
RU | 0.352 | 0.391 | 0.405 |
Q3G | 0.057 | 0.078 | 0.064 |
I3N | 0.444 * | 0.546 * | 0.547 * |
K3R | 0.397 | 0.497 * | 0.541 * |
K3G | 0.253 | 0.352 | 0.415 |
I3R | −0.170 | −0.180 | −0.212 |
I3G | −0.215 | −0.216 | −0.247 |
QE | −0.328 | −0.325 | −0.376 |
KA | −0.483 * | −0.457 * | −0.495 * |
IS | −0.460 * | −0.452 * | −0.502 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, P.; Yang, K.; He, Q.; Wang, Y.; Sun, Y.; He, C.; Xiao, P. Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules 2021, 26, 7189. https://doi.org/10.3390/molecules26237189
Li Y, Li P, Yang K, He Q, Wang Y, Sun Y, He C, Xiao P. Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules. 2021; 26(23):7189. https://doi.org/10.3390/molecules26237189
Chicago/Turabian StyleLi, Yue, Pei Li, Kailin Yang, Qian He, Yue Wang, Yuhua Sun, Chunnian He, and Peigen Xiao. 2021. "Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries from Different Varieties in China" Molecules 26, no. 23: 7189. https://doi.org/10.3390/molecules26237189
APA StyleLi, Y., Li, P., Yang, K., He, Q., Wang, Y., Sun, Y., He, C., & Xiao, P. (2021). Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules, 26(23), 7189. https://doi.org/10.3390/molecules26237189