Synthesis of a Hexameric Magnesium 4-pyridyl Complex with Cyclohexane-like Ring Structure via Reductive C-N Activation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Molecular Structures
3. Conclusions
4. Materials and Methods
4.1. Experimental Details
4.2. Synthesis of [{(Dipnacnac)Mg(4-C5H4N)}6] 9a and Formation of [(Dipnacnac)Mg(DMAP)(NMe2)] 10
4.3. Synthesis of [{(Depnacnac)Mg(4-C5H4N)}6] 9b and Hydrolysis/Deuteronation
4.4. X-ray Crystallographic Details
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cook, T.R.; Stang, P.J. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chem. Rev. 2015, 115, 7001–7045. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, R.; Mukherjee, P.S.; Stang, P.J. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chem. Rev. 2011, 111, 6810–6918. [Google Scholar] [CrossRef] [Green Version]
- Harder, S. Chapter 1: Introduction to Early Main Group Organometallic Chemistry and Catalysis, in Early Main Group Metal Catalysis; Harder, S., Ed.; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2020; pp. 1–29. [Google Scholar] [CrossRef]
- Langer, J.; Maitland, B.; Grams, S.; Ciucka, A.; Pahl, J.; Elsen, H.; Harder, S. Self-Assembly of Magnesium Hydride Clusters Driven by Chameleon-Type Ligands. Angew. Chem. Int. Ed. 2017, 56, 5021–5025. [Google Scholar] [CrossRef] [PubMed]
- Fohlmeister, L.; Stasch, A. Ring-Shaped Phosphinoamido-Magnesium-Hydride Complexes: Syntheses, Structures, Reactivity, and Catalysis. Chem. Eur. J. 2016, 22, 10235–10246. [Google Scholar] [CrossRef] [Green Version]
- Olmstead, M.M.; Grigsby, W.J.; Chacon, D.R.; Hascall, T.; Power, P.P. Reactions between primary amines and magnesium or zinc dialkyls: Intermediates in metal imide formation. Inorg. Chim. Acta 1996, 251, 273–284. [Google Scholar] [CrossRef]
- Bailey, P.J.; Liddle, S.T.; Morrison, C.A.; Parsons, S. The First Alkaline Earth Metal Complex Containing a μ-η1:η1 Allyl Ligand: Structure of [{HC[C(tBu)NC6H3(CHMe2)2]2Mg(C3H5)}6]. Angew. Chem. Int. Ed. 2001, 40, 4463–4466. [Google Scholar] [CrossRef]
- Chen, W.; Liu, L.; Zhao, Y.; Xue, Y.; Xu, W.; Li, N.; Wu, B.; Yang, X.-J. Organometallo-macrocycle assembled through dialumane-mediated C–H activation of pyridines. Chem. Commun. 2021, 57, 6268–6271. [Google Scholar] [CrossRef] [PubMed]
- Stasch, A. Chapter 3: Recent Advances in the Stoichiometric Chemistry of Magnesium Complexes, in Catalysis with Earth-abundant Elements; Schneider, U., Thomas, S., Eds.; The Royal Society of Chemistry: London, UK, 2021; pp. 55–80. [Google Scholar] [CrossRef]
- Rösch, B.; Harder, S. New horizons in low oxidation state group 2 metal chemistry. Chem. Commun. 2021, 57, 9354–9365. [Google Scholar] [CrossRef]
- Jones, C. Dimeric magnesium(I) β-diketiminates: A new class of quasi-universal reducing agent. Nat. Rev. Chem. 2017, 1, 0059. [Google Scholar] [CrossRef]
- Stasch, A.; Jones, C. Stable dimeric magnesium(I) compounds: From chemical landmarks to versatile reagents. Dalton Trans. 2011, 40, 5659–5672. [Google Scholar] [CrossRef]
- Green, S.P.; Jones, C.; Stasch, A. Stable Adducts of a Dimeric Magnesium(I) Compound. Angew. Chem. Int. Ed. 2008, 47, 9079–9083. [Google Scholar] [CrossRef]
- Bonyhady, S.J.; Jones, C.; Nembenna, S.; Stasch, A.; Edwards, A.J.; McIntyre, G.J. β-Diketiminate-Stabilized Magnesium(I) Dimers and Magnesium(II) Hydride Complexes: Synthesis, Characterization, Adduct Formation, and Reactivity Studies. Chem. Eur. J. 2010, 16, 938–955. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, K.; Douair, I.; Paparo, A.; Maron, L.; Jones, C. Reductive Trimerization of CO to the Deltate Dianion Using Activated Magnesium(I) Compounds. J. Am. Chem. Soc. 2019, 141, 8764–8768. [Google Scholar] [CrossRef]
- Yuvaraj, K.; Douair, I.; Jones, D.D.L.; Maron, L.; Jones, C. Sterically controlled reductive oligomerisations of CO by activated magnesium(I) compounds: Deltate vs. ethenediolate formation. Chem. Sci. 2020, 11, 3516–3522. [Google Scholar] [CrossRef] [Green Version]
- Green, S.P.; Jones, C.; Stasch, A. Stable Magnesium(I) Compounds with Mg-Mg Bonds. Science 2007, 318, 1754–1758. [Google Scholar] [CrossRef]
- Lalrempuia, R.; Kefalidis, C.E.; Bonyhady, S.J.; Schwarze, B.; Maron, L.; Stasch, A.; Jones, C. Activation of CO by Hydrogenated Magnesium(I) Dimers: Sterically, Controlled Formation of Ethenediolate and Cyclopropanetriolate Complexes. J. Am. Chem. Soc. 2015, 137, 8944–8947. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, K.C.; Lewis, R.A.; DeRosha, D.E.; Mercado, B.Q.; Holland, P.L. C-H and C-N Activation at Redox-Active Pyridine Complexes of Iron. Angew. Chem. Int. Ed. 2017, 56, 1069–1072. [Google Scholar] [CrossRef] [Green Version]
- Gentner, T.X.; Rösch, B.; Ballmann, G.; Langer, J.; Elsen, H.; Harder, S. Low Valent Magnesium Chemistry with a Super Bulky β-Diketiminate Ligand, Low Valent Magnesium Chemistry with a Super Bulky β-Diketiminate Ligand. Angew. Chem. Int. Ed. 2019, 58, 607–611. [Google Scholar] [CrossRef]
- Jones, D.D.L.; Douair, I.; Maron, L.; Jones, C. Photochemically Activated Dimagnesium(I) Compounds: Reagents for the Reduction and Selective C-H Bond Activation of Inert Arenes. Angew. Chem. Int. Ed. 2021, 60, 7087–7092. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.; McDyre, L.; Murphy, D.M.; Stasch, A. Magnesium(I) reduction of benzophenone and anthracene: First structural characterisation of a magnesium ketyl. Chem. Commun. 2010, 46, 1511–1513. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, T.; Rat, C.I.; Maxim, C.; Shova, S.; Tudor, V.; Silvestru, C.; Andruh, M. Bis(4-pyridyl)mercury–a new linear tecton in crystal engineering: Coordination polymers and co-crystallization processes. Cryst. Eng. Comm. 2015, 17, 5474–5487. [Google Scholar] [CrossRef]
- Mocanu, T.; Kiss, L.; Sava, A.; Shova, S.; Silvestru, C.; Andruh, M. Coordination polymers and supramolecular solid-state architectures constructed from an organometallic tecton, bis(4-pyridyl)mercury. Polyhedron 2019, 166, 7–16. [Google Scholar] [CrossRef]
- Hill, M.S.; MacDougall, D.J.; Mahon, M.F. Magnesium hydride-promoted dearomatisation of pyridine. Dalton Trans. 2010, 39, 11129–11131. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.S.; Kociok-Köhn, G.; MacDougall, D.J.; Mahon, M.F.; Weetman, C. Magnesium hydrides and the dearomatisation of pyridine and quinoline derivatives. Dalton Trans. 2011, 40, 12500–12509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasanthiran, V.; Chisholm, M.H.; Choojun, K.; Durr, C.B.; Wambua, P.M. BDI*MgX(L) where X = nBu and OtBu and L = THF, py and DMAP. The rates of kinetic exchange of L where BDI* = CH{C(tBu)N-2,6-iPr2C6H3}2. Polyhedron 2016, 103, 235–240. [Google Scholar] [CrossRef] [Green Version]
- CrystalClear-SM Expert; v2.1; Rigaku Americas: The Woodlands, TX, USA,; Rigaku Corporation: Tokyo, Japan, 2015.
- CrysAlisPro; v1.171.38.46; Rigaku Oxford Diffraction; Rigaku Corporation: Oxford, UK, 2015.
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18. [Google Scholar] [CrossRef] [Green Version]
- CrystalStructure; v4.3.0; Rigaku Americas: The Woodlands, TX, USA; Rigaku Corporation: Tokyo, Japan, 2018.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawrence, S.R.; de Vere-Tucker, M.; Slawin, A.M.Z.; Stasch, A. Synthesis of a Hexameric Magnesium 4-pyridyl Complex with Cyclohexane-like Ring Structure via Reductive C-N Activation. Molecules 2021, 26, 7214. https://doi.org/10.3390/molecules26237214
Lawrence SR, de Vere-Tucker M, Slawin AMZ, Stasch A. Synthesis of a Hexameric Magnesium 4-pyridyl Complex with Cyclohexane-like Ring Structure via Reductive C-N Activation. Molecules. 2021; 26(23):7214. https://doi.org/10.3390/molecules26237214
Chicago/Turabian StyleLawrence, Samuel R., Matthew de Vere-Tucker, Alexandra M. Z. Slawin, and Andreas Stasch. 2021. "Synthesis of a Hexameric Magnesium 4-pyridyl Complex with Cyclohexane-like Ring Structure via Reductive C-N Activation" Molecules 26, no. 23: 7214. https://doi.org/10.3390/molecules26237214
APA StyleLawrence, S. R., de Vere-Tucker, M., Slawin, A. M. Z., & Stasch, A. (2021). Synthesis of a Hexameric Magnesium 4-pyridyl Complex with Cyclohexane-like Ring Structure via Reductive C-N Activation. Molecules, 26(23), 7214. https://doi.org/10.3390/molecules26237214