The Mineral Composition of Date Palm Fruits (Phoenix dactylifera L.) under Low to High Salinity Irrigation
Abstract
:1. Introduction
2. Results
2.1. General Mineral Profile
2.2. Effect of Salinity Stress on the Mineral Composition and Percent Daily Values (%DV)
2.3. Grouping of Date Palm Varieties According to Their Fruit Quality under the Different Salinity Levels
3. Discussion
4. Materials and Methods
4.1. Experimental Setting
4.2. Salinity Treatments
4.3. Mineral Analysis
4.4. Calculation of Percent Daily Values (%DV)
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- FAO. Proposal from the United Arab Emirates For the Designation under the GIAHS Program of Al Ain and Liwa Historical Date Palm Oases. January 2015, pp. 1–41. Available online: http://www.fao.org/3/a-bp822e.pdf (accessed on 20 November 2021).
- Dhehibi, B.; Ben Salah, M.; Frija, A. Date Palm Value Chain Analysis and Marketing Opportunities for the Gulf Cooperation Council (GCC) Countries. In Agricultural Economic-Current Issues. 2019. Available online: https://www.academia.edu/50295376/Date_Palm_Value_Chain_Analysis_and_Marketing_Opportunities_for_the_Gulf_Cooperation_Council_GCC_Countries (accessed on 4 October 2021).
- Ismail, B.; Henry, J.; Haffar, I.; Baalbaki, R. Date consumption and dietary significance in the United Arab Emirates. J. Sci. Food Agric. 2006, 86, 1196–1201. [Google Scholar] [CrossRef]
- Qazaq, H.S.; Al Adeeb, N.Z. The consumption pattern of dates and its related food habits among UAE citizens in Al-Ain City, UAE: A pilot study. Acta Hortic. 2010, 882, 1083–1089. [Google Scholar] [CrossRef]
- Alhammadi, M.S.; Kurup, S.S. Impact of Salinity Stress on Date Palm (Phoenix dactylifera L)–A Review. In Crop Production Technologies; Sharma, P., Ed.; InTech: Rijeka, Croatia, 2012; pp. 169–178. ISBN 978-953-307-787-1. Available online: http://www.intechopen.com/books/crop-production-technologies/impact-of-salinity-stress-on-date-palm-phoenix-dactylifera-l-a-review (accessed on 20 November 2021).
- Manickavasagan, A.; Essa, M.M.; Sukumar, E. (Eds.) Dates: Production, Processing, Food, and Medicinal Values (Medicinal and Aromatic Plants–Industrial Profiles; CRC Press: Boca Raton, FL, USA, 2012; Volume 50, p. 415. ISBN 978-1-4398-4945-3. [Google Scholar]
- Al-Muaini, A.; Green, S.; Dakheel, A.; Abdullah, A.; Abou Dahr, W.; Dixon, S.; Kemp, P.; Clothier, B. Irrigation management with saline groundwater of a date palm cultivar in the hyper-arid United Arab Emirates. Agric. Water Manag. 2019, 211, 123–131. [Google Scholar] [CrossRef]
- Razzaq, A.; Saleem, F.; Wani, S.; Abdelmohsen, S.; Alyousef, H.; Abdelbacki, A.; Alkallas, F.; Tamam, N.; Elansary, H. De-novo Domestication for Improving Salt Tolerance in Crops. Front. Plant Sci. 2021, 12, 681367. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. [Google Scholar] [CrossRef]
- Eisa, S.; Hussin, S.; Geissler, N.; Koyro, H.W. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Aust. J. Crop Sci. 2012, 6, 357–368. [Google Scholar]
- Karim, F.M.; Dakheel, A.G. Salt Tolerant Plants of the United Arab Emirates; International Center for Biosaline Agriculture: Dubai, United Arab Emirates, 2006; p. 184. [Google Scholar]
- Sahari, M.; Barzegar, M.; Radfar, R. Effect of Varieties on the Composition of Dates (Phoenix dactylifera L.)—Note. Food Sci. Technol. Int. 2007, 13, 269–275. [Google Scholar] [CrossRef]
- Assaha, D.; Mekawy, A.; Ueda, A.; Saneoka, H. Salinity-induced expression of HKT may be crucial for Na+ exclusion in the leaf blade of huckleberry (Solanum scabrum Mill.), but not of eggplant (Solanum melongena L.). Biochem. Biophys. Res. Commun. 2015, 460, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Anschütz, U.; Becker, D.; Shabala, S. Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J. Plant Physiol. 2014, 171, 670–687. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Kharusi, L.; Assaha, D.; Al-Yahyai, R.; Yaish, M. Screening of Date Palm (Phoenix dactylifera L.) Cultivars for Salinity Tolerance. Forests 2017, 8, 136. [Google Scholar] [CrossRef]
- Tripler, E.; Shani, U.; Mualem, Y.; Ben-Gal, A. Long-term growth, water consumption and yield of date palm as a function of salinity. Agric. Water Manag. 2011, 99, 128–134. [Google Scholar] [CrossRef]
- El Hadrami, A.; Al-Khayri, J.M. Socioeconomic and traditional importance of date palm. Emir. J. Food Agric. 2012, 24, 371–385. [Google Scholar]
- Al-Farsi, M.; Lee, C. Nutritional and Functional Properties of Dates: A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 643–655. [Google Scholar] [CrossRef]
- Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Deroanne, C.; Drira, N.; Attia, H. Date flesh: Chemical composition and characteristics of the dietary fibre. Food Chem. 2008, 111, 676–682. [Google Scholar] [CrossRef]
- Habib, H.; Ibrahim, W. Nutritional quality evaluation of eighteen date pit varieties. Int. J. Food Sci. Nutr. 2009, 60 (Suppl. S1), 99–111. [Google Scholar] [CrossRef] [PubMed]
- Al-Sekhan, M.S. Bunch thinning improves yield and fruit quality of omraheem date palm cultivar (Phoenix dactylifera L.). Sci. J. King Faisal Univ. 2009, 10, 1430. [Google Scholar]
- Ogungbenle, H. Chemical and Fatty Acid Compositions of Date Palm Fruit (Phoenix dactylifera L) Flour. Bangladesh J. Sci. Ind. Res. 2011, 46, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Hammami, Z.; Gauffreteau, A.; BelhajFraj, M.; Sahli, A.; Jeuffroy, M.H.; Rezgui, S.; Bergaoui, K.; McDonnell, R.; Trifa, Y. Predicting yield reduction in improved barley (Hordeum vulgare L.) varieties and landraces under salinity using selected tolerance traits. Field Crop. Res. 2017, 211, 10–18. [Google Scholar] [CrossRef]
- Benmahammed, A.; Nouar, H.; Haddad, L.; Laala, Z.; Oulmi, A.; Bouzerzour, H. Analyse de la stabilité des performances de rendement du blé dur (Triticum durum Desf.) sous conditions semi-arides. Biotechnol. Agron. Soc. Environ. 2010, 14, 177–186. [Google Scholar]
- Reynolds, M.P.; Mujeeb-Kazi, A.; Sawkins, M. Prospects for utilizing plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity prone environments. Ann. Appl. Biol. 2005, 146, 239–259. [Google Scholar] [CrossRef]
- Annichiarico, P.; Bellah, F.; Chiari, T. Repeatable genotype×locations interaction and its exploitation by conventional and GIS based cultivar recommendation for durum wheat in Algeria. Eur. J. Agric. 2006, 24, 70–81. [Google Scholar] [CrossRef]
- Meziani, N.; Bouzerzour, H.; Benmahammed, A.; Menad, A.; Benbelkacem, A. Performance and adaptation of Barley genotypes (Hordeum vulgare L.) to diverse locations. Adv. Environ. Biol. 2011, 5, 1465–1472. [Google Scholar] [CrossRef]
- Shabala, S.; Pottosin, I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant. 2014, 151, 257–279. [Google Scholar] [CrossRef]
- Maathuis, F.; Ahmad, I.; Patishtan, J. Regulation of Na+ fluxes in plants. Front. Plant Sci. 2014, 5, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demidchik, V.; Straltsova, D.; Medvedev, S.; Pozhvanov, G.; Sokolik, A.; Yurin, V. Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 2014, 65, 1259–1270. [Google Scholar] [CrossRef]
- Wu, H.; Shabala, L.; Liu, X.; Azzarello, E.; Zhou, M.; Pandolfi, C.; Chen, Z.; Bose, J.; Mancuso, S.; Shabala, S. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots. Front. Plant Sci. 2015, 6, 71. [Google Scholar] [CrossRef]
- Debaeke, P.; Casadebaig, P.; Haquin, B.; Mestries, E.; Palleau, J.; Salvi, F. Simulation de la réponse variétale du tournesol à l’environnement à l’aide du modèle SUNFLO. Oléagineux Corps Gras Lipides 2010, 17, 143–151. [Google Scholar] [CrossRef]
- National Institute of Health (NIH). 2021. Available online: https://ods.od.nih.gov/HealthInformation/Dietary_Reference_Intakes.aspx (accessed on 29 September 2021).
- U.S. Food and Drug Administration, Food Labeling & Nutrition. 2021. Available online: https://www.fda.gov/food/food-labeling-nutrition (accessed on 4 October 2021).
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
Date Type (Origin) | Boron mg/kg | Calcium mg/kg | Copper mg/kg | Iron mg/kg | Potassium mg/kg | Magnesium mg/kg | Manganese mg/kg | Sodium mg/kg | Phosphorus mg/kg | Zinc mg/kg |
---|---|---|---|---|---|---|---|---|---|---|
Ajwat AlMadinah (KSA) | 12.08 ± 2.19 | 766.00 ± 164.27 | 2.66 ± 1.47 | 10.08 ± 3.23 | 8293.69 ± 1072.52 | 674.63 ± 70.31 | 3.67 ± 1.08 | 330.91 ± 115.92 | 836.65 ± 107.07 | 5.02 ± 0.37 |
Naghal (UAE) | 12.84 ± 3.22 | 745.57 ± 162.43 | 3.28 ± 1.17 | 10.17 ± 2.61 | 8049.67 ± 947.30 | 709.16 ± 124.26 | 5.07 ± 1.27 | 429.98 ± 169.45 | 784.51 ± 131.33 | 5.14 ± 0.48 |
Khnizi (UAE) | 10.22 ± 3.21 | 571.95 ± 140.64 | 2.04 ± 1.44 | 9.60 ± 2.65 | 7470.83 ± 689.52 | 547.40 ± 93.34 | 3.50 ± 1.39 | 296.17 ± 122.06 | 706.56 ± 125.49 | 4.83 ± 0.39 |
Barhi (Iraq) | 11.50 ± 3.02 | 692.34 ± 139.36 | 2.85 ± 1.23 | 9.25 ± 1.40 | 7545.97 ± 966.20 | 686.89 ± 110.67 | 4.31 ± 1.35 | 407.81 ± 73.49 | 765.41 ± 110.13 | 4.98 ± 0.42 |
Makhtoumi (KSA) | 11.71 ± 3.13 | 675.06 ± 90.27 | 2.71 ± 1.31 | 8.31 ± 2.96 | 7052.90 ± 885.27 | 617.55 ± 109.06 | 3.78 ± 1.59 | 352.56 ± 118.44 | 725.36 ± 127.75 | 4.90 ± 0.30 |
Farad (UAE) | 11.23 ± 5.62 | 736.45 ± 218.20 | 1.07 ± 0.94 | 7.50 ± 6.08 | 7426.46 ± 1241.74 | 593.33 ± 179.85 | 4.11 ± 1.78 | 340.04 ± 107.18 | 611.60 ± 96.66 | 5.07 ± 0.38 |
Khisab (UAE) | 11.48 ± 2.09 | 704.55 ± 114.16 | 2.10 ± 1.15 | 6.17 ± 3.11 | 7106.56 ± 859.63 | 632.70 ± 146.38 | 3.69 ± 1.23 | 427.47 ± 91.03 | 694.27 ± 146.64 | 4.85 ± 0.45 |
Nabtat-Saif (KSA) | 9.07 ± 2.23 | 734.64 ± 137.47 | 1.88 ± 0.34 | 4.92 ± 2.43 | 7131.74 ± 1011.44 | 717.26 ± 84.26 | 2.88 ± 1.12 | 362.83 ± 107.62 | 852.03 ± 84.75 | 5.03 ± 0.41 |
Shagri (KSA) | 9.89 ± 4.12 | 662.20 ± 146.89 | 2.47 ± 1.10 | 7.08 ± 2.01 | 7756.75 ± 854.80 | 625.65 ± 62.47 | 3.50 ± 1.29 | 345.00 ± 92.18 | 712.42 ± 131.47 | 5.15 ± 0.37 |
Abu-Maan (KSA) | 6.32 ± 2.06 | 595.34 ± 114.75 | 1.24 ± 0.72 | 4.71 ± 2.89 | 6306.95 ± 1116.16 | 496.55 ± 65.09 | 2.39 ± 1.03 | 311.13 ± 82.50 | 744.15 ± 133.03 | 4.96 ± 0.34 |
Jabri (UAE) | 9.83 ± 2.28 | 679.48 ± 163.58 | 2.00 ± 1.00 | 7.97 ± 0.43 | 8187.88 ± 991.21 | 587.77 ± 66.91 | 3.34 ± 0.87 | 245.44 ± 42.56 | 801.63 ± 151.29 | 4.77 ± 0.31 |
Sukkari (KSA) | 10.88 ± 2.39 | 581.47 ± 130.79 | 3.06 ± 0.84 | 9.09 ± 2.99 | 7064.43 ± 1456.03 | 635.54 ± 104.72 | 4.54 ± 1.55 | 207.29 ± 57.08 | 847.53 ± 110.22 | 4.73 ± 0.25 |
Rothan (KSA) | 10.55 ± 2.62 | 620.15 ± 221.21 | 3.59 ± 0.93 | 7.14 ± 2.33 | 7591.55 ± 907.08 | 580.71 ± 82.31 | 3.71 ± 0.94 | 230.25 ± 122.83 | 803.12 ± 181.15 | 4.89 ± 0.32 |
p-Value | <0.0001 | 0.001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.001 | 0.05 |
Date Type | Salinity | B mg/kg | Ca mg/kg | Cu mg/kg | Fe mg/kg | K mg/kg | Mg mg/kg | Mn mg/kg | Na mg/kg | P mg/kg | Zn mg/kg |
---|---|---|---|---|---|---|---|---|---|---|---|
Ajwat AlMadinah | 1 | 11.1 | 835 | 3.5 | 11.7 | 8184 | 678 | 3.7 | 339 | 799 | 5.1 |
2 | 12.3 | 652 | 2.2 | 8.3 | 8518 | 653 | 3.1 | 234 | 835 | 5.1 | |
3 | 12.9 | 820 | 2.3 | 12.9 | 8179 | 693 | 4.2 | 381 | 870 | 4.9 | |
Naghal | 1 | 9.5 | 831 | 3.6 | 9.1 | 7959 | 726 | 4.7 | 419 | 874 | 5.2 |
2 | 13.8 | 693 | 3.5 | 11.0 | 7780 | 745 | 5.5 | 532 | 739 | 5.1 | |
3 | 14.4 | 728 | 2.9 | 9.8 | 8409 | 656 | 5.0 | 345 | 719 | 5.1 | |
Khnizi | 1 | 7.7 | 513 | 3.58 a,b | 10.1 | 7377 | 568 | 4.79 a,b | 301 | 723 | 4.7 |
2 | 10.7 | 543 | 1.30 | 9.1 | 7827 | 527 | 2.96 | 319 | 772 | 4.8 | |
3 | 11.8 | 655 | 0.93 | 9.6 | 7327 | 541 | 2.68 | 272 | 636 | 5.0 | |
Barhi | 1 | 12.7 | 712 | 3.78 | 9.04 | 6882 | 752 | 4.99 | 400 | 744 | 5.13 |
2 | 10.8 | 701 | 2.88 | 8.68 | 7753 | 661 | 4.33 | 459 | 806 | 5.09 | |
3 | 11.04 | 664 | 2.04 | 9.89 | 8003 | 648 | 3.73 | 372 | 746 | 4.71 | |
Makhtoumi | 1 | 13.6 | 707 | 4.2 a,b | 10.7 | 7732 | 685 | 4.75 | 442 | 759 | 4.85 |
2 | 11.6 | 712 c | 1.5c | 8.6 | 6806 | 549 | 2.93 | 320 | 705 | 4.96 | |
3 | 10.1 | 600 | 2.4 | 6.7 | 6662 | 630 | 3.79 | 317 | 714 | 4.88 | |
Farad | 1 | 5.9 b | 842 | 0.4 | 7.7 | 6696 | 495 | 3.1 a,b | 241 | 510 | 4.7 |
2 | 10.4 | 695 | 1.5 | 4.2 | 6489 | 680 | 1.8 | 337 | 758 | 5.4 | |
3 | 17 | 680 | 1.2 | 8.5 | 8226 | 630 | 5.6 | 407 | 597 | 5.2 | |
Khisab | 1 | 11.3 | 719 | 2.8 | 8.9 | 7869 | 675 | 4.3 | 501 | 866 a,b | 5.4 |
2 | 11.4 | 628 | 1.05 | 5.2 | 7057 | 692 | 3.3 | 424 | 653 | 4.7 | |
3 | 11.7 | 766 | n.d. | 4.5 | 6393 | 531 | 3.5 | 358 | 564 | 4.6 | |
Nabtat-Saif | 1 | 9.9 | 797 | 2.2 | 6.5 | 7981 a,b | 731 | 3.7 | 354 | 810 | 5.3 |
2 | 10.0 | 810 | 1.8 | 4.1 | 6106 c | 685 | 3.0 | 286 | 860 | 5.4 | |
3 | 7.3 | 597 | 1.7 | 4.2 | 7308 | 735 | 1.9 | 449 | 886 | 4.7 | |
Shagri | 1 | 8.8 | 673 | 2.1 | 6.8 | 7963 | 601 | 3.4 | 376 | 774 | 5.3 |
2 | 9.5 | 641 | 2.6 | 7.1 | 7435 | 652 | 3.3 | 341 | 675 | 4.9 | |
3 | 14.2 | 683 | 3.1 | 7.6 | 8095 | 614 | 4.3 | 265 | 697 | 5.2 | |
Abu-Maan | 1 | 6.3 | 666 | 1.55 | 3.8 | 6137 | 504 | 2.5 | 320 | 762 | 4.8 |
2 | 6.1 | 525 | 1.47 | 4.5 | 6792 | 476 | 2.2 | 297 | 715 | 5.1 | |
3 | 6.6 | 594 | 0.69 | 5.8 | 5992 | 509 | 2.4 | 316 | 755 | 5.0 | |
Jabri | 1 | 8.2 | 677 | 2.9 | 8.3 | 7397 | 554 | 3.5 | 232 | 920 | 4.9 |
2 | 11.4 | 653 | 1.8 | 8.0 | 8734 | 635 | 3.9 | 254 | 687 | 4.7 | |
3 | 8.8 | 699 | 1.2 | 7.4 | 8432 | 574 | 2.6 | 250 | 837 | 4.7 | |
Sukkari | 1 | 12.1 | 515 | 3.3 | 8.4 | 6636 | 639 | 3.8 | 233 | 828 | 4.8 |
2 | 10.4 | 549 | 3.2 | 8.6 | 7359 | 649 | 5.1 | 188 | 819 | 4.7 | |
3 | 10.2 | 679 | 2.7 | 10.2 | 7198 | 618 | 4.7 | 201 | 906 | 4.7 | |
Rothan | 1 | 9.3 | 686 | 3.2 | 5.9 | 7454 | 545 | 3.2 | 177 | 805 | 4.9 |
2 | 11.1 | 571 | 3.9 | 6.5 | 7245 | 586 | 4.3 | 263 | 820 | 4.8 | |
3 | 11.2 | 603 | 3.7 | 9.0 | 8075 | 610 | 3.6 | 251 | 784 | 4.9 |
Boron | Calcium | Copper | Iron | Potassium | Magnesium | Manganese | Sodium | Phosphorus | Zinc | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Per Serving/Day | ||||||||||||||||||||
Date Type | %DV | mg | %DV | mg | % DV | mg | % DV | mg | %DV | mg | %DV | mg | %DV | mg | %DV | mg | %DV | mg | %DV | mg |
Ajwat AlMadinah | 46.84 | 0.33 | 5.06 | 20.68 | 21.30 | 71.90 | 6.55 | 0.27 | 22.00 | 224.00 | 13.60 | 18.20 | 13.07 | 0.10 | 2.00 | 9.00 | 9.00 | 23.00 | 3.90 | 0.14 |
Naghal | 49.78 | 0.35 | 4.92 | 20.13 | 26.27 | 88.66 | 6.61 | 0.27 | 21.00 | 217.00 | 14.30 | 19.10 | 18.09 | 0.14 | 2.00 | 12.00 | 8.00 | 21.00 | 3.99 | 0.14 |
Khnizi | 39.61 | 0.28 | 3.77 | 15.44 | 16.34 * | 55.14 * | 6.24 | 0.26 | 20.00 | 202.00 | 11.00 | 14.80 | 12.49 * | 0.09 * | 1.00 | 8.00 | 7.00 | 19.00 | 3.76 | 0.13 |
Barhi | 44.57 | 0.31 | 4.57 | 18.69 | 22.79 | 76.93 | 6.01 | 0.25 | 20.00 | 204.00 | 13.90 | 18.50 | 15.38 | 0.12 | 2.00 | 11.00 | 8.00 | 21.00 | 3.87 | 0.13 |
Makhtoumi | 45.42 | 0.32 | 4.46 * | 18.23 * | 21.68 * | 73.16 * | 5.40 | 0.22 | 19.00 | 190.00 | 12.50 | 16.70 | 13.46 | 0.10 | 2.00 | 10.00 | 7.00 | 20.00 | 3.81 | 0.13 |
Farad | 43.53 * | 0.30 * | 4.86 | 19.88 | 8.55 | 28.84 | 4.87 | 0.20 | 19.00 | 201.00 | 12.00 | 16.00 | 14.64* | 0.11* | 2.00 | 9.00 | 6.00 | 17.00 | 3.94 | 0.14 |
Khisab | 44.50 | 0.31 | 4.65 | 19.02 | 16.80 | 56.70 | 4.01 | 0.17 | 19.00 | 192.00 | 12.80 | 17.10 | 13.15 | 0.10 | 2.00 | 12.00 | 7.00 * | 19.00 * | 3.77 | 0.13 |
Nabtat-Saif | 35.16 | 0.24 | 4.85 | 19.84 | 15.03 | 50.71 | 3.20 | 0.13 | 19.00 * | 193.00 * | 14.50 | 19.40 | 10.27 | 0.08 | 2.00 | 10.00 | 9.00 | 23.00 | 3.91 | 0.14 |
Shagri | 38.35 | 0.27 | 4.37 | 17.88 | 19.78 | 66.76 | 4.60 | 0.19 | 20.00 | 209.00 | 12.60 | 16.90 | 12.49 | 0.09 | 2.00 | 9.00 | 7.00 | 19.00 | 4.00 | 0.14 |
Abu-Maan | 24.49 | 0.17 | 3.93 | 16.07 | 9.90 | 33.41 | 3.06 | 0.13 | 17.00 | 170.00 | 10.00 | 13.40 | 8.52 | 0.06 | 1.00 | 8.00 | 8.00 | 20.00 | 3.86 | 0.13 |
Jabri | 38.12 | 0.27 | 4.48 | 18.35 | 15.98 | 53.94 | 5.18 | 0.22 | 21.00 | 221.00 | 11.90 | 15.90 | 11.92 | 0.09 | 1.00 | 7.00 | 8.00 | 22.00 | 3.71 | 0.13 |
Sukkari | 42.20 | 0.29 | 3.84 | 15.70 | 24.47 | 82.60 | 5.91 | 0.25 | 19.00 | 191.00 | 12.80 | 17.20 | 16.18 | 0.12 | 1.00 | 6.00 | 9.00 | 23.00 | 3.68 | 0.13 |
Rothan | 40.91 | 0.28 | 4.09 | 16.74 | 28.75 | 97.04 | 4.64 | 0.19 | 20.00 | 205.00 | 11.70 | 15.70 | 13.24 | 0.10 | 1.00 | 6.00 | 8.00 | 22.00 | 3.80 | 0.13 |
Date Type | Origin | Approximate Yield Potential kg/Tree | Maturity Group (Early, Mid, Late) | Distribution in the UAE |
---|---|---|---|---|
Ajwat AlMadinah | KSA | 60–70 | Mid | Very limited |
Naghal | UAE | 40–60 | Very early | All UAE |
Khnizi | UAE | 60–70 | Mid to late | All UAE |
Barhi | Iraq | 80/120 | Mid to late | All UAE |
Makhtoumi | KSA | 40–60 | Mid | In some region |
Farad | UAE | 70–90 | Mid to late | All UAE |
Khisab | UAE | 100–120 | Very late | Very limited |
Nabtat-Saif | KSA | 35–60 | Mid | In some region |
Shagri | KSA | 50–60 | Mid | - |
Abu-Maan | KSA | 50–70 | Mid | In some region |
Jabri | UAE | 40–60 | Late | All UAE |
Sukkari | KSA | 50–70 | Mid | Very limited |
Rothan | KSA | 60–70 | Mid | Very limited |
Period | Salinity | Clay % | Silt % | Sand % | pH | ECe (dS m−1) |
---|---|---|---|---|---|---|
Soil testing of the experiment before the two growing seasons, 2016 and 2017 * | 1 | 0.55 | 0.67 | 98.78 | 7.33 | 0.66 |
2 | 1.00 | |||||
3 | 1.33 | |||||
Soil testing of the experiment after the two growing seasons, 2016 and 2017, during the 2018 season. | 1 | 0.50 | 0.90 | 98.60 | 7.47 | 0.994 ± 0.09 |
2 | 0.69 | 0.36 | 98.95 | 7.38 | 1.02 ± 0.2 | |
3 | 0.27 | 0.76 | 98.97 | 7.38 | 3.24 ± 0.5 |
Month | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Liters of water per day per tree | 132 | 170 | 216 | 251 | 276 | 285 | 278 | 254 | 219 | 177 | 143 | 122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dghaim, R.; Hammami, Z.; Al Ghali, R.; Smail, L.; Haroun, D. The Mineral Composition of Date Palm Fruits (Phoenix dactylifera L.) under Low to High Salinity Irrigation. Molecules 2021, 26, 7361. https://doi.org/10.3390/molecules26237361
Dghaim R, Hammami Z, Al Ghali R, Smail L, Haroun D. The Mineral Composition of Date Palm Fruits (Phoenix dactylifera L.) under Low to High Salinity Irrigation. Molecules. 2021; 26(23):7361. https://doi.org/10.3390/molecules26237361
Chicago/Turabian StyleDghaim, Rania, Zied Hammami, Rola Al Ghali, Linda Smail, and Dalia Haroun. 2021. "The Mineral Composition of Date Palm Fruits (Phoenix dactylifera L.) under Low to High Salinity Irrigation" Molecules 26, no. 23: 7361. https://doi.org/10.3390/molecules26237361