Comparative Analysis of Major Flavonoids among Parts of Lactuca indica during Different Growth Periods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative Analysis of Flavonoids in L. indica L. cv. Mengzao
2.2. Quantitative Analysis of Major Flavonoids in Different Parts of L. indica L. cv. Mengzao
2.2.1. Optimization of Mass Spectrometry and Chromatographic Conditions
2.2.2. Method Validation
2.2.3. Dynamic Characteristics of Six Major Flavonoids in Different Parts of L. indica L. cv. Mengzao
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Reagents
3.3. Preparation of Samples Solution
3.4. Chromatographic and Mass Spectrometry (MS) Conditions
3.4.1. UPLC-Q-Exactive-MS/MS Method for Qualitative Analysis
3.4.2. UPLC-QqQ-MS/MS Method for Quantitative Analysis
3.5. Validation of the Methods
3.5.1. Linearity, Limit of Detection (LOD), and Limit of Quantification (LOQ)
3.5.2. Precision, Repeatability, Stability, and Recovery
3.6. Sample Determination
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Van Treuren, R.; Van Der Arend, A.-J.-M.; Schut, J.-W. Distribution of downy mildew (Bremia lactucae Regel) resistances in a genebank collection of lettuce and its wild relatives. Plant Genet. Resour. 2013, 11, 15–25. [Google Scholar] [CrossRef]
- Li, K.-W.; Liang, Y.-Y.; Xie, S.-M.; Niu, F.-J.; Guo, L.-Y.; Liu, Z.-H.; Zhou, C.-Z.; Wang, L.-Z. Ixeris sonchifolia: A review of its traditional uses, chemical constituents, pharmacology and modern applications. Biomed. Pharmacother. 2020, 125, 109869. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-Y.; Sun, F.-Y. Shennong Bencao Jing; The Commercial Press: Peking, China, 1995. [Google Scholar]
- Feng, X.-Z.; Dong, M.; Gao, Z.-J.; Xu, S.-X. Three new triterpenoid saponins from Ixeris sonchifolia and their cytotoxic activity. Planta Med. 2003, 69, 1036–1040. [Google Scholar]
- Liu, X.-M.; Zhang, X.-Y.; Wang, F.-L.; Liang, X.; Zeng, Z.-X.; Zhao, J.-Y.; Zheng, H.; Jiang, X.-N.; Zhang, Y.-L. Improvement in cerebral ischemia-reperfusion injury through the TLR4/NF kappa B pathway after Kudiezi injection in rats. Life Sci. 2017, 191, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.-S.; Sun, X.-L.; Xu, B.; Song, M.; Wang, C.-H. Protective effects of luteolin-7-glucoside againstliver injury caused by carbon tetrachloride in rats. Pharmazie 2004, 59, 286–289. [Google Scholar]
- Bai, H.-J. A Study of the Extraction Technology of Leaf Protein of Lactuca indica L. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2010. [Google Scholar]
- Hou, J.; Ai, R.-T.; Zhou, L.-Y.; Liu, B.-J.; Li, L.-Z.; Peng, Y. Isolation and identification of the constituents from whole plant of Ixeris sonchifolia (Bge.) Hance. J. Shenyang Pharm. Univ. 2011, 11, 879–881. [Google Scholar]
- Lu, J.-C.; Feng, X.-Z.; Sun, Q.-S.; Lu, H.-W.; Manable, M.; Sugahara, K.; Ma, D.-S.; Sagara, Y. Effect of six flavonoid compounds from Ixeris sonchifolia on stimulus-induced superoxide generation and tyrosyl phosphorylation in human neutrophil. Clin. Chim. Acta 2002, 316, 95–99. [Google Scholar] [CrossRef]
- Wang, X.-F.; Wang, X.-J. Studied on chemical constituents of Ixeris chinensis (Thunb.). Nakai. Chin. Tradit. Herb. Drugs 2007, 8, 1151–1152. [Google Scholar]
- Oh, H.-K. Antioxidant and anti-inflammatory activities of different parts of Ixeris dentata according to extract methods. J. Korean Appl. Sci. Technol. 2020, 37, 1567–1574. [Google Scholar]
- Shi, P.-Y.; Zhang, Y.-F.; Qu, H.-B.; Fan, X.-H. Systematic characterisation of secondary metabolites from Ixeris sonchifolia by the combined use of HPLC-TOFMS and HPLC-ITMS. Phytochem. Anal. 2011, 22, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.-F.; Jia, Y.-S.; Ge, G.-T.; Te, R.-G.; Wang, Z.-J.; Li, Y.-Y.; Rong, R. The establishment of two flavonoids content detection menthod and optimization of extraction process from Ixeris polycephala. Heilongjiang Anim. Sci. Vet. Med. 2021, 7, 99–105+109. [Google Scholar]
- Fabre, N.; Rustan, I.; De Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Mari, A.; Lyon, D.; Fragner, L.; Montoro, P.; Piacente, S.; Wienkoop, S.; Egelhofer, V.; Weckwerth, W. Phytochemical composition of Potentilla anserina L. analyzed by an integrative GC-MS and LC-MS metabolomics platform. Metabolomics 2013, 9, 599–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafri, L.; Sokalla, T.; Ulah, L. In Vitro assessment of antioxidant potential and determination of polyphenolic compounds of Hedera nepalensis K. Koch. Arab. J. Chem. 2014, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yi, B.; Zhang, M.; Hu, Y.M.; Chen, T.; Wang, M.Y.; Feng, S.X. Analysis of constituents from different parts of Callicarpa nudiflora by UPLC-QTOF-MS/MS. China J. Chin. Mater. Med. 2019, 44, 4661–4669. [Google Scholar]
- Deng, H.-Y.; Wu, Y.-Y.; Yuan, L.; Wang, Y.; Tian, M.; Li, Y.-B.; Yang, B. Analyze difference of chemical compositions in Ixeris sonchifolia from different origins by UPLC-Q-TOF-MS. Chin. J. Exp. Tradit. Med. Formulae 2016, 22, 37–42. [Google Scholar]
- Guo, Y.-J.; Chen, X.; Qi, J.; Yu, B.-Y. Simultaneous qualitative and quantitative analysis of flavonoids and alkaloids from the leaves of Nelumbo nucifera Gaertn. using high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2016, 39, 2499–2507. [Google Scholar] [CrossRef]
- Zhang, Z.-F.; He, L.-L.; Lu, L.-Y.; Liu, Y.; Dong, G.-T.; Miao, J.-H.; Luo, P. Characterization and quantification of the chemical compositions of Scutellariae Barbatae Herba and differentiation from its substitute by combining UHPLC-PDA-QTOF-MSMS with UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2015, 109, 62–65. [Google Scholar] [CrossRef]
- Chen, H.; Ouyang, K.-H.; Yan, J.; Yang, Z.-W.; Hu, W.-B.; Lei, X.; Wang, N.; Liu, X.; Wang, W.-J. Constituent analysis of the ethanol extracts of Chimonanthus nitens Oliv. leaves and their inhibitory effect on α-glucosidase activity. Int. J. Biol. Macromol. 2017, 98, 829–836. [Google Scholar] [CrossRef]
- Shi, D.H.; Dai, Y.P.; Wang, L.F.; Zhou, Q.; Zhang, X.L.; Zhang, J. Chemical composition analysis of platycladi cacumen before and after being carbonized based on identification by UHPLC-QTOF-MS/MS. Chin. J. Exp. Tradit. Med. Formulae 2021, 27, 107–116. [Google Scholar]
- Verdu, C.; Gatto, J.; Freuze, I.; Richomme, P.; Laurens, F.; Guilet, D. Comparison of two methods, UHPLC-UV and UHPLC-MS/MS, for the quantification of polyphenols in cider apple juices. Molecules 2013, 18, 10213–10227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AbuReidah, I.-M.; Contreras, M.-M.; ArraezRoman, D.; SeguraCarretero, A.; FernandezGutierrez, A. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. J. Chromatogr. A 2013, 1313, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, C.-T.; Balachandran, I. LC/MS characterization of phenolic antioxidants of Brindle berry (Garcinia gummi-gutta (L.) Robson). Nat. Prod. Res. 2017, 31, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, Y.T.; Ding, Z.H.; Chen, S.Q.; Xiao, S.Y.; Yu, Y.H.; Du, B.F.; Song, Y.T. Identification and analysis of quercetin and its glycosides in Rosa Roxburghii by ultra high performance liquid chromatography-tandem high resolution mass spectrometry. Chin. J. Anal. Chem. 2020, 48, 955–961. [Google Scholar]
- Chang, G.-H.; Bo, Y.-Y.; Cui, J.; Xu, L.-L.; Zhao, Z.-H.; Wang, W.-Q.; Hou, J.-L. Main chemical constituents in aerial parts of Glycyrrhiza uralensis by UPLC-Q-Exactive Orbitrap-MS. China J. Chin. Mater. Med. 2021, 46, 1449–1459. [Google Scholar]
- Qiao, X.; He, W.-N.; Xiang, C.; Han, J.; Wu, L.-J.; Guo, D.-A.; Ye, M. Qualitative and quantitative analyses of flavonoids in Spirodela polyrrhiza by High-performance Liquid Chromatography coupled with mass spectrometry. Phytochem. Anal. 2011, 22, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Agregan, R.; Munekata, P.-E.-S.; Franco, D.; Dominguez, R.; Carballo, J.; Lorenzo, J.-M. Phenolic compounds from three brown seaweed species using LC-DAD-ESI-MS/MS. Food Res. Int. 2017, 99, 958–979. [Google Scholar] [CrossRef]
- Dong, R.-F.; Wang, Z.; Chen, L.; Shu, Z.-H.; Han, T.; Qin, L.-P. Content variation of four flavonoids glycosides in Hipppphae rhamnoides L. leaves before and after fermentation assayed by RP-HPLC. J. Pharm. Pract. 2017, 35, 526–529. [Google Scholar]
- Luo, Y.Y.; Liu, J.X.; Wang, F.; Liu, X.H.; Wang, S.N.; Hua, Y.J.; Lan, C.W.; Xing, Q.Q. Dynamic changes of metabolite accumulation of Polygoni Multifori Radix based on UPLC-Triple TOF-MS/MS. Chin. Tradit. Herb. Drugs 2017, 48, 2105–2110. [Google Scholar]
- Zeng, H.-T.; Su, S.-L.; Xiang, X.; Sha, X.-X.; Zhu, Z.-Z.; Wang, Y.-Y.; Guo, S.; Yan, H.; Qian, D.-W.; Duan, J.-N. Comparative analysis of the major chemical constituents in Salvia miltiorrhiza roots, stems, leaves and flowers during different growth periods by UPLC-TQ-MS/MS and HPLC-ELSD methods. Molecules 2017, 22, 771. [Google Scholar] [CrossRef]
- Li, J.-T. Study on Histochemical Localization and Transport of Secondary Metabolism in Salvia miltiorrhiza Bunge. Master’s Thesis, Northwest University of Science and Technology, Xi’an, China, 2008. [Google Scholar]
- Chen, Y.-H.; Guo, Q.-S.; Zhu, Z.-B.; Zhang, L.-X. Changes in bioactive components related to the harvested time from the spices of Prunella vulgaris. Pharm. Biol. 2012, 50, 1118–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-L. Study on Growth and Development Patterns and Dynamic Accumlation of the Effective Components of Ixeris chinensis. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2011. [Google Scholar]
- Zobayed, S.-M.-A.; Afreen, F.; Kozai, T. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiol. Biochem. 2005, 43, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Zietz, M.; Schreiner, M.; Rohn, S.; Kroh, L.W.; Krumbein, A. Genotypic and climatic influences on the concentration and composition of flavonoids in kale (Brassica oleracea var. sabellica). Food Chem. 2010, 119, 1293–1299. [Google Scholar] [CrossRef]
- Hrazdina, G.; Wagner, G.J. Metabolic pathways as enzyme complexes: Evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch. Biochem. Biophys. 1985, 237, 88–100. [Google Scholar] [CrossRef]
- Olsen, K.-M.; Lea, U.-S.; Slimestad, R.; Verheul, M.; Lillo, C. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J. Plant Physiol. 2008, 165, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Mazorra, L.-M.; Nunez, M. Influence of brassinosteroids on antioxidant enzymes activity in tomato under different tempera tures. Biol. Plant. 2002, 45, 593–596. [Google Scholar] [CrossRef]
No | tR/min | Molecular Formula | Ion mode | Mass (m/z) (∆ ppm) | MS/MS Fragment Ions (m/z) | Identification |
---|---|---|---|---|---|---|
1 | 6.468 | C27H30O16 | [M − H]− | 609.14600 (−1) | 301.03488, 300.02719, 210.46393, 178.99763, 151.00256 | Rutin |
2 | 6.473 | C27H30O15 | [M + H]+ | 595.16504 (−2) | 433.10678, 287.05429 | Kaempferol-3-O-rutinoside |
3 | 6.682 | C21H20O12 | [M + H]+ | 463.08777 (−1) | 301.03519, 271.02454, 178.99773, 151.00270 | Quercetin-3-O-glucoside |
4 | 6.690 | C21H20O11 | [M + H]+ | 449.10696 (−1) | 287.05417, 210.24162, 153.01753 | Luteolin-7-O-glucoside |
5 | 6.694 | C21H20O11 | [M − H]− | 449.10672 (−2) | 287.05426, 153.0157, 116.17660, 88.12576 | Kaempferol-7-O-glucoside |
6 | 6.712 | C15H10O6 | [M − H]− | 285.04037 (1) | 268.68231, 151.50806, 133.02843 | Luteolin |
7 | 6.717 | C21H18O12 | [M − H]− | 461.07242 (−1) | 285.04025, 217.08017, 193.48659, 113.0233, 85.02839 | Scutellarin |
8 | 6.898 | C24H22O15 | [M − H]− | 549.08826 (−2) | 301.03476, 213.56686, 151.00270, 104.41696 | Quercetin-3-O-malonylglucoside |
9 | 7.061 | C21H20O11 | [M − H]− | 447.09302 (−2) | 285.04022, 255.02945, 151.00255 | Astragalin |
10 | 7.211 | C21H18O11 | [M − H]− | 447.09149 (1) | 271.05927, 153.01793, 113.02331, 85.02838 | Apigenin 7-O-glucuronide |
11 | 8.861 | C15H10O6 | [M + H]+ | 287.05423 (−1) | 184.68994, 153.01776, 87.57372 | Kaempferol |
12 | 8.958 | C15H10O7 | [M − H]− | 301.03506 (−1) | 273.04022, 178.99767, 151.00264, 121.02842, 107.01268 | Quercetin |
13 | 9.682 | C15H10O5 | [M − H]− | 269.04504 (−2) | 151.00225, 107.01238 | Apigenin |
14 | 9.834 | C16H12O6 | [M + H]+ | 301.07016 (−1) | 286.04651, 245.09196, 205.72273 | Isokaempferide |
15 | 9.838 | C16H12O6 | [M − H]− | 299.05594 (−1) | 284.03229, 256.03735, 215.19597, 108.85090, 72.84940 | Hispidulin |
Flavonoids | tR (min) | Molecular Formula | m/z | Quantitative Ion | Collision Energy (V) | Ion Mode |
---|---|---|---|---|---|---|
Luteolin | 7.90 | C15H10O6 | 287.10 | 153.05 | 30 | ES+ |
Rutin | 6.16 | C27H30O16 | 609.30 | 299.89 | 36 | ES− |
Quercetin | 7.96 | C15H10O7 | 301.09 | 151.13 | 24 | ES− |
Luteolin-7-O-glucoside | 6.36 | C21H20O11 | 449.20 | 287.04 | 19 | ES+ |
Apigenin | 8.74 | C15H10O5 | 271.09 | 149.06 | 26 | ES+ |
Kaempferol | 8.91 | C15H10O6 | 285.07 | 187.02 | 31 | ES− |
Flavonoids | Calibration Curves | R | Linear Range /(µg/mL) | LOD /(ng/mL) | LOQ /(ng/mL) |
---|---|---|---|---|---|
1. Luteolin | Y = 719.907∗X + 117,248.00 | 0.9991 | 0.08~5.12 | 3.08 | 10.27 |
2. Rutin | Y = 139,827∗X + 10,171.60 | 0.9994 | 0.09~5.81 | 3.11 | 10.37 |
3. Quercetin | Y = 485.570∗X − 110,558.00 | 0.9990 | 0.21~1.10 | 10.32 | 34.4 |
4. Luteolin-7-O-glucoside | Y = 2473.043∗X + 123,989.00 | 0.9993 | 0.07~4.80 | 4.63 | 15.43 |
5. Apigenin | Y = 1306.807∗X − 12,189.90 | 0.9992 | 0.02~0.30 | 1.67 | 5.58 |
6. Kaempferol | Y = 215,145∗X − 2641.73 | 0.9992 | 0.05~0.65 | 2.08 | 6.93 |
Flavonoids | Precision RSD (%, n = 6) | Repeatability RSD (%, n = 6) | Stability RSD (%, n = 6) | Recovery (%, n = 3) | |
---|---|---|---|---|---|
Mean | RSD | ||||
1. Luteolin | 3.64 | 2.69 | 2.49 | 94.09 | 1.75 |
2. Rutin | 4.08 | 1.93 | 4.56 | 105.35 | 1.52 |
3. Quercetin | 2.15 | 2.32 | 1.74 | 99.41 | 2.13 |
4. Luteolin-7-O-glucoside | 3.53 | 1.15 | 1.82 | 95.21 | 1.37 |
5. Apigenin | 2.88 | 3.92 | 1.35 | 100.05 | 2.94 |
6. Kaempferol | 1.85 | 3.08 | 2.47 | 101.85 | 1.46 |
Harvest Time | Luteolin | Rutin | Quercetin | Luteolin-7-O-glucoside | Apigenin | Kaempferol |
---|---|---|---|---|---|---|
Vegetative stage | 7.344 ± 0.84 d | 590.869 ± 11.33 c | 10.324 ± 0.29 a | 49.729 ± 1.02 d | 2.404 ± 0.37 cd | 1.822 ± 0.14 d |
Budding stage | 2.757 ± 0.52 f | 95.524 ± 5.20 f | 10.359 ± 0.08 a | 58.915 ± 2.21 c | 1.374 ± 0.03 d | 1.178 ± 0.09 e |
Initial flowering stage | 4.494 ± 0.21 e | 157.022 ± 7.57 e | 10.288 ± 0.13 a | 60.413 ± 1.78 c | 1.640 ± 0.08 d | 1.323 ± 0.10 e |
Middle floweing stage | 12.422 ± 0.01 c | 645.878 ± 19.55 b | 10.247 ± 0.16 a | 48.232 ± 1.19 d | 3.221 ± 0.03 c | 2.596 ± 0.19 c |
Peak flowering stage | 40.602 ± 5.46 b | 782.662 ± 21.07 a | 10.348 ± 0.04 a | 122.487 ± 10.23 a | 18.999 ± 0.94 a | 6.053 ± 1.33 b |
Filling stage | 56.552 ± 0.96 a | 374.052 ± 5.65 d | 10.401 ± 0.06 a | 109.959 ± 9.41 b | 13.594 ± 0.48 b | 9.308 ± 0.36 a |
Harvest Time | Phenology | Harvest Part |
---|---|---|
4 July 2020 | Vegetative period | Roots, stems, leaves |
14 July 2020 | Budding stage | Roots, stems, leaves |
25 July 2020 | Initial flowering stage | Roots, stems, leaves, flowers |
4 August 2020 | Middle floweing stage | Roots, stems, leaves, flowers |
14 August 2020 | Peak flowering stage | Roots, stems, leaves, flowers |
24 August 2020 | Filling stage | Roots, stems, leaves |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Li, Y.; Jia, Y.; Wang, Z.; Rong, R.; Bao, J.; Zhao, M.; Fu, Z.; Ge, G. Comparative Analysis of Major Flavonoids among Parts of Lactuca indica during Different Growth Periods. Molecules 2021, 26, 7445. https://doi.org/10.3390/molecules26247445
Hao J, Li Y, Jia Y, Wang Z, Rong R, Bao J, Zhao M, Fu Z, Ge G. Comparative Analysis of Major Flavonoids among Parts of Lactuca indica during Different Growth Periods. Molecules. 2021; 26(24):7445. https://doi.org/10.3390/molecules26247445
Chicago/Turabian StyleHao, Junfeng, Yuyu Li, Yushan Jia, Zhijun Wang, Rong Rong, Jian Bao, Muqier Zhao, Zhihui Fu, and Gentu Ge. 2021. "Comparative Analysis of Major Flavonoids among Parts of Lactuca indica during Different Growth Periods" Molecules 26, no. 24: 7445. https://doi.org/10.3390/molecules26247445
APA StyleHao, J., Li, Y., Jia, Y., Wang, Z., Rong, R., Bao, J., Zhao, M., Fu, Z., & Ge, G. (2021). Comparative Analysis of Major Flavonoids among Parts of Lactuca indica during Different Growth Periods. Molecules, 26(24), 7445. https://doi.org/10.3390/molecules26247445