Synthesis of Spiroindenyl-2-Oxindoles through Palladium-Catalyzed Spirocyclization of 2-Bromoarylamides and Vinyl Bromides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Reaction Conditions
2.2. Substrate Scope for Acrylamides
2.3. Substrate Scope for Vinyl Bromides
2.4. Mechanistic Studies
3. Materials and Methods
3.1. General Information
3.2. Experimental Procedures
- (a)
- A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with Pd(OAc)2 (0.02 mmol, 4.4 mg, 0.1 equiv), s-phos (0.02 mmol, 8.2 mg, 0.1 equiv), K2CO3 (1.2 mmol, 165.9 mg, 6.0 equiv), 18-crown-6 (0.4 mmol, 105.7 mg, 2.0 equiv), acrylamide 1a (0.2 mmol, 63.2 mg, 1.0 equiv), 1-bromo-1-propene 2a (0.8 mmol, 96.8 mg, 4.0 equiv), and THF (2.0 mL). The reaction mixture was frozen with liquid nitrogen, and then, the tube was evacuated and backfilled with nitrogen (6 times). The reaction tube was put into an oil bath and then heated to 100 °C. The reaction mixture was stirred at 100 °C for 24 h. After being cooled down to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed with brine (3 times), dried over Na2SO4, and concentrated in vacuo. The residue was purified by preparative silica gel TLC with petroleum ether/ethyl acetate (ether/ethyl acetate 25:1) to afford 3aa (71%, 39.0 mg).
- (b)
- A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with Pd(OAc)2 (0.02 mmol, 4.4 mg, 0.1 equiv), s-phos (0.04 mmol, 16.4 mg, 0.2 equiv) K2CO3 (1.0 mmol, 138.2 mg, 5.0 equiv), 18-crown-6 (0.4 mmol, 105.7 mg, 2.0 equiv), acrylamide 1a (0.2 mmol, 63.2 mg, 1.0 equiv), β-bromostyrene 2b (0.6 mmol, 109.8 mg, 3.0 equiv), and THF (2.0 mL). The reaction mixture was frozen with liquid nitrogen and then the tube was evacuated and backfilled with nitrogen (6 times). The reaction tube was put into an oil bath and then heated to 130 °C. The reaction mixture was stirred at 130 °C for 24 h. After being cooled down to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed with brine (3 times), dried over Na2SO4, and concentrated in vacuo. The residue was purified by preparative silica gel TLC with petroleum ether/ethyl acetate (ether/ethyl acetate 25:1) to afford 3ab (61%, 41.2 mg) and 3ab-l (34%, 22.9 mg).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. Angew. Chem. Int. Ed. 2007, 46, 8748–8758. [Google Scholar] [CrossRef] [PubMed]
- Bindra, J.S. Chapter 2 Oxindole Alkaloids. Alkaloids: Chem. Physiol. 1973, 14, 83. [Google Scholar]
- Ding, Y.; Tian, Z.; Zhu, N. Research Progress of Antibacterial Spiro-compounds. Chin. J. Org. Chem. 2010, 30, 1156. [Google Scholar]
- Ye, N.; Chen, H.; Wold, E.A.; Shi, P.-Y.; Zhou, J. Therapeutic Potential of Spirooxindoles as Antiviral Agents. ACS Infect. Dis. 2016, 2, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Fan, C. Progress in the Synthesis of Spirotryprostatin Alkaloids. Chin. J. Org. Chem. 2016, 36, 2380. [Google Scholar] [CrossRef]
- Yu, B.; Yu, D.-Q.; Liu, H.-M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem. 2015, 97, 673–698. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Meng, C.; Liu, X.; Xu, D.; Xia, A. An Efficient Asymmetric Construction of Novel Spiro-Fused 2-Oxindoles/α-Methy-paraconic Ester. Chin. J. Org. Chem. 2017, 37, 2782. [Google Scholar] [CrossRef] [Green Version]
- Kolanos, R.; Siripurapu, U.; Pullagurla, M.; Riaz, M.; Setola, V.; Roth, B.L.; Dukat, M.; Glennon, R.A. Binding of isotryptamines and indenes at h5-HT6 serotonin receptors. Bioorganic Med. Chem. Lett. 2005, 15, 1987–1991. [Google Scholar] [CrossRef]
- Watanabe, N.; Nakagawa, H.; Ikeno, A.; Minato, H.; Kohayakawa, C.; Tsuji, J.-I. 4-(4-Alkylpiperazin-1-yl)phenyl group: A novel class of basic side chains for selective estrogen receptor modulators. Bioorganic Med. Chem. Lett. 2003, 13, 4317–4320. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Du, D. Recent Advances in Squaramide-Catalyzed Asymmetric Cascade Reactions for the Synthesis of Spirooxindoles. Chin. J. Org. Chem. 2020, 40, 3214. [Google Scholar] [CrossRef]
- Karaguni, I.-M.; Glusenkamp, K.-H.; Langerak, A.; Geisen, C.; Ullrich, V.; Winde, G.; Moroy, T.; Muller, O. New In-dene-Derivatives with Anti-Proliferative Properties. Bioorg. Med. Chem. Lett. 2002, 12, 709. [Google Scholar] [CrossRef]
- Evans, B.E.; Leighton, J.L.; Rittle, K.E.; Gilbert, K.F.; Lundell, G.F.; Gould, N.P.; Hobbs, D.W.; DiPardo, R.M.; Veber, D.F.; Pettibone, D.J.; et al. Orally active, nonpeptide oxytocin antagonists. J. Med. Chem. 1992, 35, 3919–3927. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Miao, Z. Research Progress on the Synthetic Method of Five-Membered Spirooxindole Derivatives at C-3 Position. Chin. J. Org. Chem. 2021, 41, 3965. [Google Scholar] [CrossRef]
- Basavaiah, D.; Reddy, K.R. Simple and One-Pot Protocol for Synthesis of Indene-spiro-oxindoles Involving Tandem Prins and Friedel−Crafts Reactions. Org. Lett. 2007, 9, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Roh, H.J.; Seo, D.Y.; Ryu, J.Y.; Lee, J.; Kim, J.N. Synthesis of spiroindenyl-2-oxindoles by montmorillonite K-10-catalyzed tandem Friedel-Crafts alkenylation/hydroarylation of propargylic alcohols with sterically hindered and electron-rich arenes. Tetrahedron Lett. 2017, 58, 4094–4098. [Google Scholar] [CrossRef]
- Saito, T.; Sonoki, Y.; Otani, T.; Kutsumura, N. Triflic acid-promoted cycloisomerization of 2-alkynylphenyl isothiocyanates and isocyanates: A novel synthetic method for a variety of indole derivatives. Org. Biomol. Chem. 2014, 12, 8398–8407. [Google Scholar] [CrossRef]
- Meerakrishna, R.S.; Athira, M.; Shanmugam, P. Unusual [3+2] Spiroannulation and Creation of Stereogenic Quaternary Center at C-3 of Oxindole via Addition of (Het)arynes to Isomerized Morita-Baylis-Hillman Adduct of Isatin. ChemistrySelect 2018, 3, 874–878. [Google Scholar] [CrossRef]
- Muthusamy, S.; Balasubramani, A.; Suresh, E. Boron Trifluoride Catalyzed Divergent Synthesis of 3-Alkenyl-3-amino-2-oxindoles and Spiro-indeneindolones from Propargylic Alcohols. Adv. Synth. Catal. 2018, 361, 702–707. [Google Scholar] [CrossRef]
- Singh, B.; Bankar, S.K.; Kumar, K.; Ramasastry, S.S.V. Palladium-catalysed 5-endo-trig Allylic (Hetero)arylation. Chem. Sci. 2020, 11, 4948. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, J.-N.; Hie, L.; Biswas, S.; Zatolochnaya, O.V.; Rodriguez, S.; Lee, H.; Grinberg, N.; Haddad, N.; Yee, N.K.; Garg, N.K.; et al. Construction of Quaternary Stereocenters by Nickel-Catalyzed Heck Cyclization Reactions. Angew. Chem. Int. Ed. 2016, 55, 11921–11924. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, J.-N.; Wen, J.; Tcyrulnikov, S.; Biswas, S.; Qu, B.; Hie, L.; Kurouski, D.; Wu, L.; Grinberg, N.; Haddad, N.; et al. Enantioselective Nickel-Catalyzed Mizoroki–Heck Cyclizations To Generate Quaternary Stereocenters. Org. Lett. 2017, 19, 3338–3341. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.P.; García-López, J.-A. σ-Alkyl-PdII Species for Remote C–H Functionalization. ChemCatChem 2017, 9, 1149. [Google Scholar] [CrossRef]
- Ping, Y.; Li, Y.; Zhu, J.; Kong, W. Construction of Quaternary Stereocenters by Palladium-Catalyzed Carbopalladation-Initiated Cascade Reactions. Angew. Chem. Int. Ed. 2019, 58, 1562. [Google Scholar] [CrossRef] [PubMed]
- Bunescu, A.; Piou, T.; Wang, Q.; Zhu, J. Pd-Catalyzed Dehydrogenative Aryl−Aryl Bond Formation via Double C(sp2)−H Bond Activation: Efficient Synthesis of [3,4]-Fused Oxindoles. Org. Lett. 2015, 17, 334. [Google Scholar] [CrossRef] [PubMed]
- Piou, T.; Bunescu, A.; Wang, Q.; Neuville, L.; Zhu, J. Palladium-Catalyzed through-Space C(sp3)−H and C(sp2)−H Bond Ac-tivation by 1,4-Palladium Migration: Efficient Synthesis of [3,4]-Fused Oxindoles. Angew. Chem. Int. Ed. 2013, 52, 12385. [Google Scholar] [CrossRef]
- Saha, N.; Wang, H.; Zhang, S.; Du, Y.; Zhu, D.; Hu, Y.; Huang, P.; Wen, S. Domino Carbopalladation/C–H Activation as a Quick Access to Polycyclic Frameworks. Org. Lett. 2018, 20, 712–715. [Google Scholar] [CrossRef]
- Brown, D.; Grigg, K.; Sridharan, V.; Tambyrajah, V. A palladium catalysed cascade cyclisation-friedel-crafts alkylation approach to angularly fused ring systems. Tetrahedron Lett. 1995, 36, 8137–8140. [Google Scholar] [CrossRef]
- Huang, Q.; Fazio, A.; Dai, G.; Campo, A.M.A.; Larock, R.C. Pd-Catalyzed Alkyl to Aryl Migration and Cyclization: An Efficient Synthesis of Fused Polycycles via Multiple C–H Activation. J. Am. Chem. Soc. 2004, 126, 7460–7461. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Zhuang, Y.-X.; Xu, Y.-H.; Loh, T.-P. Pd-Catalyzed Intramolecular C–N Bond Cleavage, 1,4-Migration, sp3 C–H Activation, and Heck Reaction: Four Controllable Diverse Pathways Depending on the Judicious Choice of the Base and Ligand. J. Am. Chem. Soc. 2015, 137, 1341. [Google Scholar] [CrossRef]
- Piou, T.; Neuville, L.; Zhu, J. Activation of a C(sp3)−H Bond by a Transient s-Alkylpalladium(II) Complex: Synthesis of Spi-rooxindoles through a Palladium-Catalyzed Domino Carbopalladation/C(sp3)−C(sp3) Bond-Forming Process. Angew. Chem. Int. Ed. 2012, 51, 11561. [Google Scholar] [CrossRef]
- Ruck, R.T.; Huffman, M.A.; Kim, M.M.; Shevlin, M.; Kandur, W.V.; Davies, I.W. Palladium-Catalyzed Tandem Heck Re-action/C–H Functionalization—Preparation of Spiro-Indane-Oxindoles. Angew. Chem. Int. Ed. 2008, 47, 4711. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, T.-X.; Zhang, P.; Zhang, C.; Zhang, G. Palladium-catalyzed domino spirocyclization of [60]fullerene: Synthesis of diverse [60]fullerene-fused spiro[4,5]/[5,5] derivatives. Chem. Commun. 2020, 57, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Grigg, R.; Fretwell, P.; Meerholtz, C.; Sridharan, V. Palladium catalysed synthesis of spiroindolines. Tetrahedron 1994, 50, 359–370. [Google Scholar] [CrossRef]
- Piou, T.; Neuville, L.; Zhu, J. Spirocyclization by Palladium-Catalyzed Domino Heck–Direct C–H Arylation Reactions: Syn-thesis of Spirodihydroquinolin-2-ones. Org. Lett. 2012, 14, 3760. [Google Scholar] [CrossRef] [PubMed]
- Satyanarayana, G.; Maichle-Mössmer, C.; Maier, M.E. Formation of Pentacyclic Structures by a Domino Sequence on Cyclic Enamides. Chem. Commun. 2009, 1571. [Google Scholar] [CrossRef]
- Zhou, L.; Qiao, S.; Zhou, F.; Xuchen, X.; Deng, G.; Yang, Y.; Liang, Y. α-Oxocarboxylic Acids as Three-Carbon InsertionUnits for Palladium-Catalyzed Decarboxylative Cascade Synthesis of Diverse Fused Heteropolycycles. Org. Lett. 2021, 23, 2878. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhou, L.; Lu, H.; Deng, G.; Liang, Y.; Yang, C.; Yang, Y. Palladium-Catalyzed Domino Heck/C–H Activa-tion/Decarboxylation: A Rapid Entry to Fused Isoquinolinediones and Isoquinolinones. Org. Lett. 2019, 21, 9960. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.F.; Marchese, A.D.; Lautens, M. Palladium-Catalyzed Synthesis of Dihydrobenzoindolones via C–H Bond Ac-tivation and Alkyne Insertion. Org. Lett. 2018, 20, 4367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, Y.-K.; Chang, Y.-P.; Shao, H.; Zhao, Y.-M. Palladium-Catalyzed Cascade Carbonylative Annulation between Alkene-tethered Aryl Iodides and Carbon Monoxide. Chem. Commun. 2021, 57, 7023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhou, F.; Xuchen, X.; Zhou, L.; Deng, G.; Liang, Y.; Yang, Y. A palladium-catalyzed Heck/[4+1] decarboxylative cyclization cascade to access diverse heteropolycycles by using α-bromoacrylic acids as C1 insertion units. Org. Chem. Front. 2021, 8, 5687–5692. [Google Scholar] [CrossRef]
- Sickert, M.; Weinstabl, H.; Peters, B.; Hou, X.; Lautens, M. Intermolecular Domino Reaction of Two Aryl Iodides Involving Two C-H Functionalizations. Angew. Chem. Int. Ed. 2014, 53, 5147–5151. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; He, D. Palladium-Catalyzed Domino Heck/Aryne Carbopalladation/C–H Functionalization: Synthesis of Heterocy-cle-Fused 9,10-Dihydrophenanthrenes. Org. Lett. 2017, 19, 842. [Google Scholar] [CrossRef]
- Lu, Z.; Hu, C.; Guo, J.; Li, J.; Cui, Y.; Jia, Y. Water-Controlled Regioselectivity of Pd-Catalyzed Domino Reaction Involving a C–H Activation Process: Rapid Synthesis of Diverse Carbo- and Heterocyclic Skeletons. Org. Lett. 2009, 12, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhu, Y.; Shi, Y. Palladium(0)-Catalyzed Heck Reaction/C-H Activation/Amination Sequence with Diaziridinone: A Facile Approach to Indolines. Angew. Chem. Int. Ed. 2014, 53, 11280–11284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Gómez, M.; García-López, J.-A. Trapping σ-Alkyl–Palladium(II) Intermediates with Arynes Encompassing Intramolec-ular C–H Activation: Spirobiaryls through Pd-Catalyzed Cascade Reactions. Angew. Chem. Int. Ed. 2016, 55, 14389. [Google Scholar] [CrossRef]
- Yoon, H.; Lossouarn, A.; Landau, F.; Lautens, M. Pd-Catalyzed Spirocyclization via C–H Activation and Benzyne Insertion. Org. Lett. 2016, 18, 6324–6327. [Google Scholar] [CrossRef]
- Pérez-Gómez, M.; Navarro, L.; Saura-Llamas, I.; Bautista, D.; Lautens, M.; García-López, J.-A. Synthesis and Reactivity of Model Intermediates Proposed for the Pd-Catalyzed Remote C–H Functionalization of N-(2-Haloaryl)acrylamides. Organometallics 2017, 36, 4465–4476. [Google Scholar] [CrossRef]
- Pérez-Gómez, M.; Hernández-Ponte, S.; Bautista, D.; García-López, J.-A. Synthesis of spiro-oxoindoles through Pd-catalyzed remote C–H alkylation using α-diazocarbonyl compounds. Chem. Commun. 2017, 53, 2842–2845. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-G.; Chen, W.-W.; Gu, C.-X.; Xu, B.; Xu, M.-H. Access to Spiroindolines and Spirodihydrobenzofurans via Pd-Catalyzed Domino Heck Spiroyclization through C–H Activation and Carbene Insertion. Org. Lett. 2018, 20, 2728–2732. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Rölz, M.; Landau, F.; Lautens, M. Palladium-Catalyzed Spirocyclization through C–H Activation and Regioselective Alkyne Insertion. Angew. Chem. Int. Ed. 2017, 56, 10920–10923. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, I.; Yoon, H.; García-López, J.-A.; Poblador-Bahamonde, A.I.; Lautens, M. Exploring the mechanism of the Pd-catalyzed spirocyclization reaction: A combined DFT and experimental study. Chem. Sci. 2017, 9, 1496–1509. [Google Scholar] [CrossRef] [Green Version]
- Shao, C.; Wu, Z.; Ji, X.; Zhou, B.; Zhang, Y. An approach to spirooxindoles via palladium-catalyzed remote C–H activation and dual alkylation with CH2Br2. Chem. Commun. 2017, 53, 10429–10432. [Google Scholar] [CrossRef]
- Ye, J.; Shi, Z.; Sperger, T.; Yasukawa, Y.; Kingston, C.; Schoenebeck, F.; Lautens, M. Remote C–H Alkylation and C–C bond Cleavage Enabled by an in situ Generated Palladacycle. Nat. Chem. 2017, 9, 361. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Xu, Y.; Xiao, G.; Liu, W.; Qian, C.; Deng, G.; Song, J.; Liang, Y.; Yang, C. Palladium-Catalyzed Tandem Reaction of Three Aryl Iodides Involving Triple C–H Activation. Org. Lett. 2018, 20, 2997–3000. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Li, W.; Lu, H.; Deng, G.; Yang, Y.; Yang, C.; Liang, Y. Palladium-catalyzed cascade synthesis of spirocyclic oxindoles via regioselective C2-H arylation and C8-H alkylation of naphthalene ring. Chin. Chem. Lett. 2020, 32, 713–716. [Google Scholar] [CrossRef]
- Dyker, G. Palladium-Catalyzed Carbon-Hydrogen Activation at Methoxy Groups for Cross-coupling Reactions: A New Ap-proach to Substituted Benzo[b]furans. J. Org. Chem. 1993, 58, 6426. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Y. Synthesis of 9-Fluorenylidenes via Pd-Catalyzed C–H Vinylation with Vinyl Bromides. Org. Lett. 2021, 23, 7746–7750. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-H.; Wang, J.-L.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Palladium-catalyzed coupling reaction of 2-iodobiphenyls with alkenyl bromides for the construction of 9-(diorganomethylidene)fluorenes. Org. Biomol. Chem. 2021, 19, 8250–8253. [Google Scholar] [CrossRef] [PubMed]
Entry | Variation from the Standard Conditions | Yield a |
---|---|---|
1 | No | 74% (71% b) |
2 | No 18-crown-6 | 55% |
3 | No s-phos | 18% |
4 | x-phos instead of s-phos | 53% |
5 | Ru-phos instead of s-phos | 62% |
6 | (o-tolyl)3P instead of s-phos | 60% |
7 | Ph3P instead of s-phos | 63% |
8 | Na2CO3 instead of K2CO3 | 5% |
9 | KOAc instead of K2CO3 | 3% |
10 | DMF instead of THF | 43% |
11 | toluene instead of THF | 59% |
12 | CH3CN instead of THF | 14% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Zhang, Y. Synthesis of Spiroindenyl-2-Oxindoles through Palladium-Catalyzed Spirocyclization of 2-Bromoarylamides and Vinyl Bromides. Molecules 2021, 26, 7496. https://doi.org/10.3390/molecules26247496
Yang S, Zhang Y. Synthesis of Spiroindenyl-2-Oxindoles through Palladium-Catalyzed Spirocyclization of 2-Bromoarylamides and Vinyl Bromides. Molecules. 2021; 26(24):7496. https://doi.org/10.3390/molecules26247496
Chicago/Turabian StyleYang, Shuai, and Yanghui Zhang. 2021. "Synthesis of Spiroindenyl-2-Oxindoles through Palladium-Catalyzed Spirocyclization of 2-Bromoarylamides and Vinyl Bromides" Molecules 26, no. 24: 7496. https://doi.org/10.3390/molecules26247496
APA StyleYang, S., & Zhang, Y. (2021). Synthesis of Spiroindenyl-2-Oxindoles through Palladium-Catalyzed Spirocyclization of 2-Bromoarylamides and Vinyl Bromides. Molecules, 26(24), 7496. https://doi.org/10.3390/molecules26247496