Unraveling the Roles of Vascular Proteins Using Proteomics
Abstract
:1. Introduction
2. Sample Collection Methods from Vascular Tissues
2.1. Xylem Samples
2.2. Phloem Samples
2.2.1. Stylectomy
2.2.2. Insect Stylectomy
2.2.3. EDTA-Facilitated Exudation
2.3. Laser Capture Microdissection (LCM)
3. Xylem Proteins
Plant Species | Treatment Condition | The Collection of Material | The Collection of Technique | Separation Method | Number of Identified Proteins | Reference |
---|---|---|---|---|---|---|
Normal growth condition | ||||||
Rice | Xylem sap | stem de-topped | 1DE-LC, 2D-LC, HPLC-Chip-MS | 118 * | [47] | |
Maize | Xylem sap | stem de-topped | 2-DE and nano ESI-MS/MS | 154 | [14] | |
Brassica oleracea | Xylem sap | stem de-topped | SDS-PAGE and LC-MS/MS | 189 | [41] | |
Brassica napus | Xylem sap | stem de-topped | 2-DE and ESI-Q-TOF tandem MS | 69 | [15] | |
Glycine max | Xylem sap | stem de-topped | 2-DE, MALDI-TOF MS and LC–MS/MS | 38 | [48] | |
Cotton | Xylem sap | stem de-topped | shotgun HPLC-ESI-MS/MS | 455 | [10] | |
Populus | Xylem sap | stem de-topped and bark stripped | 2-DE and LC-MS/MS | 77 | [18] | |
Populus | Developing xylem | bark peeled and developing tissue scraped | shotgun LC-MS/MS | 4283 | [44] | |
Populus | Xylem and phloem tissues | upper sides of bent stem | shotgun LC-MS/MS | 3510 | [11] | |
transgenic Populus | Xylem tissues | stem pieces | ultraperformance LC/ quadrupole time-of-flight MS | 1486 | [21] | |
Abiotic stress condition | ||||||
Maize | Drought | Xylem sap | stem de-topped | 2-DE and LC-MS/MS | 39 * | [49] |
Maize | N under- or over-supply | Xylem sap | stem de-topped | 2-DE and MALDI-TOF/TOF | 230 (23 *) | [13] |
Cotton | potassium-deficiency | Xylem sap | stem de-topped | SDS-PAGE and UPLC-MS/MS | 258 | [43] |
Brassica napus | cadmium stress | Xylem sap | stem de-topped | shotgun LC-MS/MS | 672 (73 *) | [40] |
Tomato | Fe and Mn deficiencies | Xylem sap | stem de-topped | shotgun LC-MS/MS | 643 (119 * Fe deficiency, 118 * Mn deficiency) | [42] |
Biotic stress condition | ||||||
Tomato | Fusarium oxysporum | Xylem sap | stem de-topped | SDS-PAGE and MS/MS | ** | [50] |
Tomato | Fusarium oxysporum | Xylem sap | stem de-topped | 2-DE, MALDI-TOF MS and LC QTOF MS/MS | 33 * | [51] |
Brassica oleracea | Fusarium oxysporum f.sp. conlutinans (Foc) | Xylem sap | stem de-topped | shotgun LC-MS/MS | About 200 | [38] |
Grape | Xylella fastidiosa | Xylem sap | Stem cutting and phloem peeled | 2-DE and LC-MS/MS | 10 (3 *) | [19] |
Grape | Xylella fastidiosa | Xylem tissue | stem pieces peeled off phloem | 2-DE and MALDI/TOF MS | >200 (17 *) | [45] |
Rice | Xanthomonas oryzae pv. oryzae | Xylem sap | cutting leaves | SDS-PAGE and MALDI/TOF MS | 324 (64 *) | [52] |
Glycine max | Bradyrhizobium japonicum strain CB 1809 | Xylem sap | Hypocotyl and epicotyl decapitated | 1-DE, 2-DE, LC-MS/MS and MALDI-TOF/TOF | 24 | [53] |
3.1. Cell-Wall Metabolism and Development
3.2. Biotic and Abiotic Stress
3.2.1. Abiotic Stress
Water Deficiency
Abnormal Nutrition Supply
Heavy Metals Stress
3.2.2. Biotic Stress
4. Phloem Proteins
Plant Species | Treatment Condition | Collecting Sources | Collecting Methods | Proteomics Method | Number of Identified Proteins | Reference |
---|---|---|---|---|---|---|
Normal growth condition | ||||||
Pumpkin | phloem sap | EDTA-facilitated | SDS-PAGE, Micro-LC/LC–MS/MS | 47 | [64] | |
Pumpkin | phloem sap | EDTA-facilitated | SDS-PAGE, LC-MS/MS | 1121 | [5] | |
Brassica.napus | phloem sap | stem punctured | 2-DE and 1-DE, MALDI-MS, ESI-MS/MS | 140 | [23] | |
Lupinus tesenis | phloem sap | stem punctured | 2-DE and 1-DE, MaLDI-MS and ESI-MS/MS | 54 | [65] | |
Brassica napus | phloem sap | stem punctured | 3-DE and MALDI-TOF MS | >100 | [17] | |
Curcurbit | phloem sap | stem punctured | 2-DE and 1-DE, ESI-Q-TOF-MS/MS | 45 * | [24] | |
Brassica oleracea | phloem SE | stem sliced | SDS and CHAPSO PAGE, LC-MS/MS | 127 | [37] | |
Pumpkin/Cucumber | Fascicular phloem | stem micro-dissected | SDS-PAGE, LC MS/MS | 248/303 | [66] | |
Rice | phloem tissues | insect laser method | 1-DE + 1D-LC MS/MS, 2D-LC MS/MS | 107 * | [47] | |
Rice | small vein | leaf anatomy | iTRAQ, nano-LC-MS/MS | 1333 (294 *) | [67] | |
Abiotic stress condition | ||||||
Cucumber | NaCl stress | phloem sap | EDTA-facilitated | iTRAQ, LC-ESI-MS/MS | 745 (111 *) | [16] |
Tomato | drought | phloem sap | EDTA-facilitated | LC-MS/MS | 2558 (169 *) | [68] |
Populus | wounding | phloem saps | phloem flow from a cut stem into solution | 2-DE, LC-MS/MS | 48 | [69] |
Brassica oleracea | different cutting periods | phloem tissues | branch stripped | 2-DE and MALDI/TOF- MS | 40 (14 *) | [70] |
Biotic stress condition | ||||||
Arabidopsis | Pseudomonas syringae pv tomato strains | phloem exudates | petiole cut | LC-MS/MS | 62 * | [33] |
Tomato Beefsteak | verticillium dahiae incompatible | stem extraction | stems excised, phloem peeled | LC-MS/MS | 32 * | [28] |
Tomato Early Pak | verticillium dahiae compatible | stem extraction | stems excised, phloem peeled | LC-MS/MS | 30 * | [28] |
Citrus | Candidatus Liberibacter asiaticus | bark (vascular) | outer bark centrifuged | 1-DE, LC-MS/MS | 692 * | [71] |
Melon | Melon necrotic spot virus | phloem sap | stem cut | 2D-DIGE, MS/MS and LC–MS/MS | 19 * | [25] |
Melon | cucumber mosaic virus | phloem sap | petiole cut | 2D, MALDI-TOF MS/MS | ** | [72] |
Ash tree | emerald ash borer (Agrilus planipennis) | phloem tissues | branches stripped of leaves | DIGE and nano-LC-MS/MS | 355 | [73] |
Rice | brown plant-hopper | phloem sap | EDTA-facilitated | iTRAQ and nano-LC ESI QqTOF MS | 238 | [74] |
4.1. RNA-Binding Proteins
4.2. Structural and Developmental Proteins
4.3. Stress Response Proteins
4.3.1. Abiotic Stress
4.3.2. Biotic Stress
Defense against Fungi
Defense against Viruses
Defense against Insects
5. Mobile Vascular Proteins
5.1. Xylem Mobile Proteins
5.2. Phloem Mobile Proteins
5.3. Factors Confering Mobility to Proteins
6. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Zheng, Y.; Ham, B.K.; Chen, J.; Yoshida, A.; Kochian, L.V.; Fei, Z.; Lucas, W.J. Vascular-mediated signalling involved in early phosphate stress response in plants. Nat. Plants 2016, 2, 16033. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Celma, J.; Ceballos-Laita, L.; Grusak, M.A.; Abadía, J.; López-Millán, A.F. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. Biochim. Biophys. Acta Proteins Proteom. 2016, 1864, 991–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Růžička, K.; Ursache, R.; Hejátko, J.; Helariutta, Y. Xylem development from the cradle to the grave. New Phytol. 2015, 207, 519–535. [Google Scholar] [CrossRef] [PubMed]
- Oparka, K.J.; Cruz, S.S. The great escape: Phloem transport and unloading of macromolecules. Annu. Rev. Plant Biol. 2000, 51, 323–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.K.; Lee, Y.J.; Lough, T.J.; Phinney, B.S.; Lucas, W.J. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol. Cell. Proteom. 2009, 8, 343–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiehn, O. Metabolic networks of Cucurbita maxima phloem. Phytochemistry 2003, 62, 875–886. [Google Scholar] [CrossRef]
- Turgeon, R.; Wolf, S. Phloem transport: Cellular pathways and molecular trafficking. Annu. Rev. Plant Biol. 2009, 60, 207–221. [Google Scholar] [CrossRef] [Green Version]
- Calderwood, A.; Kopriva, S.; Morris, R.J. Transcript abundance explains mRNA mobility data in Arab. Thaliana. Plant Cell. 2016, 28, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, C.; Zhang, C. Long-distance movement of mRNAs in plants. Plants 2020, 9, 731. [Google Scholar] [CrossRef]
- Zhang, Z.; Xin, W.; Wang, S.; Zhang, X.; Dai, H.; Sun, R.; Frazier, T.; Zhang, B.; Wang, Q. Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development. Funct. Integr. Genom. 2015, 15, 17–26. [Google Scholar] [CrossRef]
- Abraham, P.; Adams, R.; Giannone, R.J.; Kalluri, U.; Ranjan, P.; Erickson, B.; Shah, M.; Tuskan, G.A.; Hettich, R.L. Defining the boundaries and characterizing the landscape of functional genome expression in vascular tissues of Populus using shotgun proteomics. J. Proteome Res. 2012, 11, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Loziuk, P.L.; Parker, J.; Li, W.; Lin, C.Y.; Wang, J.P.; Li, Q.; Sederoff, R.R.; Chiang, V.L.; Muddiman, D.C. Elucidation of xylem-specific transcription factors and absolute quantification of enzymes regulating cellulose biosynthesis in Populus Trichocarpa. J. Proteome Res. 2015, 14, 4158–4168. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Liu, R.; Zhang, F.; Li, C.; Li, X. Nitrogen under- and over-supply induces distinct protein responses in maize xylem sap. J. Integr. Plant Biol. 2012, 54, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S.; Goodger, J.Q.; Marsh, E.L.; Chen, S.; Asirvatham, V.S.; Schachtman, D.P. Characterization of the maize xylem sap proteome. J. Proteome Res. 2006, 5, 963–972. [Google Scholar] [CrossRef]
- Kehr, J.; Buhtz, A.; Giavalisco, P. Analysis of xylem sap proteins from Brassica napus. BMC Plant Biol. 2005, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Xu, Y.; Du, C.; Wu, X. Phloem sap proteome studied by iTRAQ provides integrated insight into salinity response mechanisms in cucumber plants. J. Proteom. 2015, 125, 54–67. [Google Scholar] [CrossRef]
- Ostendorp, A.; Pahlow, S.; Krüßel, L.; Hanhart, P.; Garbe, M.Y.; Deke, J.; Giavalisco, P.; Kehr, J. Functional analysis of Brassica napus phloem protein and ribonucleoprotein complexes. New Phytol. 2017, 214, 1188–1197. [Google Scholar] [CrossRef] [Green Version]
- Dafoe, N.J.; Constabel, C.P. Proteomic analysis of hybrid poplar xylem sap. Phytochemistry 2009, 70, 856–863. [Google Scholar] [CrossRef]
- Basha, S.M.; Mazhar, H.; Vasanthaiah, H.K. Proteomics approach to identify unique xylem sap proteins in Pierce’s disease-tolerant Vitis species. Appl. Biochem. Biotechnol. 2010, 160, 932–944. [Google Scholar] [CrossRef]
- Stobbe, H.; Schmitt, U.; Eckstein, D.; Dujesiefken, D. Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Ann. Bot. 2002, 89, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Bollhöner, B.; Jokipii-Lukkari, S.; Bygdell, J.; Stael, S.; Adriasola, M.; Muñiz, L.; Van Breusegem, F.; Ezcurra, I.; Wingsle, G.; Tuominen, H. The function of two type II metacaspases in woody tissues of Populus trees. New Phytol. 2018, 217, 1551–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Xie, H.L.; Zhang, D.Q.; He, X.Q.; Wang, M.J.; Li, Y.Z.; Cui, K.M.; Lu, M.Z. Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomistry 2006, 6, 881–895. [Google Scholar] [CrossRef]
- Giavalisco, P.; Kapitza, K.; Kolasa, A.; Buhtz, A.; Kehr, J. Towards the proteome of Brassica napus phloem sap. Proteomistry 2006, 6, 896–909. [Google Scholar] [CrossRef]
- Walz, C.; Giavalisco, P.; Schad, M.; Juenger, M.; Klose, J.; Kehr, J. Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry 2004, 65, 1795–1804. [Google Scholar] [CrossRef] [PubMed]
- Serra-Soriano, M.; Navarro, J.A.; Genoves, A.; Pallás, V. Comparative proteomic analysis of melon phloem exudates in response to viral infection. J. Proteom. 2015, 124, 11–24. [Google Scholar] [CrossRef]
- Gai, Y.P.; Yuan, S.S.; Liu, Z.Y.; Zhao, H.N.; Liu, Q.; Qin, R.L.; Fang, L.J.; Ji, X.L. Integrated phloem sap mRNA and protein expression analysis reveals phytoplasma-infection responses in mulberry. Mol. Cell Proteom. 2018, 17, 1702–1719. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M.R.; Knauer, T.; Furch, A.C.U. Collection of phloem sap in phytoplasma-infected plants. Methods Mol. Biol. 2019, 1875, 291–299. [Google Scholar] [CrossRef]
- Hu, X.; Puri, K.D.; Gurung, S.; Klosterman, S.J.; Wallis, C.M.; Britton, M.; Durbin-Johnson, B.; Phinney, B.; Salemi, M.; Short, D.P.G.; et al. Proteome and metabolome analyses reveal differential responses in tomato—Verticillium dahliae-interactions. J. Proteom. 2019, 207, 103449. [Google Scholar] [CrossRef]
- Doering-Saad, C.; Newbury, H.J.; Bale, J.S.; Pritchard, J. Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J. Exp. Bot. 2002, 53, 631–637. [Google Scholar] [CrossRef]
- Palmer, L.J.; Palmer, L.T.; Pritchard, J.; Graham, R.D.; Stangoulis, J.C. Improved techniques for measurement of nanolitre volumes of phloem exudate from aphid stylectomy. Plant Methods 2013, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Pahlow, S.; Ostendorp, A.; Krüßel, L.; Kehr, J. Phloem Sap Sampling from Brassica napus for 3D-PAGE of Protein and Ribonucleoprotein Complexes. J. Vis. Exp. 2018, 131, 57097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collum, T.D.; Lutton, E.; Raines, C.D.; Dardick, C.; Culver, J.N. Identification of phloem-associated translatome alterations during leaf development in Prunus domestica L. Hortic Res. 2019, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carella, P.; Merl-Pham, J.; Wilson, D.C.; Dey, S.; Hauck, S.M.; Vlot, A.C.; Cameron, R.K. Comparative proteomics analysis of phloem exudates collected during the induction of systemic acquired resistance. Plant Physiol. 2016, 171, 1495–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killiny, N. Collection of the phloem sap, pros and cons. Plant Signal. Behav. 2019, 14, 1618181. [Google Scholar] [CrossRef] [PubMed]
- Thome, M.; Skrablin, M.D.; Brandt, S.P. Tissue-specific mechanical microdissection of higher plants. Physiol. Plant 2006, 128, 383–390. [Google Scholar] [CrossRef]
- Schad, M.; Lipton, M.S.; Giavalisco, P.; Smith, R.D.; Kehr, J. Evaluation of two-dimensional electrophoresis and liquid chromatography--tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. Electrophoresis 2005, 26, 2729–2738. [Google Scholar] [CrossRef]
- Anstead, J.A.; Hartson, S.D.; Thompson, G.A. The broccoli phloem tissue proteome. BMC Genom. 2013, 14, 764. [Google Scholar] [CrossRef] [Green Version]
- Pu, Z.; Ino, Y.; Kimura, Y.; Tago, A.; Shimizu, M.; Natsume, S.; Sano, Y.; Fujimoto, R.; Fuji, S.; Okazaki, K.; et al. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress. Front. Plant. Sci. 2016, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.S.; Xiao, Y.; Yao, J.; Wu, Z.; Yang, Y.; Ismail, A.M.; Zhang, Z. Overexpression of a defensin-like gene CAL2 enhances cadmium accumulation in plants. Front. Plant Sci. 2020, 11, 217. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.S.; Zhang, Z. Proteomic changes in the xylem sap of Brassica napus under cadmium stress and functional validation. BMC Plant Biol. 2019, 19, 280. [Google Scholar] [CrossRef]
- Ligat, L.; Lauber, E.; Albenne, C.; San Clemente, H.; Valot, B.; Zivy, M.; Pont-Lezica, R.; Arlat, M.; Jamet, E. Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins. Proteomics 2011, 11, 1798–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceballos-Laita, L.; Gutierrez-Carbonell, E.; Takahashi, D.; Abadía, A.; Uemura, M.; Abadía, J.; López-Millán, A.F. Effects of Fe and Mn deficiencies on the protein profiles of tomato xylem sap as revealed by shotgun analyses. J. Proteom. 2018, 170, 117–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Chao, M.; Wang, S.; Bu, J.; Tang, J.; Li, F.; Wang, Q.; Zhang, B. Proteome quantification of cotton xylem sap suggests the mechanisms of potassium-deficiency-induced changes in plant resistance to environmental stresses. Sci. Rep. 2016, 6, 21060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalluri, U.C.; Hurst, G.B.; Lankford, P.K.; Ranjan, P.; Pelletier, D.A. Shotgun proteome profile of Populus developing xylem. Proteomics 2009, 9, 4871–4880. [Google Scholar] [CrossRef]
- Katam, R.; Chibanguza, K.; Latinwo, L.M.; Smith, D. Proteome biomarkers in xylem reveal Pierce’s disease tolerance in grape. J. Proteom. Bioinform. 2015, 8, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wu, H.X.; Southerton, S.G. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants. BMC Evol. Biol. 2010, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Aki, T.; Shigyo, M.; Nakano, R.; Yoneyama, T.; Yanagisawa, S. Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol. 2008, 49, 767–790. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, H.B.; Natarajan, S.S.; Bennett, J.O.; Sicher, R.C. Protein and metabolite composition of xylem sap from field-grown soybeans. Planta 2011, 233, 921–931. [Google Scholar] [CrossRef]
- Alvarez, S.; Marsh, E.L.; Schroeder, S.G.; Schachtman, D.P. Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ. 2008, 31, 325–340. [Google Scholar] [CrossRef]
- Rep, M.; Dekker, H.L.; Vossen, J.H.; de Boer, A.D.; Houterman, P.M.; de Koster, C.G.; Cornelissen, B.J. A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins. FEBS Lett. 2003, 534, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Houterman, P.M.; Speijer, D.; Dekker, H.L.; DE Koster, C.G.; Cornelissen, B.J.; Rep, M. The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol. Plant Pathol. 2007, 8, 215–221. [Google Scholar] [CrossRef] [PubMed]
- González, J.F.; Degrassi, G.; Devescovi, G.; De Vleesschauwer, D.; Höfte, M.; Myers, M.P.; Venturi, V. A proteomic study of Xanthomonas oryzae pv. oryzae in rice xylem sap. J. Proteom. 2012, 75, 5911–5919. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, M.A.; Oakes, M.; Li, D.X.; Hwang, C.H.; Hocart, C.H.; Gresshoff, P.M. The glycine max xylem sap and apoplast proteome. J. Proteom. Res. 2007, 6, 3771–3779. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, F.; Suzuki, T.; Osakabe, Y.; Betsuyaku, S.; Kondo, Y.; Dohmae, N.; Fukuda, H.; Yamaguchi-Shinozaki, K.; Shinozaki, K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 2018, 556, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Zhu, Y.; Fan, T.; Peng, C.; Wang, J.; Sun, L.; Chen, C. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem. Biophys. Res. Commun. 2019, 512, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.X.; Luo, Y.M.; Ye, Z.Q.; Cao, X.; Liang, J.N.; Wang, Q.; Wu, Y.; Wu, J.H.; Wang, H.Y.; Xia, G.X.; et al. iTRAQ-based proteomics analysis of autophagy-mediated immune responses against the vascular fungal pathogen Verticillium dahliae in Arabidopsis. Autophagy 2018, 14, 598–618. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, C.; Nirmala Devi, D.; Narasimha Murthy, K.; Mohan, C.D.; Lakshmeesha, T.R.; Singh, B.; Kalagatur, N.K.; Niranjana, S.R.; Abd Allah, E.F.; Chandra Nayaka, S.; et al. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity—A review. Saudi. J. Biol. Sci. 2019, 26, 1315–1324. [Google Scholar] [CrossRef]
- de Lamo, F.J.; Constantin, M.E.; Fresno, D.H.; Boeren, S.; Rep, M.; Takken, F.L.W. Xylem sap proteomics reveals distinct differences between R gene- and endophyte-mediated resistance against Fusarium wilt disease in tomato. Front. Microbiol. 2018, 9, 2977, Erratum in 2019, 10, 1872. [Google Scholar] [CrossRef]
- Marton, K.; Flajšman, M.; Radišek, S.; Košmelj, K.; Jakše, J.; Javornik, B.; Berne, S. Comprehensive analysis of Verticillium nonalfalfae in silico secretome uncovers putative effector proteins expressed during hop invasion. PLoS ONE. 2018, 13, e0198971. [Google Scholar] [CrossRef] [Green Version]
- Zaini, P.A.; Nascimento, R.; Gouran, H.; Cantu, D.; Chakraborty, S.; Phu, M.; Goulart, L.R.; Dandekar, A.M. Molecular profiling of Pierce’s disease outlines the response circuitry of Vitis vinifera to Xylella fastidiosa Infection. Front. Plant Sci. 2018, 9, 771. [Google Scholar] [CrossRef]
- Thompson, G.A.; Schulz, A. Macromolecular trafficking in the phloem. Trends Plant Sci. 1999, 4, 354–360. [Google Scholar] [CrossRef]
- Stadler, R.; Wright, K.M.; Lauterbach, C.; Amon, G.; Gahrtz, M.; Feuerstein, A.; Oparka, K.J.; Sauer, N. Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J. 2005, 41, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Cobollo, R.M.; Filippis, I.; Bennett, M.H.; Turnbull, C.G. Comparative proteomics of cucurbit phloem indicates both unique and shared sets of proteins. Plant J. 2016, 88, 633–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, W.K.; Chen, X.Y.; Rim, Y.; Chu, H.; Kim, S.; Kim, S.W.; Park, Z.Y.; Kim, J.Y. Proteome study of the phloem sap of pumpkin using multidimensional protein identification technology. J. Plant Physiol. 2010, 167, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, G.; Andaluz, S.; Matros, A.; Calvete, J.J.; Kehr, J.; Abadía, A.; Abadía, J.; López-Millán, A.F. Protein profile of Lupinus texensis phloem sap exudates: Searching for Fe-and Zn-containing proteins. Proteomics 2013, 13, 2283–2296. [Google Scholar] [CrossRef] [PubMed]
- Batailler, B.; Lemaître, T.; Vilaine, F.; Sanchez, C.; Renard, D.; Cayla, T.; Beneteau, J.; Dinant, S. Soluble and filamentous proteins in Arabidopsis sieve elements. Plant Cell Environ. 2012, 35, 1258–1273. [Google Scholar] [CrossRef]
- Feng, D.; Wang, Y.; Lu, T.; Zhang, Z.; Han, X. Proteomics analysis reveals marker proteins for minor vein initiation in rice leaf. Funct. Integr. Genom. 2018, 18, 581–591. [Google Scholar] [CrossRef]
- Ogden, A.J.; Bhatt, J.J.; Brewer, H.M.; Kintigh, J.; Kariuki, S.M.; Rudrabhatla, S.; Adkins, J.N.; Curtis, W.R. Phloem exudate -rotein profiles during drought and recovery reveal abiotic stress responses in tomato vasculature. Int. J. Mol. Sci. 2020, 21, 4461. [Google Scholar] [CrossRef]
- Dafoe, N.J.; Zamani, A.; Ekramoddoullah, A.K.; Lippert, D.; Bohlmann, J.; Constabel, C.P. Analysis of the poplar phloem proteome and its response to leaf wounding. J. Proteom. Res. 2009, 8, 2341–2350. [Google Scholar] [CrossRef]
- Lu, N.; Xu, Z.; Meng, B.; Sun, Y.; Zhang, J.; Wang, S.; Li, Y. Proteomic analysis of etiolated juvenile tetraploid robinia pseudoacacia branches during different cutting periods. Int. J. Mol. Sci. 2014, 15, 6674–6688. [Google Scholar] [CrossRef]
- Franco, J.; Thapa, S.P.; Pang, Z.; Gurung, F.B.; Liebrand, T.W.; Stevens, D.M.; Ancona, V.; Wang, N.; Coaker, G. Citrus vascular proteomics highlights the role of peroxidases and serine proteases during Huanglongbing disease progression. Mol. Cell Proteom. 2020. [Google Scholar] [CrossRef] [PubMed]
- Malter, D.; Wolf, S. Melon phloem-sap proteome: Developmental control and response to viral infection. Protoplasma 2011, 248, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Whitehill, J.G.; Popova-Butler, A.; Green-Church, K.B.; Koch, J.L.; Herms, D.A.; Bonello, P. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer. PLoS ONE 2011, 6, e24863. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Wei, Z.; Wang, Z.; Wang, X.; Peng, X.; Du, B.; Chen, R.; Zhu, L.; He, G. Phloem-exudate proteome analysis of response to insect brown plant–hopper in rice. J. Plant Physiol. 2015, 183, 13–22. [Google Scholar] [CrossRef]
- Tolstyko, E.A.; Lezzhov, A.A.; Pankratenko, A.V.; Serebryakova, M.V.; Solovyev, A.G.; Morozov, S.Y. Detection and in vitro studies of Cucurbita maxima phloem serpin–1 RNA-binding properties. Biochimie 2020, 170, 118–127. [Google Scholar] [CrossRef]
- Ramírez-Ortega, F.A.; Herrera-Pola, P.S.; Toscano-Morales, R.; Xoconostle-Cázares, B.; Ruiz-Medrano, R. Overexpression of the pumpkin (Cucurbita maxima) 16 kDa phloem protein CmPP16 increases tolerance to water deficit. Plant Signal. Behav. 2014, 9, e973823. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Navarro, A.C.; Galván-Gordillo, S.V.; Xoconostle-Cázares, B.; Ruiz-Medrano, R. Vascular gene expression: A hypothesis. Front. Plant Sci. 2013, 4, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- la Cour Petersen, M.; Hejgaard, J.; Thompson, G.A.; Schulz, A. Cucurbit phloem serpins are graft-transmissible and appear to be resistant to turnover in the sieve element-companion cell complex. J. Exp. Bot. 2005, 56, 3111–3120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonke, M.; Thitamadee, S.; Mähönen, A.P.; Hauser, M.T.; Helariutta, Y. APL regulates vascular tissue identity in Arabidopsis. Nature 2003, 426, 181–186. [Google Scholar] [CrossRef]
- Mazur, E.; Kulik, I.; Hajný, J.; Friml, J. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. New Phytol. 2020, 226, 1375–1383. [Google Scholar] [CrossRef] [Green Version]
- Lü, J.; Sui, X.; Ma, S.; Li, X.; Liu, H.; Zhang, Z. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. Plant Mol. Biol. 2017, 95, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ji, D.; Turgeon, R.; Chen, J.; Lin, T.; Huang, J.; Luo, J.; Zhu, Y.; Zhang, C.; Lv, Z. Physiological and proteomic responses of mulberry trees (Morus alba. L.) to combined salt and drought stress. Int. J. Mol. Sci. 2019, 20, 2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dal Santo, S.; Stampfl, H.; Krasensky, J.; Kempa, S.; Gibon, Y.; Petutschnig, E.; Rozhon, W.; Heuck, A.; Clausen, T.; Jonak, C. Stress-induced GSK3 regulates the redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in Arabidopsis. Plant Cell. 2012, 24, 3380–3392. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Lu, X.; Chen, A.J.; Luo, Y.; Hao, J.J.; Gao, W. Effects of Fusarium solani and F. oxysporum Infection on the Metabolism of Ginsenosides in American Ginseng Roots. Molecules 2015, 20, 10535–10552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBlasio, S.L.; Johnson, R.S.; MacCoss, M.J.; Gray, S.M.; Cilia, M. Model system-guided protein interaction mapping for virus isolated from phloem tissue. J. Proteom. Res. 2016, 15, 4601–4611. [Google Scholar] [CrossRef] [PubMed]
- Folimonova, S.Y.; Tilsner, J. Hitchhikers, highway tolls and roadworks: The interactions of plant viruses with the phloem. Curr. Opin. Plant Biol. 2018, 43, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.X.; Qian, L.X.; Wang, X.W.; Shao, R.X.; Hong, Y.; Liu, S.S.; Wang, X.W. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc. Natl. Acad. Sci. USA 2019, 116, 490–495. [Google Scholar] [CrossRef] [Green Version]
- MacWilliams, J.R.; Dingwall, S.; Chesnais, Q.; Sugio, A.; Kaloshian, I. AcDCXR is a cowpea aphid effector with putative roles in altering host immunity and physiology. Front. Plant Sci. 2020, 11, 605. [Google Scholar] [CrossRef]
- Will, T.; van Bel, A.J. Physical and chemical interactions between aphids and plants. J. Exp. Bot. 2006, 57, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Hou, Q.; Liu, G.; Pang, X.; Niu, Z.; Wang, X.; Zhang, Y.; Li, B.; Liang, R. Expression of Pinellia pedatisecta Lectin gene in transgenic wheat enhances resistance to wheat aphids. Molecules 2018, 23, 748. [Google Scholar] [CrossRef] [Green Version]
- Barrera, N.F.; Melgarejo, L.M.; Cruz-Gallego, M.; Cortés, L.J.; Guzmán, F.; Calvo, J.C. Conformationally restricted peptides from rice proteins elicit antibodies that recognize the corresponding native protein in ELISA assays. Molecules 2018, 23, 2262. [Google Scholar] [CrossRef] [Green Version]
- Notaguchi, M.; Okamoto, S. Dynamics of long-distance signaling via plant vascular tissues. Front. Plant Sci. 2015, 6, 161. [Google Scholar] [CrossRef] [Green Version]
- Aoki, K.; Suzui, N.; Fujimaki, S.; Dohmae, N.; Yonekura-Sakakibara, K.; Fujiwara, T.; Hayashi, H.; Yamaya, T.; Sakakibara, H. Destination-selective long-distance movement of phloem proteins. Plant Cell. 2005, 17, 1801–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiegelman, Z.; Shahar, A.; Wolf, S. Down-regulation of SlCyp1 in the phloem reduces auxin response and photosynthetic rate in tomato (Solanum lycopersicum) plants. Plant Signal. Behav. 2017, 12, e1338224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, A.; Rocco, M.; Arena, S.; Giuffrida, F.; Cassaniti, C.; Scaloni, A.; Lomaglio, T.; Guarnaccia, V.; Polizzi, G.; Marra, M.; et al. Tomato susceptibility to Fusarium crown and root rot: Effect of grafting combination and proteomic analysis of tolerance expression in the rootstock. Plant Physiol. Biochem. 2014, 83, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.; Jung, H.S.; Chung, K.S.; Lee, J.H.; Ahn, J.H. FLOWERING LOCUS T has higher protein mobility than TWIN SISTER OF FT. J. Exp. Bot. 2015, 66, 6109–6117. [Google Scholar] [CrossRef] [Green Version]
- Liesche, J.; Patrick, J. An update on phloem transport: A simple bulk flow under complex regulation. F1000Research 2017, 6, 2096. [Google Scholar] [CrossRef] [Green Version]
- Paultre, D.S.G.; Gustin, M.P.; Molnar, A.; Oparka, K.J. Lost in transit: Long-distance trafficking and phloem unloading of protein signals in Arabidopsis homografts. Plant Cell. 2016, 28, 2016–2025. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, A.; Gaupels, F.; Sarioglu, H.; Holzmeister, C.; Spannagl, M.; Durner, J.; Lindermayr, C. Looking deep inside: Detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. Plant Physiol. 2012, 159, 902–914. [Google Scholar] [CrossRef] [Green Version]
- Anne, P.; Hardtke, C.S. Phloem function and development-biophysics meets genetics. Curr. Opin Plant Biol. 2018, 43, 22–28. [Google Scholar] [CrossRef]
- Pommerrenig, B.; Papini-Terzi, F.S.; Sauer, N. Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiol. 2007, 144, 1029–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pommerrenig, B.; Feussner, K.; Zierer, W.; Rabinovych, V.; Klebl, F.; Feussner, I.; Sauer, N. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. Plant Cell. 2011, 23, 1904–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Huang, Z.; Zhou, X.; Xia, C.; Imran, M.; Wang, S.; Xu, C.; Zha, M.; Liu, Y.; Zhang, C. Tissue-specific transcriptomic profiling of Plantago major provides insights for the involvement of vasculature in phosphate deficiency responses. Mol. Genet. Genom. 2019, 294, 159–175. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lin, T.; Valencia, M.V.; Zhang, C.; Lv, Z. Unraveling the Roles of Vascular Proteins Using Proteomics. Molecules 2021, 26, 667. https://doi.org/10.3390/molecules26030667
Liu Y, Lin T, Valencia MV, Zhang C, Lv Z. Unraveling the Roles of Vascular Proteins Using Proteomics. Molecules. 2021; 26(3):667. https://doi.org/10.3390/molecules26030667
Chicago/Turabian StyleLiu, Yan, Tianbao Lin, Maria Valderrama Valencia, Cankui Zhang, and Zhiqiang Lv. 2021. "Unraveling the Roles of Vascular Proteins Using Proteomics" Molecules 26, no. 3: 667. https://doi.org/10.3390/molecules26030667