Bacterial Adhesion of Streptococcus mutans to Dental Material Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial
2.2. Growth Curve of S. mutans
2.3. Material Surfaces
2.4. Surface Characterization
2.5. Monitoring the Adhesion Extent
2.6. Statistical Analysis
3. Results
3.1. Roughness Measurement
3.2. Contact Angle
3.3. Zeta Potential
3.4. Growth of Bacteria
3.5. SEM Micrographs
3.6. Bacterial Adhesion Extent
3.7. Time Evolution of Bacterial Extent
3.8. Different Materials in Contact
4. Discussion
5. Conclusions
- We indicated that the TPZ ceramic had the lowest determined roughness, whereas the highest roughness was observed on the Au-Pt alloy surface. Amalgam, Chromasit, the IPS InLine ceramic, the resin-based composite, the TPZ ceramic, and the tooth were hydrophilic, whereas the Au-Pt and Cr-Co alloys were hydrophobic. The zeta potential measurements indicated that all tested dental material surfaces were negatively charged.
- The bacterial growth in the BHI medium with the tested materials showed that amalgam is the optimal surface regarding bacterial adhesion.
- SEM observations revealed that on the resin-based composite and tooth surfaces, a larger part of the surfaces was covered with densely packed bacteria. The Au-Pt surface was covered with individual bacteria, whereas adhered bacteria were very rarely observed on the amalgam and Chromasit. Correlations between those characteristics need to be investigated for further material development and better adhesion rate understanding.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Han, A.; Tsoi, J.K.H.; Rodrigues, F.P.; Leprince, J.G.; Palin, W.M. Bacterial adhesion mechanisms on dental implant surfaces and the influencing factors. Int. J. Adhes. Adhes. 2016, 69, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Mahler, D.; Sakaguchi, R.L. Restorative Materials—Metals. In Craig’s Restorative Dental Materials, 13th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012; pp. 199–251. [Google Scholar]
- Lovegrove, J.M. Dental plaque revisited: Bacteria associated with periodontal disease. J. N. Soc. Periodontol. 2004, 87, 7–21. [Google Scholar]
- Ionescu, A.C.; Brambilla, E.; Travan, A.; Marsich, E.; Donati, I.; Gobbi, P.; Turco, G.; Di Lenarda, R.; Cadenaro, M.; Paoletti, S.; et al. Silver-polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces S. mutans biofilm formation in vitro. J. Dent. 2015, 43, 1483–1490. [Google Scholar] [CrossRef]
- Van Amerongen, J.P.; Watson, T.F.; Opdam, N.J.M.; Roeters, F.J.M.; Bittermann, D. Restoring the tooth: The seal is the deal. In Dental Caries: The Disease and Its Clinical Management, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 387–395. [Google Scholar]
- Quirynen, M.; van der Mei, H.C.; Bollen, C.M.; Schotte, A.; Marechal, M.; Doornbusch, G.I.; Naert, I.; Busscher, H.J.; van Steenberghe, D. An in vivo study of the influence of the surface roughness of implants on the microbiology of supra-and subgingival plaque. J. Dent. Res. 1993, 72, 1304–1309. [Google Scholar] [CrossRef]
- Brouwer, F.; Askar, H.; Paris, S.; Schwendicke, F. Detecting Secondary Caries Lesions: A Systematic Review and Meta-analysis. J. Dent. Res. 2016, 95, 143–151. [Google Scholar] [CrossRef]
- Anusavice, K. Phillips’ Science of Dental Materials, 11th ed.; WB Saunders: Philadelphia, PA, USA, 2003; pp. 1–832. [Google Scholar]
- Čolić, M.; Stamenković, D.; Anžel, I.; Lojen, G.; Rudolf, R. The influence of the microstructure of high noble gold-platinum dental alloys on their cor rosion and biocompatibility in vitro. Gold Bull 2009, 42, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Bollenl, C.M.L.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 258–269. [Google Scholar] [CrossRef]
- Brownawell, A.M.; Berent, S.; Brent, R.L.; Bruckner, J.V.; Doull, J.; Gershwin, E.M.; Hood, R.D.; Matanoski, G.M.; Rubin, R.; Weiss, B.; et al. The potential adverse health effects of dental amalgam. Toxicol. Rev. 2005, 24, 1–10. [Google Scholar] [CrossRef]
- Merrett, M.C.; Elderton, R.J. An in vitro study of restorative dental treatment decisions and dental caries. Br. Dent. J. 1984, 157, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Mjör, I.A.; Moorhead, J.E.; Dahl, J.E. Reasons for replacement of restorations in permanent teeth in general dental practice. Int. Dent. J. 2000, 50, 361–366. [Google Scholar] [CrossRef]
- Labban, L.M.; Alshishkli, M.M.; Alkhalaf, A.; Malek, Z. The Effects of Dental Amalgam Toxicity on Health and Nutritional status. J. Adv. Res. Dent. Oral Health 2017, 2, 1–4. [Google Scholar] [CrossRef]
- Song, F.; Koo, H.; Ren, D. Effects of material properties on bacterial adhesion and biofilm formation. J. Dent. Res. 2015, 94, 1027–1034. [Google Scholar] [CrossRef]
- Mitra, S.B. Restorative materials-composites and polymers. In Craig’s Restorative Dental Materials, 13th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012; pp. 161–198. [Google Scholar]
- Shenoy, A. Is it the end of the road for dental amalgam? A critical review. J. Conserv. Dent. 2008, 11, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Bayoudh, S.; Othmane, A.; Ponsonnet, L.; Ouada, H.B. Electrical detection and characterization of bacterial adhesion using electrochemical impedance spectroscopy-based flow chamber. Colloid Surf. A Physicochem. Eng. Asp. 2008, 318, 291–300. [Google Scholar] [CrossRef]
- Deligeorgi, V.; Wilson, N.H.F.; Fouzas, D.; Kouklaki, E.; Burke, F.J.T.; Mjör, I.A. Reasons for placement and replacement of restorations in student clinics in Manchester and Athens. Eur. J. Dent. Educ. 2000, 4, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Gartner, U.; Gošnak Dahmane, R.; Ghannouchi, S.; Zore, A.M.; Bohinc, K. Bacterial adhesion on orthopedic implants. Adv. Colloid. Interface. Sci. 2020, 283, 1–12. [Google Scholar] [CrossRef]
- Boks, N.P.; Norde, W.; van der Mei, H.C.; Busscher, H.J. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology 2008, 154, 3122–3133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, V.K.; Lapovok, R.; Estrin, Y.S.; Rundell, S.; Wang, J.Y. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 2010, 31, 3674–3683. [Google Scholar] [CrossRef] [PubMed]
- Magdy, N.M.; Kola, M.Z.; Alqahtani, H.H.; Alqahtani, M.D.A.; Alghmlas, A.S. Evaluation of Surface Roughness of Different Direct Resin-based Composites. J. Int. Prev. Community Dent. 2017, 7, 104–109. [Google Scholar] [CrossRef]
- Oliveira, A.L.B.M.; Garcia, P.P.N.S.; Santos, P.A.; Campos, J.A.D.B. Surface roughness and hardness of a composite resin: Influence of finishing and polishing and immersion methods. Mat. Res. 2010, 13, 409–415. [Google Scholar] [CrossRef]
- Carneiro, P.M.A.; Ramos, T.M.; Azevedo, C.S.; Lima, E.; Souza, S.H.J.; Turbino, M.L.; Cesar, P.F.; Matos, A.B. Influence of Finishing and Polishing Techniques and Abrasion on Transmittance and Roughness of Composite Resins. Oper. Dent. 2016, 41, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Zortuk, M.; Kılıc, K.; Uzun, G.; Ozturk, A.; Kesim, B. The effect of different fiber concentrations on the surface roughness of provisional crown and fixed partial denture resin. Eur. J. Dent. 2008, 2, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Al-Thobity, A.M.; Gad, M.; ArRejaie, A.; Alnassar, T.; Al-Khalifa, K.S. Impact of Denture Cleansing Solution Immersion on Some Properties of Different Denture Base Materials: An In Vitro Study. J. Prosthodont. 2019, 28, 913–919. [Google Scholar] [CrossRef]
- Heintze, S.D.; Forjanic, M. Surface roughness of different dental materials before and after simulated toothbrushing in vitro. Oper. Dent. 2005, 30, 617–626. [Google Scholar]
- Kumari, C.M.; Bhat, K.M.; Bansal, R. Evaluation of surface roughness of different restorative composites after polishing using atomic force microscopy. J. Conserv. Dent. 2016, 19, 56–62. [Google Scholar] [CrossRef]
- Bohinc, K.; Dražić, G.; Fink, R.; Oder, M.; Jevšnik, M.; Nipič, D.; Godič Torkar, K.; Raspor, P. Available surface dictates microbial adhesion capacity. Int. J. Adhes. Adhes. 2014, 50, 265–272. [Google Scholar] [CrossRef]
- Bohinc, K.; Dražić, G.; Abram, A.; Jevšnik, M.; Jeršek, B.; Nipič, D.; Kurinčič, M.; Raspor, P. Metal surface characteristics dictate bacterial adhesion capacity. Int. J. Adhes. Adhes. 2016, 68, 39–46. [Google Scholar] [CrossRef]
- Ramnarayan, B.K.; Maligi, P.M.; Smitha, T.; Patil, U.S. Amalgam contact hypersensitivity lesion: An unusual presentation-report of a rare case. Ann. Med. Health Sci. Res. 2014, 4, 320–323. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.S.; Azam, M.T.; Khan, M.; Mian, S.A.; Ur-Rehman, I. An update on glass fiber dental restorative composites: A systematic review. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 47, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Weldon, J.C.; Yengopal, V.; Siegfried, N.; Gostemeyer, G.; Schwendicke, F.; Worthington, H.V. Dental filling materials for managing carious lesions in the primary dentition. Cochrane Database Syst. Rev. 2016, 9, 1–11. [Google Scholar] [CrossRef]
- Uçar, Y.; Brantley, W.A. Biocompatibility of dental amalgams. Int. J. Dent. 2011, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, K.; Koizumi, H.; Horiuchi, N.; Nakamura, M.; Okura, T.; Yamashita, K.; Nagai, A. Suppression effects of dental glass-ceramics with polarization-induced highly dense surface charges against bacterial adhesion. Dent. Mater. J. 2015, 34, 671–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.H.; Chiu, Y.H.; Lee, T.H.; Wu, S.C.; Yang, H.W.; Su, K.H.; Hsu, C.C. Ion release from TiNi orthodontic wires in artificial saliva with various acidities. Biomaterials 2003, 24, 3585–3592. [Google Scholar] [CrossRef]
- Geis-Gerstorfer, J.; Weber, H. Effects of potassium thiocyanate on corrosion behaviour of non-precious metal dental alloys. Deutsch Zahnarztl 1985, 40, 87–91. [Google Scholar]
- Denry, I.L. Restorative materials-ceramics. In Craig’s Restorative Dental Materials, 13th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012; pp. 253–275. [Google Scholar]
- Oliveira, R.; Azeredo, J.; Teixeira, P.; Fonseca, A.P. The role of hydrophobicity in bacterial adhesion. BioLine 2001, 11–22. [Google Scholar] [CrossRef]
- Øilo, M.; Bakken, V. Biofilm and dental biomaterials. Materials 2015, 8, 2887–2900. [Google Scholar] [CrossRef]
- Forssten, S.D.; Bjorklund, M.; Ouwehand, A.C. Streptococcus mutans, caries and simulation models. Nutrients 2010, 2, 290–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahnel, S.; Rosentritt, M.; Handel, G.; Burgers, R. Surface characterization of dental ceramics and initial streptococcal adhesion in vitro. Dent. Mater. 2009, 25, 969–975. [Google Scholar] [CrossRef]
- Bernardo, M.; Luis, H.; Martin, M.D.; Leroux, B.G.; Rue, T.; Leitão, J.; DeRouen, T.A. Survival and reasons for failure of amalgam versus composite posterior restorations placed in a randomized clinical trial. J. Am. Dent. Assoc. 2007, 138, 775–783. [Google Scholar] [CrossRef] [Green Version]
- Bakker, D.P.; Busscher, H.J.; van Zanten, J.; de Vries, J.; Klijnstra, J.W. Multiple linear regression analysis of bacterial deposition to polyurethane coatings after conditioning film formation in the marine environment. Microbiology 2004, 150, 1779–1784. [Google Scholar] [CrossRef] [Green Version]
- Busscher, H.J.; Rinastiti, M.; Siswomihardjo, W.; van der Mei, H.C. Biofilm formation on dental restorative and implant materials. J. Dent. Res. 2010, 89, 657–665. [Google Scholar] [CrossRef]
- Murray, P.E.; Windsor, L.J.; Smyth, T.W.; Hafez, A.A.; Cox, C.F. Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Crit. Rev. Oral. Biol. Med. 2002, 13, 509–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, G.J.; Sedin, D.L.; Rowlen, K.L. Surface Roughness by Contact versus Tapping Mode Atomic Force Microscopy. Langmuir 1999, 15, 1429–1434. [Google Scholar] [CrossRef]
- Feuer, G.; Injeyan, H.S. The dental amalgam controversy: A review. J. Can. Chiropr. Assoc. 1996, 40, 169–179. [Google Scholar]
- Rathore, M.; Singh, A.; Pant, V.A. The dental amalgam toxicity fear: A myth or actuality. Toxicol. Int. 2012, 19, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azam, M.T.; Khan, A.S.; Muzzafar, D.; Faryal, R.; Siddiqi, A.S.; Ahmad, R.; Chauhdry, A.A.; Rehman, I. Structural, surface in vitro bacterial adhesion and biofilm formation analysis of three dental restorative composites. Materials 2015, 8, 3221–3237. [Google Scholar] [CrossRef]
- Muenchinger, K.L.; Sakaguchi, R.L. Design criteria for resorative dental materials. In Craig’s Restorative Dental Materials, 13th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012; pp. 25–31. [Google Scholar]
- Di Bonaventura, G.; Piccolomini, R.; Paludi, D.; D’Orio, V.; Vergara, A.; Conter, M.; Lanieri, A. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: Relationship with motility and cell surface hydrophobicity. J. Appl. Microbiol. 2008, 104, 1552–1561. [Google Scholar] [CrossRef]
- Valen, H.; Scheie, A.A. Biofilms and their properties. Eur. J. Oral. Sci. 2018, 126, 13–18. [Google Scholar] [CrossRef]
- Fiorillo, L. We Do Not Eat Alone: Formation and Maturation of the Oral Microbiota. Biology 2020, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Edlund, A.; Yang, Y.; Yooseph, S.; He, X.; Shi, W.; McLean, J.S. Uncovering complex microbiome activities via metatranscriptomics during 24 hours of oral biofilm assembly and maturation. Microbiome 2018, 6, 1–22. [Google Scholar] [CrossRef]
- Fiorillo, L.; Cervino, G.; Laino, L.; D’Amico, C.; Mauceri, R.; Tozum, T.F.; Gaeta, M.; Cicciù, M. Porphyromonas gingivalis, Periodontal and Systemic Implications: A Systematic Review. Dent. J. 2019, 7, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Materials for Dental Application | |||
---|---|---|---|
Metals | Polymers | Ceramics | Composites |
Amalgam | Chromasit | IPS InLine ceramic | Resin-based composite |
Co-Cr alloy | TPZ ceramic | ||
Au-Pt alloy |
Time Evolution of Bacterial Extent on the Chromasit Surface | |||||
---|---|---|---|---|---|
Time | 5 h | 10 h | 15 h | 20 h | 24 h |
Surface Coverage | 0.76% | 7.71% | 7.13% | 9.01% | 61.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozmos, M.; Virant, P.; Rojko, F.; Abram, A.; Rudolf, R.; Raspor, P.; Zore, A.; Bohinc, K. Bacterial Adhesion of Streptococcus mutans to Dental Material Surfaces. Molecules 2021, 26, 1152. https://doi.org/10.3390/molecules26041152
Kozmos M, Virant P, Rojko F, Abram A, Rudolf R, Raspor P, Zore A, Bohinc K. Bacterial Adhesion of Streptococcus mutans to Dental Material Surfaces. Molecules. 2021; 26(4):1152. https://doi.org/10.3390/molecules26041152
Chicago/Turabian StyleKozmos, Mirjam, Petra Virant, Franc Rojko, Anže Abram, Rebeka Rudolf, Peter Raspor, Anamarija Zore, and Klemen Bohinc. 2021. "Bacterial Adhesion of Streptococcus mutans to Dental Material Surfaces" Molecules 26, no. 4: 1152. https://doi.org/10.3390/molecules26041152