Processing Effect and Characterization of Olive Oils from Spanish Wild Olive Trees (Olea europaea var. sylvestris)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield, Quality Parameters, and Photosynthetic Pigments
2.2. Fatty Acids
2.3. Phenolic Compounds and Antioxidant Activity
2.4. Volatile Compounds
3. Conclusions
4. Materials and Methods
4.1. Plant Material and Oil Extraction
4.2. Experimental Design
4.3. Statistical Analysis
4.4. Analytical Methods
4.4.1. Determination of Chlorophyll and Carotenoid
4.4.2. Determination of Fatty Acid
4.4.3. Determination of Volatile Compounds
4.4.4. Determination of Phenol Compounds
4.4.5. Antioxidant Potential
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hess, J.; Kadereit, J.W.; Vargas, P. The colonization history of Olea europaea L. in macaronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and intersimple sequence repeats (ISSR). Mol. Ecol. 2000, 9, 857–868. [Google Scholar] [CrossRef] [Green Version]
- Loureiro, J.; Rodriguez, E.; Costa, A.; Santos, C. Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris brot.) and portuguese cultivars of O. europaea using flow cytometry. Genet. Resour. Crops Evol. 2007, 54, 21–25. [Google Scholar]
- Unver, T.; Wu, Z.; Sterck, L.; Turktas, M.; Lohaus, R.; Li, Z.; Van de Peer, Y. Genome of wild olive and the evolution of oil biosynthesis. Proc. Nat. Acad. Sci. USA 2017, 114, E9413–E9422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pignatti, S. Flora d’italia, 2nd ed.; Agricole: Bologna, Italy, 1982. [Google Scholar]
- Besnard, G.; Terral, J.; Cornille, A. On the origins and domestication of the olive: A review and perspectives. Ann. Bot. 2017, 121, 385–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covas, F.M.; De la Torre, R. Minor bioactive olive oil components and health: Key data for their role in providing health benefits in humans. In Olive and Olive Oil Bioactive Constituents; AOCS Press: Urbana, IL, USA, 2015; pp. 31–52. [Google Scholar]
- Visioli, F.; Bellosta, S.; Galli, C. Cardioprotective properties of olive oil-derived polyphenols. Atherosclerosis 1997, 134, 336. [Google Scholar] [CrossRef]
- Hohmann, C.D.; Cramer, H.; Michalsen, A.; Kessler, C.; Steckhan, N.; Choi, K.; Dobos, G. Effects of high phenolic olive oil on cardiovascular risk factors: A systematic review and meta-analysis. Phytomedicine 2015, 22, 631–640. [Google Scholar] [CrossRef]
- Trevisan, M.; Krogh, V.; Freudenheim, J.; Blake, A.; Muti, P.; Panico, S.; Ricci, G. Consumption of olive oil, butter, and vegetable oils and coronary heart disease risk factors. JAMA 1990, 263, 688–692. [Google Scholar] [CrossRef] [PubMed]
- European Commission Regulation 432/2012 of 16 May 2012, Establishing a List of Permitted Health Claims Made on Foods, Other than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health. Official Journal of the European Union, L 136/1-40. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32012R0432 (accessed on 27 March 2020).
- Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Breslin, P.A.S. Ibuprofen-like activity in extra-virgin olive oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef]
- Montedoro, G.F.; Servili, M.; Baldioli, M. The use of biotechnology means during oil mechanical extraction process: Relationship with sensory and nutritional parameters of virgin oil quality. Acta Hortic. 2002, 586, 557–560. [Google Scholar]
- De Torres, A.; Espínola, F.; Moya, M.; Alcalá, S.; Vidal, A.M.; Castro, E. Assessment of phenolic compounds in virgin olive oil by response surface methodology with particular focus on flavonoids and lignans. LWT-Food Sci. Technol. 2018, 90, 22–30. [Google Scholar] [CrossRef]
- Romero, N.; Saavedra, J.; Tapia, F.; Sepúlveda, B.; Aparicio, R. Influence of agroclimatic parameters on phenolic and volatile compounds of chilean virgin olive oils and characterization based on geographical origin, cultivar and ripening stage. J. Sci. Food Agric. 2015, 96, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.; Morozzi, G. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 2004, 1054, 113–127. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Espínola, F.; Moya, M.; Fernández, D.G.; Castro, E. Modelling of virgin olive oil extraction using response surface methodology. Int. J. Food Sci. Technol. 2011, 46, 2576–2583. [Google Scholar] [CrossRef]
- European Commission Regulation 2095/2016, Amending Regulation (EEC) no 2568/91 of 26 Sep 2016 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis, Official Journal of the European Union, L 326/1-6. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R2095 (accessed on 27 March 2020).
- Hannachi, H.; Nasri, N.; Elfalleh, W.; Tlili, N.; Ferchichi, A.; Msallem, M. Fatty acids, sterols, polyphenols, and chlorophylls of olive oils obtained from tunisian wild olive trees (Olea europaea L. var. sylvestris). Int. J. Food Prop. 2013, 16, 1271–1283. [Google Scholar] [CrossRef]
- Anwar, P.; Bendini, A.; Gulfraz, M.; Qureshi, R.; Valli, E.; Di Lecce, G.; Toschi, T.G. Characterization of olive oils obtained from wild olive trees (Olea ferruginea royle) in pakistan. Food Res. Int. 2013, 54, 1965–1971. [Google Scholar] [CrossRef]
- Bouarroudj, K.; Tamendjari, A.; Larbat, R. Quality, composition and antioxidant activity of algerian wild olive (Olea europaea L. subsp. oleaster) oil. Ind. Crops Prod. 2016, 83, 484–491. [Google Scholar] [CrossRef]
- Zribi, A.; Gargouri, B.; Jabeur, H.; Rebaï, A.; Abdelhedi, R.; Bouaziz, M. Enrichment of pan-frying refined oils with olive leaf phenolic-rich extract to extend the usage life. Eur. J. Lipid Sci. Tech. 2013, 115, 1443–1453. [Google Scholar] [CrossRef]
- Ranalli, A.; Pollastri, L.; Contento, S.; Iannucci, E.; Lucera, L. Effect of olive paste kneading process time on the overall quality of virgin olive oil. Eur. J. Lipid Sci. Tech. 2003, 105, 57–67. [Google Scholar] [CrossRef]
- Vekiari, S.A.; Koutsaftakis, A. The effect of different processing stages of olive fruit on the extracted olive oil polyphenol content. Grasas y Aceites 2002, 53, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Ben Brahim, S.; Marrakchi, F.; Gargouri, B.; Bouaziz, M. Optimization of malaxing conditions using CaCO3 as a coadjuvant: A method to increase yield and quality of extra virgin olive oil cv. Chemlali. LWT-Food Sci. Technol. 2015, 63, 243–252. [Google Scholar] [CrossRef]
- Vidal, A.M.; Alcalá, S.; De Torres, A.; Moya, M.; Espínola, F. Industrial production of a balanced virgin olive oil. LWT-Food Sci. Technol. 2018, 97, 588–596. [Google Scholar] [CrossRef]
- Fregapane, G.; Salvador, M.D. Production of superior quality extra virgin olive oil modulating the content and profile of its minor components. Food Res. Int. 2013, 54, 1907–1914. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Inarejos-García, A.M.; Salvador, M.D.; Fregapane, G. Effect of malaxation conditions on phenol and volatile profiles in olive paste and the corresponding virgin olive oils (Olea europaea L. cv. cornicabra). J. Agric. Food Chem. 2009, 57, 3587–3595. [Google Scholar]
- Kalua, C.M.; Bedgood, D.R., Jr.; Bishop, A.G.; Prenzler, P.D. Changes in volatile and phenolic compounds with malaxation time and temperature during virgin olive oil production. J. Agric. Food Chem. 2006, 54, 7641–7651. [Google Scholar] [CrossRef]
- Diamantakos, P.; Giannara, T.; Skarkou, M.; Melliou, E.; Magiatis, P. Influence of harvest time and malaxation conditions on the concentration of individual phenols in extra virgin olive oil related to its healthy properties. Molecules 2020, 25, 2449. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Ranalli, A.; Contento, S.; Schiavone, C.; Simone, N. Malaxing temperature affects volatile and phenol composition as well as other analytical features of virgin olive oil. Eur. J. Lipid Sci. Technol. 2001, 103, 228–238. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Improvements in the malaxation process to enhance the aroma quality of extra virgin olive oils. Food Chem. 2014, 158, 534–545. [Google Scholar] [CrossRef]
- Luna, G.; Morales, M.T.; Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- Salas, J.J.; Williams, M.; Harwood, J.L.; Sánchez, J. Lipoxygenase activity in olive (Olea europaea) fruit. J. Am. Oil Chem. Soc. 1999, 76, 1163–1168. [Google Scholar] [CrossRef]
- Vidal, A.M.; Alcalá, S.; Ocaña, M.T.; De Torres, A.; Espínola, F.; Moya, M. Elaboration of extra-virgin olive oils rich in oleocanthal and oleacein: Pilot plant’s proposal. Eur. Food Res. Technol. 2020, 246, 1459–1468. [Google Scholar] [CrossRef]
- Espínola, F.; Moya, M.; Fernández, D.G.; Castro, E. Improved extraction of virgin olive oil using calcium carbonate as coadjuvant extractant. J. Food Eng. 2009, 92, 112–118. [Google Scholar] [CrossRef]
- Mínguez-Mosquera, I.M.; Rejano-Navarro, L.; Gandul-Rojas, B.; Sánchez-Gómez, A.H.; Garrido-Fernández, J. Color-pigment correlation in virgin olive oil. J. Am. Oil Chem. Soc. 1991, 68, 332–336. [Google Scholar] [CrossRef]
- Vidal, A.M.; Alcalá, S.; De Torres, A.; Moya, M.; Espínola, F. Characterization of olive oils from superintensive crops with different ripening degree, irrigation management, and cultivar: (Arbequina, Koroneiki, and Arbosana). Eur. J. Lipid Sci. Technol. 2019, 121, 1800360. [Google Scholar] [CrossRef]
- International Olive Council. Determination of Biophenols in Olive Oils by HPLC. COI/T.20/doc No 29/Rev 1, 2017. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T.20-Doc.-No-29-Rev-1-2017.pdf (accessed on 27 March 2020).
Actual Factors | Responses | |||||
---|---|---|---|---|---|---|
Design Points | Diameter (mm) | Temperature (°C) | Time (min) | Extraction Yield (g oil/100 g paste) | Acidity (%) | Peroxide Index (mEq O2/kg) |
1 | 5.5 | 30 | 60 | 11.9 | 0.19 | 0.17 |
2 | 5.5 | 20 | 90 | 12.1 | 0.23 | 0.22 |
3 | 4.5 | 30 | 90 | 11.5 | 0.25 | 0.23 |
4 | 6.5 | 30 | 90 | 10.7 | 0.20 | 0.16 |
5 | 6.5 | 40 | 60 | 12.1 | 0.18 | 0.31 |
6 | 5.5 | 20 | 30 | 10.6 | 0.19 | 0.17 |
7 | 6.5 | 20 | 60 | 11.6 | 0.21 | 0.18 |
8 | 5.5 | 40 | 90 | 11.9 | 0.20 | 0.25 |
9 | 4.5 | 40 | 60 | 12.0 | 0.21 | 0.30 |
10 | 5.5 | 40 | 30 | 10.6 | 0.23 | 0.28 |
11 | 6.5 | 30 | 30 | 11.1 | 0.19 | 0.17 |
12 | 4.5 | 30 | 30 | 11.0 | 0.22 | 0.24 |
13 | 5.5 | 30 | 60 | 11.7 | 0.22 | 0.17 |
14 | 4.5 | 20 | 60 | 11.4 | 0.22 | 0.23 |
15 | 5.5 | 30 | 60 | 11.4 | 0.22 | 0.23 |
16 | 5.5 | 30 | 60 | 11.6 | 0.23 | 0.19 |
17 | 5.5 | 30 | 60 | 11.8 | 0.19 | 0.26 |
Response | Model * | p-Value | R2 | SD |
---|---|---|---|---|
Extraction Yield (g oil/100 g paste) | 9.3471 + 0.05929 t − 3.2956 × 10−4 t2 | <0.0001 | 0.802 | 0.24 |
Acidity (%) | 0.2102 | - | - | 0.019 |
Peroxide index (mEq O2/kg) | 0.55609 − 0.030919 D − 0.015337 T + 3.0769 × 10−4 T2 | 0.0016 | 0.707 | 0.026 |
K232 | 1.2552 | - | - | 0.13 |
K270 | 0.15327 | - | - | 0.29 |
Chlorophylls (mg/kg) | 87.371 − 2.2140 D − 4.4013 T − 0.16206 t + 0.011715 T t + 0.076590 T2 | <0.0001 | 0.964 | 2.07 |
Carotenoids (mg/kg) | 35.666 − 1.10962 D − 1.2610 T − 0.011458 t + 0.0028785 T t + 0.022051 T2 | <0.0001 | 0.929 | 0.91 |
Total LOX volatiles pathway (mg/kg) | 63.072 − 11.067 D − 0.41160 T − 0.03092 t + 1.0636 D2 | < 0.0001 | 0.931 | 0.84 |
Total HPLC phenols (mg tyrosol/kg) | 869.94 − 20.080 T − 4.5593 t + 0.18558 T t + 0.34121 T2 | 0.0005 | 0.926 | 17.22 |
DPPH (µmol Trolox/kg) | 54.733 + 308.72 D + 44.108 T | 0.0012 | 0.815 | 149.2 |
Individual Response | Maximum Value | Diameter (mm) | Temperature (°C) | Time (min) |
---|---|---|---|---|
Extraction Yield (g oil/100 g paste) | 12.0 | 4.5–6.5 | 20–40 | 90.0 |
Chlorophylls (mg/kg) | 51.5 | 4.5 | 40.0 | 90.0 |
Carotenoids (mg/kg) | 24.8 | 4.5 | 40.0 | 90.0 |
Total LOX volatiles (mg/kg) | 26.9 | 6.5 | 20.0 | 30.0 |
trans-2-Hexenal (mg/kg) | 7.10 | 4.5–6.5 | 28.2 | 30.0 |
cis-3-Hexenyl acetate (mg/kg) | 8.30 | 4.5–6.5 | 20–40 | 30–90 |
Total HPLC phenols (mg tyrosol/kg) | 870.0 | 4.5–6.5 | 40.0 | 90.0 |
Oleacein (mg tyrosol/kg) | 379.4 | 4.5–6.5 | 40.0 | 30–90 |
Oleocanthal (mg tyrosol/kg) | 98.3 | 4.5–6.5 | 40.0 | 90.0 |
DPPH (µmol Trolox/kg) | 3826 | 6.5 | 40.0 | 30–90 |
Design Points | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fatty Acid (g/100 g oil) | |||||||||||||||||
Palmitic acid (C16:0) | 13.48 | 13.54 | 13.49 | 13.51 | 13.51 | 13.55 | 13.54 | 13.69 | 13.54 | 13.58 | 13.57 | 13.60 | 13.47 | 13.47 | 13.48 | 13.48 | 13.48 |
Stearic acid (C18:0) | 2.41 | 2.39 | 2.40 | 2.44 | 2.39 | 2.38 | 2.40 | 2.44 | 2.44 | 2.40 | 2.40 | 2.41 | 2.42 | 2.38 | 2.42 | 2.42 | 2.42 |
Oleic acid (C18:1) | 76.90 | 77.64 | 76.56 | 78.07 | 77.32 | 77.17 | 76.56 | 75.42 | 76.65 | 76.41 | 77.04 | 76.37 | 76.43 | 76.77 | 77.68 | 77.50 | 77.64 |
Linoleic acid (C18:2) | 4.66 | 3.80 | 4.93 | 3.39 | 4.14 | 4.24 | 4.88 | 5.79 | 4.75 | 5.01 | 4.34 | 4.99 | 5.10 | 4.75 | 3.84 | 4.03 | 3.89 |
Linolenic acid (C18:3) | 0.36 | 0.35 | 0.35 | 0.35 | 0.36 | 0.35 | 0.35 | 0.35 | 0.36 | 0.36 | 0.35 | 0.35 | 0.36 | 0.36 | 0.36 | 0.36 | 0.37 |
Phenolic Compounds(mg tyrosol/kg) | |||||||||||||||||
3.4-DHPEA-EDA (oleacein) | 338.90 | 263.36 | 317.49 | 354.34 | 188.82 | 320.59 | 313.96 | 241.45 | 212.39 | 386.11 | 342.11 | 341.43 | 345.37 | 249.00 | 344.53 | 308.48 | 334.47 |
3.4-DHPEA-EA | 92.35 | 76.55 | 97.47 | 102.37 | 65.60 | 72.33 | 71.21 | 70.67 | 65.78 | 100.78 | 77.17 | 75.93 | 94.47 | 68.83 | 89.60 | 87.88 | 89.75 |
p-HPEA-EDA (oleocanthal) | 75.74 | 53.00 | 87.73 | 90.40 | 87.72 | 35.82 | 41.51 | 88.97 | 86.78 | 88.21 | 57.44 | 55.65 | 74.96 | 46.71 | 70.00 | 76.45 | 83.10 |
p-HPEA-EA | 15.89 | 12.93 | 18.48 | 17.44 | 20.25 | 9.77 | 10.47 | 19.17 | 17.05 | 16.86 | 10.96 | 11.18 | 16.07 | 11.50 | 14.97 | 15.91 | 17.29 |
Total HPLC phenols | 635.38 | 523.99 | 662.65 | 671.65 | 429.05 | 574.86 | 563.05 | 487.65 | 453.76 | 698.61 | 607.28 | 606.04 | 652.14 | 484.93 | 648.53 | 597.34 | 636.13 |
DPPH (µmol trolox/kg) | 3190 | 2605 | 2745 | 3441 | 2272 | 3070 | 3023 | 2268 | 1959 | 3566 | 3250 | 2790 | 2653 | 2668 | 3322 | 2870 | 2902 |
Volatile Compounds (mg/kg) | |||||||||||||||||
hexanal | 1.04 | 1.36 | 1.23 | 0.98 | 1.01 | 1.08 | 0.99 | 1.02 | 1.10 | 1.23 | 0.94 | 1.02 | 0.95 | 1.47 | 0.93 | 0.97 | 1.09 |
trans-2-hexenal | 6.71 | 6.93 | 6.11 | 6.46 | 3.82 | 6.15 | 6.06 | 3.77 | 4.56 | 5.56 | 7.11 | 6.88 | 6.58 | 7.17 | 7.18 | 6.66 | 6.70 |
cis-3-hexenyl acetate | 9.20 | 9.57 | 7.97 | 9.41 | 7.51 | 9.02 | 8.39 | 6.32 | 6.79 | 7.14 | 10.18 | 8.62 | 6.82 | 11.18 | 7.31 | 7.40 | 8.22 |
Total LOX volatiles pathway | 21.50 | 23.11 | 20.04 | 21.72 | 16.94 | 21.69 | 20.77 | 14.97 | 16.33 | 17.84 | 22.84 | 21.36 | 18.78 | 24.69 | 19.87 | 19.46 | 20.82 |
acetic acid | 1.20 | 1.15 | 1.31 | 1.17 | 1.17 | 1.28 | 1.32 | 1.31 | 1.11 | 0.97 | 0.76 | 0.83 | 0.80 | 0.89 | 0.95 | 1.10 | 1.09 |
Nonanal | 3.23 | 3.44 | 3.40 | 3.42 | 3.53 | 2.93 | 2.78 | 3.14 | 2.99 | 2.71 | 2.53 | 2.60 | 2.80 | 3.05 | 2.70 | 2.80 | 3.30 |
Fatty Acids | Acebuchina | IOC | EU |
---|---|---|---|
Myristic acid | -- | <0.03 | <0.03 |
Palmitic acid (C16:0) | 13.50 ± 0.06 | 7.50–20.00 | - |
Palmitoleic acid (C16:1) | 1.65 ± 0.04 | 0.30–3.50 | - |
Heptadecanoic acid | 0.05 ± 0.00 | <0.40 | - |
Heptadecenoic acid | 0.11 ± 0.00 | <0.60 | - |
Stearic acid | 2.41 ± 0.02 | 0.50–5.00 | - |
Oleic acid | 76.90 ± 0.66 | 55.00–83.00 | - |
Linoleic acid | 4.50 ± 0.61 | 2.50–21.00 | - |
Linolenic acid | 0.36 ± 0.01 | <1.00 | <1.00 |
Arachidic acid | 0.05 ± 0.01 | <0.60 | <0.60 |
Gadoleic acid (eicosenoic) | 0.24 ± 0.01 | <0.50 | <0.50 |
Behenic acid | 0.11 ± 0.00 | <0.20 | <0.20 |
Lignoceric acid | 0.05 ± 0.00 | <0.20 | <0.20 |
MUFA | 78.95 ± 0.65 | ||
PUFA | 4.86 ± 0.61 | ||
SFA | 16.19 ± 0.07 | ||
C18:1/C18:2 | 17.42 ± 2.57 | ||
MUFA/PUFA | 16.51 ± 2.26 |
Response | Model * | p-Value | R2 | SD |
---|---|---|---|---|
Phenol compounds (mg/kg) | ||||
hydroxytyrosol | 1.55435 | -- | -- | 0.46 |
Tyrosol | 2.9336 | -- | -- | 0.26 |
Vainillin | −0.57634 + 0.024602 T + 0.012197 t | 0.0003 | 0.768 | 0.17 |
p-coumaric acid | 1.33283 | -- | -- | 1.58 |
trans-ferulic acid | −2.9983 + 0.24869 T | <0.0001 | 0.887 | 0.61 |
3.4-DHPEA-EDA (oleacein) | 214.72 + 4.1176 T | 0.0022 | 0.626 | 19.3 |
3.4-DHPEA-EA | −154.096 + 14.155 T + 0.85230 t − 0.23996 T2 − 4.01759 × 10−3 t2 | <0.0001 | 0.976 | 2.26 |
p-HPEA-EDA (oleocanthal) | −88.2736 + 7.29244 T + 0.34579 t − 0.085155 T2 | <0.0001 | 0.913 | 6.06 |
p-HPEA-EA | −0.48650 + 0.35825 T + 0.080159 t | <0.0001 | 0.857 | 1.33 |
pinoresinol | 17.973 + 0.36258 D + 0.7828 T − 0.16069 t − 0.01859 T2 + 8.658 × 10−4 t2 | <0.0001 | 0.989 | 0.37 |
luteolin | −3.52249 + 0.54037 T − 0.010703 T2 | <0.0001 | 0.943 | 0.22 |
apigenin | 4.35334 + 0.41585 T − 8.61064 × 10−3 t − 8.54698 × 10−3 T2 | <0.0001 | 0.892 | 0.31 |
Response | Model * | p-Value | R2 | SD |
---|---|---|---|---|
Volatile compounds (mg/kg) | ||||
LOX pathway | ||||
hexanal | 3.8430 − 0.39935 D − 0.11835 T + 0.013683 t + 9.64688 ×·10−3 D T − 4.12082 ×·10−4 T t + 1.38944 × 10−3 T2 | 0.0004 | 0.881 | 0.066 |
hexan-1-ol | 0.49756 | -- | -- | 0.042 |
trans-2-hexenal | −4.18051 + 0.74575 T + 0.054078 t − 2.1411199 ×·10−3 T t − 0.012079 T2 | <0.0001 | 0.924 | 0.35 |
trans-2-hexen-1-ol | 1.08961 + 0.035689 D − 0.012801 T − 1.73427 ×·10−3 t | <0.0001 | 0.810 | 0.054 |
cis-3-hexen-1-ol | 7.04195 − 2.13938 D − 0.013436 t + 2.54523 ×·10−3 D t + 0.18685 D2 | 0.0003 | 0.804 | 0.065 |
cis-3-hexenyl acetate | 8.29684 | -- | -- | 1.33 |
1-penten-3-ol | 1.2222 − 0.021669 T | <0.0001 | 0.965 | 0.029 |
1-penten-3-one | 1.3926 − 0.01641 T | <0.0001 | 0.831 | 0.052 |
cis-2-penten-1-ol | 0.96444 − 8.03020·× 10−3 T + 1.44138 ×·10−3 t | 0.0004 | 0.670 | 0.048 |
trans-2-pentenal | 0.47230 | -- | -- | 0.038 |
Sugar fermentation | ||||
acetic acid | 1.08262 | -- | -- | 0.18 |
Other compounds | ||||
pentan-3-one | 0.3738 | -- | -- | 0.041 |
octanal | 0.64314 | -- | -- | 0.057 |
nonanal | 3.01463 | -- | -- | 0.32 |
Sample Availability: Not available. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espínola, F.; Vidal, A.M.; Espínola, J.M.; Moya, M. Processing Effect and Characterization of Olive Oils from Spanish Wild Olive Trees (Olea europaea var. sylvestris). Molecules 2021, 26, 1304. https://doi.org/10.3390/molecules26051304
Espínola F, Vidal AM, Espínola JM, Moya M. Processing Effect and Characterization of Olive Oils from Spanish Wild Olive Trees (Olea europaea var. sylvestris). Molecules. 2021; 26(5):1304. https://doi.org/10.3390/molecules26051304
Chicago/Turabian StyleEspínola, Francisco, Alfonso M. Vidal, Juan M. Espínola, and Manuel Moya. 2021. "Processing Effect and Characterization of Olive Oils from Spanish Wild Olive Trees (Olea europaea var. sylvestris)" Molecules 26, no. 5: 1304. https://doi.org/10.3390/molecules26051304
APA StyleEspínola, F., Vidal, A. M., Espínola, J. M., & Moya, M. (2021). Processing Effect and Characterization of Olive Oils from Spanish Wild Olive Trees (Olea europaea var. sylvestris). Molecules, 26(5), 1304. https://doi.org/10.3390/molecules26051304