Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella esculenta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushroom Collection and Preliminary Treatment
2.2. Polysaccharide Extraction
2.3. Deproteinization of Polysaccharides
2.4. Fourier Transform Infrared Spectroscopy
2.5. Antioxidant Bioassays
2.5.1. 2,2-diphenyl-1-picrylhydrazyl (DPPH) Assay
2.5.2. 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) Cation Assay
2.5.3. Cupric Reducing Antioxidant Capacity (CUPRAC) Assay
2.6. Enzyme Inhibitory Activities
2.6.1. Anti-Acetylcholinesterase Activity
2.6.2. Butyryl Cholinesterase Inhibition Assay
2.6.3. Anti-Tyrosinase Assay
2.6.4. Statistical Analysis
3. Results and Discussion
3.1. Polysaccharide Extraction
3.2. FTIR Analysis
3.3. Antioxidant Activity
3.3.1. DPPH Assay
3.3.2. ABTS •+ Assay
3.3.3. CUPRAC Assay
3.4. Enzyme Inhibition Assays
3.4.1. Acetylcholinesterase (AChE) Inhibitory Activity
3.4.2. Butyryl Cholinesterase Inhibition Assay
3.4.3. Tyrosinase Enzyme Inhibition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, L.; Perera, C.; Hemar, Y. Antitumor activity of mushroom polysaccharides: A review. Food Funct. 2012, 3, 1118–1130. [Google Scholar] [CrossRef]
- Liu, C.; Sun, Y.; Mao, Q.; Guo, X.; Li, P.; Liu, Y.; Xu, N. Characteristics and antitumor activity of Morchella esculenta polysaccharide extracted by pulsed electric field. Int. J. Mol. Sci. 2016, 17, 986. [Google Scholar] [CrossRef] [Green Version]
- Pala, S.A.; Wani, A.H. Mushrooms: The entities with multifarious medicinal properties. J. Pharm. Res. 2011, 4, 4721–4726. [Google Scholar]
- Hobbs, C. Medicinal Value of Turkey Tail Fungus Trametes versicolor (L.:Fr.) Pilat (Aphyllophoromycetideae). A Literature Review. Int. J. Med. Mushrooms 2004, 6, 195–218. [Google Scholar] [CrossRef] [Green Version]
- Schepetkin, I.A.; Quinn, M.T. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 2006, 6, 317–333. [Google Scholar] [CrossRef]
- Wasser, S.P.; Weis, A.L. Medicinal Properties of Substances Occurring in Higher Basidiomycetes Mushrooms: Current Perspectives (Review). Int. J. Med. Mushrooms 1999, 1, 31–62. [Google Scholar] [CrossRef] [Green Version]
- Abeytunga, D.T.U. Biological activities of pleurotus mushrooms. In Mushrooms: Types, Properties and Nutrition; Nova Science Pub Inc.: Hauppauge, NY, USA, 2012; pp. 329–350. ISBN 9781614701101. [Google Scholar]
- Wasser, S.P. Medicinal mushrooms in human clinical studies. Part I. anticancer, oncoimmunological, and immunomodulatory activities: A review. Int. J. Med. Mushrooms 2017, 19, 279–317. [Google Scholar] [CrossRef]
- C.Ooi, V.; Liu, F. Immunomodulation and Anti-Cancer Activity of Polysaccharide-Protein Complexes. Curr. Med. Chem. 2012, 7, 715–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargano, M.L.; van Griensven, L.J.L.D.; Isikhuemhen, O.S.; Lindequist, U.; Venturella, G.; Wasser, S.P.; Zervakis, G.I. Medicinal mushrooms: Valuable biological resources of high exploitation potential. Plant Biosyst. 2017, 151, 548–565. [Google Scholar] [CrossRef]
- Lemieszek, M.; Rzeski, W. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Wspolczesna Onkol. 2012, 16, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.; Pimentel, L.; Rodríguez-Alcalá, L.M.; Fernandes, T.; Pintado, M. Health Benefits of Edible Mushrooms Focused on Coriolus versicolor: A Review. J. Food Nutr. Res. 2016, 4, 773–871. [Google Scholar] [CrossRef]
- Halpern, G.M. Medicinal mushrooms. Prog. Nutr. 2010, 12, 29–36. [Google Scholar] [CrossRef]
- Van Griensven, L.J.L.D.; Shnyreva, A.V.; Song, W. Extracts of medicinal mushrooms agaricus bisporus and phellinus linteus induce proapoptotic effects in the human leukemia cell line K562. Int. J. Med. Mushrooms 2010, 12, 167–175. [Google Scholar] [CrossRef]
- Yarlagadda, R.; Lemma, T.; Wolde-Mariam, M.; Gebrelibanos, M.; Sintayehu, B.; Ahmed, S.M. A systematic review on some medicinal mushrooms showing antioxidant and anticancer activities. Med. Data 2013, 5, 253–260. [Google Scholar]
- Duncan, C.J.G.; Pugh, N.; Pasco, D.S.; Ross, S.A. Isolation of a galactomannan that enhances macrophage activation from the edible fungus Morchella esculenta. J. Agric. Food Chem. 2002. [Google Scholar] [CrossRef] [PubMed]
- Heleno, S.A.; Stojković, D.; Barros, L.; Glamočlija, J.; Soković, M.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta (L.) Pers. from Portugal and Serbia. Food Res. Int. 2013, 51, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Huo, W.; Qi, P.; Cui, L.; Zhang, L.; Dai, L.; Liu, Y.; Hu, S.; Feng, Z.; Qiao, T.; Li, J. Polysaccharide from wild morels alters the spatial structure of gut microbiota and the production of short-chain fatty acids in mice. Biosci. Microbiota Food Health 2020, 39, 219–226. [Google Scholar] [CrossRef]
- Yang, H.; Yin, T.; Zhang, S. Isolation, purification, and characterization of polysaccharides from wide Morchella esculenta (L.) pers. Int. J. Food Prop. 2015, 18, 1385–1390. [Google Scholar] [CrossRef]
- Lee, S.R.; Roh, H.S.; Lee, S.; Park, H.B.; Jang, T.S.; Ko, Y.J.; Baek, K.H.; Kim, K.H. Bioactivity-guided isolation and chemical characterization of antiproliferative constituents from morel mushroom (Morchella esculenta) in human lung adenocarcinoma cells. J. Funct. Foods 2018, 40, 249–260. [Google Scholar] [CrossRef]
- Hu, M.; Chen, Y.; Wang, C.; Cui, H.; Duan, P.; Zhai, T.; Yang, Y.; Li, S. Induction of apoptosis in HepG2 cells by polysaccharide MEP-II from the fermentation broth of Morchella esculenta. Biotechnol. Lett. 2013, 35, 1–10. [Google Scholar] [CrossRef]
- Cai, Z.N.; Li, W.; Mehmood, S.; Pan, W.J.; Wu, Q.X.; Chen, Y.; Lu, Y.M. Effect of polysaccharide FMP-1 from Morchella esculenta on melanogenesis in B16F10 cells and zebrafish. Food Funct. 2018, 9, 5007–5015. [Google Scholar] [CrossRef]
- Cui, H.L.; Chen, Y.; Wang, S.S.; Kai, G.Q.; Fang, Y.M. Isolation, partial characterisation and immunomodulatory activities of polysaccharide from Morchella esculenta. J. Sci. Food Agric. 2011, 91, 2180–2185. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhang, S.; Zhang, M.; Ou, S.; Pan, Z. Effects of polysaccharides from Morchella conica on nitric oxide production in lipopolysaccharide-treated macrophages. Appl. Microbiol. Biotechnol. 2012. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, Y.; Lei, L.; Li, F.; Zhang, Y.; Chen, J.; Zhao, G.; Wu, S.; Yin, R.; Ming, J. Carboxymethylation of polysaccharide from Morchella angusticepes Peck enhances its cholesterol-lowering activity in rats. Carbohydr. Polym. 2017. [Google Scholar] [CrossRef]
- Tel, G.; Ozturk, M.; Duru, M.E.; Turkoglu, A. Antioxidant and anticholinesterase activities of five wild mushroom species with total bioactive contents. Pharm. Biol. 2015, 53, 824–830. [Google Scholar] [CrossRef]
- Deveci, E.; Tel-Çayan, G.; Duru, M.E.; Öztürk, M. Isolation, characterization, and bioactivities of compounds from Fuscoporia torulosa mushroom. J. Food Biochem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Foti, M.C.; Daquino, C.; Geraci, C. Electron-Transfer Reaction of Cinnamic Acids and Their Methyl Esters with the DPPH. Radical in Alcoholic Solutions. J. Org. Chem. 2004, 69, 2309–2314. [Google Scholar] [CrossRef] [PubMed]
- Deveci, E.; Tel-çayan, G.; Duru, M.E. Phenolic profile, antioxidant, anticholinesterase, and anti-tyrosinase activities of the various extracts of ferula elaeochytris and sideritis stricta. Int. J. Food Prop. 2018. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, S.A.A.; Khan, R.A.; El-readi, M.Z.; Emwas, A.H.; Sioud, S.; Poulson, B.G.; Jaremko, M.; Eldeeb, H.M.; Al-omar, M.S.; Mohammed, H.A. Suaeda vermiculata aqueous-ethanolic extract-based mitigation of ccl4-induced hepatotoxicity in rats, and hepg-2 and hepg-2/adr cell-lines-based cytotoxicity evaluations. Plants 2020, 9, 1291. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999. [Google Scholar] [CrossRef]
- Öztürk, M.; Kolak, U.; Topu, G.; Öksüz, S.; Choudhary, M.I. Antioxidant and anticholinesterase active constituents from Micromeria cilicica by radical-scavenging activity-guided fractionation. Food Chem. 2011, 126, 31–38. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoǧlu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [Green Version]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
- Tel, G.; Öztürk, M.; Duru, M.E.; Doǧan, B.; Harmandar, M. Fatty acid composition, antioxidant, anticholinesterase and tyrosinase inhibitory activities of four Serratula species from anatolia. Rec. Nat. Prod. 2013, 7, 86–95. [Google Scholar]
- Altaf, A.A.; Kausar, S.; Hamayun, M.; Lal, B.; Tahir, M.N.; Badshah, A. Ferrocenylaniline based amide analogs of methoxybenzoic acids: Synthesis, structural characterization and butyrylcholinesterase (BChE) inhibition studies. J. Mol. Struct. 2017. [Google Scholar] [CrossRef]
- Masuda, T.; Yamashita, D.; Takeda, Y.; Yonemori, S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem. 2005, 69, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Dhahri, M.; Sioud, S.; Dridi, R.; Hassine, M.; Boughattas, N.A.; Almulhim, F.; Al Talla, Z.; Jaremko, M.; Emwas, A.H.M. Extraction, Characterization, and Anticoagulant Activity of a Sulfated Polysaccharide from Bursatella leachii Viscera. ACS Omega 2020, 5, 14786–14795. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gao, A.; Dong, S.; Chen, Y.; Sun, S.; Lei, Z.; Zhang, Z. Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta. Int. J. Biol. Macromol. 2017, 96, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Morales, D.; Rutckeviski, R.; Villalva, M.; Abreu, H.; Soler-Rivas, C.; Santoyo, S.; Iacomini, M.; Smiderle, F.R. Isolation and comparison of α- and β-D-glucans from shiitake mushrooms (Lentinula edodes) with different biological activities. Carbohydr. Polym. 2020. [Google Scholar] [CrossRef]
- Xiong, C.; Li, Q.; Chen, C.; Chen, Z.; Huang, W. Neuroprotective effect of crude polysaccharide isolated from the fruiting bodies of Morchella importuna against H2O2-induced PC12 cell cytotoxicity by reducing oxidative stress. Biomed. Pharmacother. 2016. [Google Scholar] [CrossRef]
- Nitha, B.; De, S.; Adhikari, S.K.; Devasagayam, T.P.A.; Janardhanan, K.K. Evaluation of free radical scavenging activity of morel mushroom, Morchella esculenta mycelia: A potential source of therapeutically useful antioxidants. Pharm. Biol. 2010. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wang, Y.; Wang, J.; Yang, Y.; Hao, L. Evaluation of the antioxidant activity of extracellular polysaccharides from Morchella esculenta. Food Funct. 2013, 4, 871–879. [Google Scholar] [CrossRef]
- Meng, F.; Zhou, B.; Lin, R.; Jia, L.; Liu, X.; Deng, P.; Fan, K.; Wang, G.; Wang, L.; Zhang, J. Extraction optimization and in vivo antioxidant activities of exopolysaccharide by Morchella esculenta SO-01. Bioresour. Technol. 2010. [Google Scholar] [CrossRef] [PubMed]
- Strelnik, A.D.; Petukhov, A.S.; Zueva, I.V.; Zobov, V.V.; Petrov, K.A.; Nikolsky, E.E.; Balakin, K.V.; Bachurin, S.O.; Shtyrlin, Y.G. Novel potent pyridoxine-based inhibitors of AChE and BChE, structural analogs of pyridostigmine, with improved in vivo safety profile. Bioorg. Med. Chem. Lett. 2016, 26, 4092–4094. [Google Scholar] [CrossRef] [PubMed]
- Boyle, J. Lehninger Principles of Biochemistry, 4th ed.; Nelson, D., Cox, M., Eds.; Wh Freeman: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
DPPH Assay | |||||
Polysaccharides Sample | 50 µg/mL | 100 µg/mL | 200 µg/mL | 400 µg/mL | IC50 (µg/mL) |
Proteinized | NA | NA | NA | NA | NA |
Deproteinized | 7.88 ± 1.87 | 21.87 ± 0.90 | 40.96 ± 1.68 | 66.92 ± 2.58 | 282.95 |
BHA | 79.37 ± 0.33 | 86.21 ± 0.16 | 87.13 ± 0.09 | 87.27 ± 0.03 | 37.20 ± 0.41 |
α-Tocopherol | 66.68 ± 0.43 | 87.28 ± 0.13 | 87.14 ± 0.28 | 87.44 ± 0.09 | 19.80 ± 0.36 |
ABTS Cation Assay | |||||
Polysaccharides Sample | 50 µg/mL | 100 µg/mL | 200 µg/mL | 400 µg/mL | IC50 µg/mL |
Proteinized | 4.71 ± 0.50 | 7.37 ± 0.72 | 10.89 ± 2.87 | 19.32 ± 2.14 | >400 |
Deproteinized | 25.78 ± 1.53 | 41.32 ± 1.09 | 69.60 ± 1.07 | 82.96 ± 2.23 | 130.69 |
BHA | 90.79 ± 0.19 | 91.02 ± 0.05 | 91.50 ± 0.20 | 91.18 ± 0.26 | 38.51 ± 0.54 |
α-Tocopherol | 66.52 ± 3.77 | 88.80 ± 2.57 | 91.95 ± 0.09 | 91.86 ± 0.12 | 11.82 ± 0.09 |
CUPRAC Assay | |||||
Polysaccharides Sample | 50 µg/mL | 100 µg/mL | 200 µg/mL | 400 µg/mL | A0.50 µg/mL |
Proteinized | 0.12 ± 0.01 | 0.14 ± 0.01 | 0.22 ± 0.04 | 0.30 ± 0.03 | >400 |
Deproteinized | 0.18 ± 0.02 | 0.28 ± 0.03 | 0.46 ± 0.04 | 0.84 ± 0.03 | 215.79 |
BHA | 0.95 ± 0.11 | 1.52 ± 0.11 | 2.47 ± 0.01 | 3.59 ± 0.07 | 66.72 ± 0.81 |
α-Tocopherol | 0.35 ± 0.11 | 0.54 ± 0.17 | 0.85 ± 0.02 | 1.51 ± 0.04 | 24.40 ± 0.69 |
Acetylcholinesterase Inhibition Assay | |||||
Polysaccharides Samples | 12.5 µg/mL | 25 µg/mL | 50 µg/mL | 100 µg/mL | IC50 µg/mL |
Proteinized | 18.72 ± 2.17 | 28.68 ± 2.13 | 33.38 ± 2.57 | 39.67 ± 2.11 | >100 |
Deproteinized | 2.64 ± 1.44 | 3.51 ± 2.12 | 17.45 ± 0.95 | 20.54 ± 0.50 | >100 |
Galanthamine | 55.31 ± 0.79 | 55.87 ± 0.97 | 61.66 ± 1.17 | 55.31 ± 0.79 | 5.0 ± 0.13 |
Butyryl Cholinesterase Inhibition Assay | |||||
Polysaccharides Samples | 12.5 µg/mL | 25 µg/mL | 50 µg/mL | 100 µg/mL | IC50 µg/mL |
Proteinized | 14.96 ± 1.81 | 38.25 ± 1.96 | 45.11 ± 2.08 | 48.22 ± 2.28 | 128.62 |
Deproteinized | 44.65 ± 2.66 | 49.61 ± 2.76 | 52.22 ± 2.75 | 54.08 ± 2.88 | 28.74 |
Galanthamine | 50.88 ± 1.42 | 62.48 ± 0.02 | 66.47 ± 0.46 | 71.43 ± 0.06 | 11.55 ± 0.93 |
Polysaccharides Samples | 12.5 µg/mL | 25 µg/mL | 50 µg/mL | 100 µg/mL | IC50 (µg/mL) |
Proteinized | NA | 4.87 ± 0.89 | 16.12 ± 2.70 | 31.99 ± 2.32 | >100 |
Deproteinized | NA | NA | NA | 10.94 ± 1.55 | >100 |
Kojic acid | 50.49 ± 1.32 | 52.36 ± 0.81 | 56.98 ± 0.96 | 67.89 ± 1.05 | 8.25 ± 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badshah, S.L.; Riaz, A.; Muhammad, A.; Tel Çayan, G.; Çayan, F.; Emin Duru, M.; Ahmad, N.; Emwas, A.-H.; Jaremko, M. Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella esculenta. Molecules 2021, 26, 1459. https://doi.org/10.3390/molecules26051459
Badshah SL, Riaz A, Muhammad A, Tel Çayan G, Çayan F, Emin Duru M, Ahmad N, Emwas A-H, Jaremko M. Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella esculenta. Molecules. 2021; 26(5):1459. https://doi.org/10.3390/molecules26051459
Chicago/Turabian StyleBadshah, Syed Lal, Anila Riaz, Akhtar Muhammad, Gülsen Tel Çayan, Fatih Çayan, Mehmet Emin Duru, Nasir Ahmad, Abdul-Hamid Emwas, and Mariusz Jaremko. 2021. "Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella esculenta" Molecules 26, no. 5: 1459. https://doi.org/10.3390/molecules26051459
APA StyleBadshah, S. L., Riaz, A., Muhammad, A., Tel Çayan, G., Çayan, F., Emin Duru, M., Ahmad, N., Emwas, A. -H., & Jaremko, M. (2021). Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella esculenta. Molecules, 26(5), 1459. https://doi.org/10.3390/molecules26051459