One-Step Preparation of Chitosan-Based Magnetic Adsorbent and Its Application to the Adsorption of Inorganic Arsenic in Water
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Synthesis of the Magnetic Adsorbent CMC@Fe3O4
2.3. Adsorption Experiments
2.4. Characterization of Magnetic Adsorbents
2.5. Chemical Analysis
3. Results and Discussion
3.1. Characterization of Magnetic Adsorbents
3.2. Adsorption of Arsenic on CMC@Fe3O4
3.3. Effect of Contact Time on Adsorption and Kinetics Study
3.4. Adsorption Isotherms and Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Feng, L.Y.; Cao, M.H.; Ma, X.Y.; Zhu, Y.S.; Hu, C.W. Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J. Hazard. Mater. 2012, 217, 439–446. [Google Scholar] [CrossRef]
- Zhou, Q.X.; Zheng, Z.W.; Xiao, J.P.; Fan, H.L. Sensitive determination of As(III) and As(V) by magnetic solid phase extraction with Fe@polyethyleneimine in combination with hydride generation atomic fluorescence spectrometry. Talanta 2016, 156, 196–203. [Google Scholar] [CrossRef]
- Shamsipur, M.; Fattahi, N.; Assadi, Y.; Sadeghi, M.; Sharafi, K. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop. Talanta 2014, 130, 26–32. [Google Scholar] [CrossRef]
- Hu, W.; Zheng, F.; Hu, B. Simultaneous separation and speciation of inorganic As(III)/As(V) and Cr(III)/Cr(VI) in natural waters utilizing capillary microextraction on ordered mesoporous Al2O3 prior to their on-line determination by ICP-MS. J. Hazard. Mater. 2008, 151, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Wang, W.D.; Li, L.; Huang, Y.M.; Cao, J. Eggshell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic(V) in environmental water samples. Talanta 2010, 80, 1907–1912. [Google Scholar] [CrossRef] [PubMed]
- Uluozlu, O.D.; Tuzen, M.; Mendil, D.; Soylak, M. Determination of As(III) and As(V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry. Food Chem. Toxicol. 2010, 48, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, M.K.; Sawalha, M.F.; Ohira, S.I.; Idowu, A.D.; Dasgupta, P.K. Green analyzer for the measurement of total arsenic in drinking water: Electrochemical reduction of arsenate to arsine and gas phase chemiluminescence with ozone. Anal. Chem. 2010, 82, 3467–3473. [Google Scholar] [CrossRef]
- Acharyya, S.K.; Shah, B.A. Groundwater arsenic contamination affecting different geologic domains in India—A review: Influence of geological setting, fluvial geomorphology and Quaternary stratigraphy. J. Environ. Sci. Health Part A 2007, 42, 1795–1805. [Google Scholar] [CrossRef]
- Watts, M.J.; O’Reilly, J.; Marcilla, A.L.; Shaw, R.A.; Ward, N.I. Field based speciation of arsenic in UK and Argentinean water samples. Environ. Geochem. Health 2010, 32, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.I.; Owens, G.; Bruce, D.; Naidu, R. Human arsenic exposure and risk assessment at the landscape level: A review. Environ. Geochem. Health 2009, 31, 143–166. [Google Scholar] [CrossRef]
- Karagas, M.R.; Stukel, T.A.; Tosteson, T.D. Assessment of cancer risk and environmental levels of arsenic in New Hampshire. Int. J. Hyg. Environ. Health 2002, 205, 85–94. [Google Scholar] [CrossRef]
- Fu, F.L.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Kemp, K.C.; Seema, H.; Saleh, M.; Le, N.H.; Mahesh, K.; Chandra, V.; Kim, K.S. Environmental applications using graphene composites: Water remediation and gas adsorption. Nanoscale 2013, 5, 3149–3171. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.; Ngadi, N.; Inuwa, I.M.; Hassan, O. Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. J. Clean. Prod. 2018, 175, 361–375. [Google Scholar] [CrossRef]
- Pestov, A.; Bratskaya, S. Chitosan and its derivatives as highly efficient polymer ligands. Molecules 2016, 21, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajput, A.; Sharma, P.P.; Yadav, V.; Gupta, H.; Kulshrestha, V. Synthesis and characterization of different metal oxide and GO composites for removal of toxic metal ions. Sep. Sci. Technol. 2019, 54, 426–433. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Tay, A.S.H.; Tan, P.Y.; Hidajat, K.; Uddin, M.S. Carboxymethyl-beta-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. J. Hazard. Mater. 2011, 185, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chai, Y.; Zeng, L.; Gao, Z.; Zhang, J.; Ji, H. Efficient removal of copper ion from wastewater using a stable chitosan gel material. Molecules 2019, 24, 4205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyzas, G.Z.; Deliyanni, E.A. Mercury(II) removal with modified magnetic chitosan adsorbents. Molecules 2013, 18, 6193–6214. [Google Scholar] [CrossRef] [PubMed]
- Weisspflog, J.; Guendel, A.; Vehlow, D.; Steinbach, C.; Mueller, M.; Boldt, R.; Schwarz, S.; Schwarz, D. Solubility and selectivity effects of the anion on the adsorption of different heavy metal ions onto chitosan. Molecules 2020, 25, 2482. [Google Scholar] [CrossRef]
- Yee, J.-J.; Justo Arida, C.V.; Futalan, C.M.; Daniel Garrido de Luna, M.; Wan, M.-W. Treatment of contaminated groundwater via arsenate removal using chitosan-coated bentonite. Molecules 2019, 24, 2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Zhao, H.; Chen, S.; Long, F.; Huang, B.; Yang, B.; Pan, X. A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater. Chem. Eng. J. 2019, 356, 69–80. [Google Scholar] [CrossRef]
- Lian, Z.; Li, Y.; Xian, H.; Ouyang, X.-K.; Lu, Y.; Peng, X.; Hu, D. EDTA-functionalized magnetic chitosan oligosaccharide and carboxymethyl cellulose nanocomposite: Synthesis, characterization, and Pb(II) adsorption performance. Int. J. Biol. Macromol. 2020, 165, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Kadam, A.A.; Lee, D.S. Glutaraldehyde cross-linked magnetic chitosan nanocomposites: Reduction precipitation synthesis, characterization, and application for removal of hazardous textile dyes. Bioresour. Technol. 2015, 193, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Duman, O.; Ozcan, C.; Polat, T.G.; Tunc, S. Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-kappa-carrageenan-Fe3O4 nanocomposites. Environ. Pollut. 2019, 244, 723–732. [Google Scholar] [CrossRef]
- Deng, H.; Li, X.L.; Peng, Q.; Wang, X.; Chen, J.P.; Li, Y.D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Edit. 2005, 44, 2782–2785. [Google Scholar] [CrossRef]
- Cui, C.; He, M.; Chen, B.; Hu, B. Chitosan modified magnetic nanoparticles based solid phase extraction combined with ICP-OES for the speciation of Cr(III) and Cr(VI). Anal. Methods 2014, 6, 8577–8583. [Google Scholar] [CrossRef]
- Vieira, R.S.; Oliveira, M.L.M.; Guibal, E.; Rodriguez-Castellon, E.; Beppu, M.M. Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: An XPS investigation of mechanism. Colloid. Surf. A 2011, 374, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Majidi, S.M.; Hadjmohammadi, M.R. Dimethyldioctadecylanimonium bentonite immobilized magnetic chitosan nanoparticles as an efficient adsorbent for vortex-assisted magnetic dispersive micro-solid-phase extraction of celecoxib from human breast milk, plasma and urine samples. Biomed. Chromatogr. 2020, 34, e4877. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Chauhan, V.S.; Sankararamakrishnan, N. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Res. 2009, 43, 3862–3870. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.M.; Zimmerman, J.B. Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead. Water Res. 2010, 44, 5722–5729. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Vigneswaran, S.; Ngo, H.H.; Kandasamy, J. Arsenic removal by iron oxide coated sponge: Experimental performance and mathematical models. J. Hazard. Mater. 2010, 182, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Gupta, A.K. Adsorptive removal of As(III) from aqueous solution using iron oxide coated cement (IOCC): Evaluation of kinetic, equilibrium and thermodynamic models. Sep. Purif. Technol. 2006, 51, 165–172. [Google Scholar] [CrossRef]
- Cai, W.Q.; Tan, L.J.; Yu, J.G.; Jaroniec, M.; Liu, X.Q.; Cheng, B.; Verpoort, F. Synthesis of amino-functionalized mesoporous alumina with enhanced affinity towards Cr(VI) and CO2. Chem. Eng. J. 2014, 239, 207–215. [Google Scholar] [CrossRef]
- Zheng, J.M.; Dong, Y.L.; Wang, W.F.; Ma, Y.H.; Hu, J.; Chen, X.J.; Chen, X.G. In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity. Nanoscale 2013, 5, 4894–4901. [Google Scholar] [CrossRef]
Parameters | Settings |
---|---|
Lamp current | 60 mA |
High negative voltage of photomultiplier | 260 V |
Carrier argon flow rate | 300 mL/min |
Shield gas flow rate | 800 mL/min |
HCl carrier solution | 5%, v/v |
Magnetic Adsorbents | Q (mg g−1) | Reference |
---|---|---|
Iron-impregnated chitosan granular | 22.5 | [31] |
TiO2-impregnated chitosan bead | 2.1 | [32] |
Iron oxide-coated sponge | 4.5 | [33] |
Iron oxide-coated cement | 0.7 | [34] |
CMC@Fe3O4 | 20.1 | Our work |
C0/ (mg L−1) | qe/ (mg g−1) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
k1/min−1 | qecal/(mg g−1) | R2 | k2/(g mg−1 min−1) | qecal/(mg g−1) | R2 | ||
30 | 20.1 | 1.7 | 14.1 | 0.727 | 0.15 | 15.5 | 0.919 |
Sample | Temperature/°C | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
qmax/(mg g−1) | KL/(L mg g−1) | R2 | KF/(g mg−1 min−1) | n/(mg g−1) | R2 | ||
CMC@Fe3O4 | 30 | 49.2 | 0.02 | 0.995 | 1.1 | 1.2 | 0.985 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Li, N.; Li, P.-Y.; Liu, B.; Lai, H.-J.; Jin, T. One-Step Preparation of Chitosan-Based Magnetic Adsorbent and Its Application to the Adsorption of Inorganic Arsenic in Water. Molecules 2021, 26, 1785. https://doi.org/10.3390/molecules26061785
Jiang Z, Li N, Li P-Y, Liu B, Lai H-J, Jin T. One-Step Preparation of Chitosan-Based Magnetic Adsorbent and Its Application to the Adsorption of Inorganic Arsenic in Water. Molecules. 2021; 26(6):1785. https://doi.org/10.3390/molecules26061785
Chicago/Turabian StyleJiang, Zhe, Nian Li, Pei-Ying Li, Bo Liu, Hua-Jie Lai, and Tao Jin. 2021. "One-Step Preparation of Chitosan-Based Magnetic Adsorbent and Its Application to the Adsorption of Inorganic Arsenic in Water" Molecules 26, no. 6: 1785. https://doi.org/10.3390/molecules26061785
APA StyleJiang, Z., Li, N., Li, P. -Y., Liu, B., Lai, H. -J., & Jin, T. (2021). One-Step Preparation of Chitosan-Based Magnetic Adsorbent and Its Application to the Adsorption of Inorganic Arsenic in Water. Molecules, 26(6), 1785. https://doi.org/10.3390/molecules26061785