Traceability and Authentication of Manila Clams from North-Western Adriatic Lagoons Using C and N Stable Isotope Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Pre-Treatment
2.3. Isotope Ratio Mass Spectrometry (IRMS)
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. δ13. C vs. δ15N Binary Diagram: An Approach to the Seafood Traceability at the Regional Scale
4.2. Multivariate Analyses for the Seafood Traceability at the Local Scale
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chiesa, S.; Filonzi, L.; Ferrari, C.; Vaghi, M.; Bilò, F.; Piccinini, A.; Zuccon, G.; Wilson, R.C.; Ulheim, J.; Nonnis Marzano, F. Mapping the stranger: Genetic diversity of Manila clam in European coastal lagoons. Bull. Jpn. Fish. Res. Educ. Agen. 2016, 42, 55–65. [Google Scholar] [CrossRef]
- Dias, E.; Chainho, P.; Barrocas-Dias, C.; Adão, H. Food sources of the non-indigenous bivalve Ruditapes philippinarum (Adams and Reeve, 1850) and trophic niche overlap with native species. Aquat. Invasions 2019, 14, 638–655. [Google Scholar] [CrossRef]
- Bartoli, M.; Castaldelli, G.; Nizzoli, D.; Fano, E.A.; Viaroli, P. Manila clam introduction in the Sacca di Goro Lagoon (Northern Italy): Ecological implications. Bull. Jpn. Fish. Res. Educ. Agen. 2016, 42, 43–52. [Google Scholar] [CrossRef]
- Agnew, D.J.; Pearce, J.; Pramod, G.; Peatman, T.; Watson, R.; Beddington, J.R.; Pitcher, T.J. Estimating the worldwide extent of illegal fishing. PLoS ONE 2009, 4, e4570. [Google Scholar] [CrossRef] [Green Version]
- Chiesa, S.; Lucentini, L.; Freitas, R.; Nonnis Marzano, F.; Minello, F.; Ferrari, C.; Filonzi, L.; Figueira, E.; Breda, S.; Baccarani, G.; et al. Genetic diversity of introduced Manila clam Ruditapes philippinarum populations inferred by 16S rDN. Biochem. Syst. Ecol. 2014, 57, 52–59. [Google Scholar] [CrossRef]
- Chiesa, S.; Lucentini, L.; Freitas, R.; Nonnis Marzano, F.; Breda, S.; Figueira, E.; Caill-Milly, N.; Herbert, R.J.H.; Soares, A.M.V.M.; Argese, E. A history of invasion: COI phylogeny of Manila clam Ruditapes philippinarum in Europe. Fish. Res. 2017, 186, 25–35. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, S. Effects of sediment, seawater, and season on multi-element fingerprints of Manila clam (Ruditapes philippinarum) for authenticity identification. Food Control. 2016, 66, 62–68. [Google Scholar] [CrossRef]
- Wadood, S.A.; Boli, G.; Xiaowen, Z.; Hussain, I.; Yimin, W. Recent development in the application of analytical techniques for the traceability and authenticity of food of plant origin. Microchem. J. 2020, 152, 104295. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Herrero, M. Metabolomics approaches based on mass spectrometry for food safety, quality and traceability. Trends Anal. Chem. 2013, 52, 74–87. [Google Scholar] [CrossRef]
- Camin, F.; Perini, M.; Bontempo, L.; Galeotti, M.; Tibaldi, E.; Piasentier, E. Stable isotope ratios of H, C, O, N and S for the geographical traceability of Italian rainbow trout (Oncorhynchus mykiss). Food Chem. 2018, 267, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Birch, Q.T.; Potter, P.M.; Pinto, P.X.; Dionysiou, D.D.; Al-Abed, S.R. Isotope ratio mass spectrometry and spectroscopic techniques for microplastics characterization. Talanta 2021, 224, 121743. [Google Scholar] [CrossRef]
- Francois, G.; Fabrice, V.; Didier, M. Traceability of fruits and vegetables. Phytochemistry 2020, 173, 112291. [Google Scholar] [CrossRef]
- Pianezze, S.; Bontempo, L.; Perini, M.; Tonon, A.; Ziller, L.; Franceschi, P.; Camin, F. δ34S for tracing the origin of cheese and detecting its authenticity. J. Mass Spectrom. 2020, 55, e4451. [Google Scholar] [CrossRef] [PubMed]
- Pironti, C.; Motta, O.; Ricciardi, M.; Camin, F.; Cucciniello, R.; Proto, A. Characterization and authentication of commercial cleaning products formulated with biobased surfactants by stable carbon isotope ratio. Talanta 2020, 219, 121256. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.; Brodie, C.; Hilkert, A. Isotopic-Spectroscopic Technique: Stable Isotope-Ratio Mass Spectrometry (IRMS). In Modern Techniques for Food Authentication; Sun, D.-W., Ed.; Academic Press: London, UK, 2018; pp. 349–413. [Google Scholar] [CrossRef]
- Kahle, K.; Preston, C.; Richling, E.; Heckel, F.; Schreier, P. On-line gas chromatography combustion/pyrolysis isotope ratio mass spectrometry (HRGC-C/P-IRMS) of major volatiles from pear fruit (Pyrus communis) and pear products. Food Chem. 2005, 91, 449–455. [Google Scholar] [CrossRef]
- Longobardi, F.; Casiello, G.; Sacco, D.; Tedone, L.; Sacco, A. Characterisation of the geographical origin of Italian potatoes, based on stable isotope and volatile compound analyses. Food Chem. 2011, 124, 1708–1713. [Google Scholar] [CrossRef]
- Mimmo, T.; Camin, F.; Bontempo, L.; Capici, C.; Tagliavini, M.; Cesco, S.; Scampicchio, M. Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data. Rapid Commun. Mass Spectrom. 2015, 29, 1984–1990. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, D.; Dong, H.; Wan, J.; Luo, H.; Xian, Y.; Guo, X.; Qin, F.; Han, W.; Wang, L.; et al. Geographical origin of cereal grains based on element analyzer-stable isotope ratio mass spectrometry (EA-SIRMS). Food Chem. 2015, 174, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, D.A.F.; Biscola, N.P.; dos Santos, L.D.; Sartori, M.M.P.; Denadai, J.C.; da Silva, E.T.; Ducatti, C.; Bicudo, S.D.; Barraviera, B.; Ferreira, R.S., Jr. Detecting animal by-product intake using stable isotope ratio mass spectrometry (IRMS). Vet. J. 2016, 217, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Xiao, K.; Xian, Y.; Wu, Y. Authenticity determination of honeys with non-extractable proteins by means of elemental analyzer (EA) and liquid chromatography (LC) coupled to isotope ratio mass spectroscopy (IRMS). Food Chem. 2018, 240, 717–724. [Google Scholar] [CrossRef]
- Kukusamude, C.; Kongsri, S. Elemental and isotopic profiling of Thai jasmine rice (Khao Dawk Mali 105) for discrimination of geographical origins in Thung Kula Rong Hai area, Thailand. Food Control. 2018, 91, 357–364. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, Y.; Rogers, K.M.; Chen, G.; Chen, A.; Yang, S. Application of multi-element (C, N, H, O) stable isotope ratio analysis for the traceability of milk samples from China. Food Chem. 2020, 310, 125826. [Google Scholar] [CrossRef]
- Fry, B. Stable Isotope Ecology, 3rd ed.; Springer-Verlag: New York, NY, USA, 2006; pp. 1–308. [Google Scholar]
- Minagawa, M.; Wada, E. Stepwise enrichment of δ15N along food chains- further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 1984, 48, 1135–1140. [Google Scholar] [CrossRef]
- Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Evol. Syst. 1987, 18, 293–320. [Google Scholar] [CrossRef]
- Stewart, S.D.; Hamilton, D.P.; Baisden, W.T.; Dedual, M.; Verburg, P.; Duggan, I.C.; Hicks, B.J.; Graham, B.S. Variable littoral-pelagic coupling as a food-web response to seasonal changes in pelagic primary production. Freshw. Biol. 2017, 62, 1–18. [Google Scholar] [CrossRef]
- Sroczyńska, K.; Williamson, T.J.; Claro, M.; González-Pérez, J.A.; Range, P.; Boski, T.; Chícharo, L. Food web structure of three Mediterranean stream reaches alsong a gradient of anthropogenic impact. Hydrobiologia 2020, 847, 2357–2375. [Google Scholar] [CrossRef]
- Briant, N.; Savoye, N.; Chovelon, T.; David, V.; Rodriguez, S.; Charlier, K.; Sonke, J.E.; Chiffoleau, J.F.; Brach-Papa, C.; Knoery, J. Carbon and nitrogen elemental and isotopic ratios of filter-feeding bivalves along the French coasts: An assessment of specific, geographic, seasonal and multi-decadal variations. Sci. Total Environ. 2018, 613–614, 196–207. [Google Scholar] [CrossRef] [PubMed]
- DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 1978, 42, 495–506. [Google Scholar] [CrossRef]
- DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 1981, 45, 341–351. [Google Scholar] [CrossRef]
- Yokoyama, H.; Tamaki, A.; Harada, K.; Shimoda, K.; Koyama, K.; Ishihi, Y. Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Mar. Ecol. Prog. Ser. 2005, 296, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, H.; Ishihi, Y. Variation in δ13C and δ15N among different tissues of three estuarine bivalves: Implications for dietary reconstructions. Plankton Benthos Res. 2006, 1, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Marchina, C.; Bianchini, G.; Natali, C.; Pennisi, M.; Colombani, N.; Tassinari, R.; Knoeller, K. The Po river water from the Alps to the Adriatic Sea (Italy): New insights from geochemical and isotopic (δ18O-δD) data. Environ. Sci. Pollut. Res. 2015, 22, 5184–5203. [Google Scholar] [CrossRef]
- Marchina, C.; Bianchini, G.; Knoeller, K.; Natali, C.; Pennisi, M.; Colombani, N. Natural and anthropogenic variations in the Po river waters (northern Italy): Insights from a multi–isotope approach. Isot. Environ. Health Stud. 2016, 52, 649–672. [Google Scholar] [CrossRef]
- Abbiati, M.; Mistri, M.; Bartoli, M.; Ceccherelli, V.U.; Colangelo, M.A.; Ferrari, C.R.; Giordani, G.; Munari, C.; Nizzoli, D.; Ponti, M.; et al. Trade-off between conservation and exploitation of the transitional water ecosystems of the northern Adriatic Sea. Chem. Ecol. 2010, 26, 105–119. [Google Scholar] [CrossRef]
- Natali, C.; Bianchini, G. Natural vs anthropogenic components in sediments from the Po River delta coastal lagoons (NE Italy). Environ. Sci. Pollut. Res. 2018, 25, 2981–2991. [Google Scholar] [CrossRef]
- Turolla, E.; Castaldelli, G.; Fano, E.A.; Tamburini, E. Life Cycle Assessment (LCA) Proves that Manila Clam Farming (Ruditapes Philippinarum) is a Fully Sustainable Aquaculture Practice and a Carbon Sink. Sustainability 2020, 12, 5252. [Google Scholar] [CrossRef]
- McConnaughey, T.A.; Gillikin, D.P. Carbon isotopes in mollusks shell carbonates. Geo-Mar. Lett. 2008, 28, 287–299. [Google Scholar] [CrossRef]
- Kusaka, S.; Nakano, T. Carbon and oxygen isotope ratios and their temperature dependence in carbonate and tooth enamel using GasBench II preparation device. Rapid Commun. Mass Spectrom. 2014, 28, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Dutta, K.; Schuur, E.A.G.; Neff, J.C.; Zimov, S.A. Potential carbon release from permafrost soils of Northeastern Siberia. Glob. Chang. Biol. 2006, 12, 1–16. [Google Scholar] [CrossRef]
- Santos, V.; Clayton, R.N. Variations of oxygen and carbon isotopes in carbonatites: A study of Brazilian alkaline complexes. Geochim. Cosmochim. Acta 1995, 59, 1339–1352. [Google Scholar] [CrossRef]
- Beccaluva, L.; Bianchini, G.; Natali, C.; Siena, F. The alkaline-carbonatite complex of Jacupiranga (Brazil): Magma genesis and mode of emplacement. Gondwana Res. 2017, 44, 157–177. [Google Scholar] [CrossRef]
- Gonfiantini, R.; Stichler, W.; Rozanski, K. Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements. In Reference and Intercomparison Materials for Stable Isotopes of Light Elements; Stichler, K., Ed.; IAEA: Vienna, Austria, 1993; pp. 13–29. [Google Scholar]
- Natali, C.; Bianchini, G. Thermally based isotopic speciation of carbon in complex matrices: A tool for environmental investigation. Environ. Sci. Pollut. Res. 2015, 22, 12162–12173. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Di Giuseppe, D.; Natali, C.; Faccini, B.; Bianchini, G.; Coltorti, M. C-N elemental and isotopic investigation in agricultural soils: Insightson the effects of zeolitite amendments. Chem. Erde 2017, 77, 45–52. [Google Scholar] [CrossRef]
- Natali, C.; Bianchini, G.; Vittori Antisari, L.; Natale, M.; Tessari, U. Carbon and nitrogen pools in Padanian soils (Italy): Origin and dynamics of soil organic matter. Chem. Erde 2018, 78, 490–499. [Google Scholar] [CrossRef]
- Natali, C.; Bianchini, G.; Carlino, P. Thermal stability of soil carbon pools: Inferences on soil nature and evolution. Chem. Erde 2020, 77, 45–52. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. Available online: https://www.R–project.org/ (accessed on 22 June 2020).
- Le, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, F. Mundt factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. Available online: https://CRAN.R–project.org/package = factoextra (accessed on 22 June 2020).
- Suh, Y.J.; Shin, K.-H. Size-related and seasonal diet of the manila clam (Ruditapes philippinarum), as determined using dual stable isotopes. Estuar. Coast. Shelf Sci. 2013, 135, 94–105. [Google Scholar] [CrossRef]
- Graniero, L.E.; Grossman, E.T.; O’Dea, A. Stable isotopes in bivalve sas indicators of nutrient source in coastal waters in the Bocas del Toro Archipelago, Panama. PeerJ 2016, 4, e2278. [Google Scholar] [CrossRef] [Green Version]
- Orlandi, L.; Bentivoglio, F.; Carlino, P.; Calizza, E.; Rossi, D.; Costantini, M.L.; Rossi, L. δ15N variation in Ulva lactuca as a proxy for anthropogenic nitrogen inputs in coastal areas of Gulf of Gaeta (Mediterranean Sea). Mar. Pollut. Bull. 2014, 84, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, L.; Calizza, E.; Careddu, G.; Carlino, P.; Costantini, M.L.; Rossi, L. The effects of nitrogen pollutants on the isotopic signal (δ15N) of Ulva lactuca: Microcosm experiments. Mar. Pollut. Bull. 2017, 115, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Katayama, S.; Kodama, M.; Cho, N.; Nakata, K.; Fukuda, M. Small-scale variation in feeding environments for the Manila clam Ruditapes philippinarum in a tidal flat in Tokyo Bay. Fish. Res. 2009, 75, 937–945. [Google Scholar] [CrossRef]
- Tesi, T.; Miserocchi, S.; Acri, F.; Langone, L.; Boldrin, A.; Hatten, J.A.; Albertazzi, S. Flood-driven transport of sediment, particulate organic matter, and nutrients from the Po River watershed to the Mediterranean Sea. J. Hydrol. 2013, 498, 144–152. [Google Scholar] [CrossRef]
- Corazzari, L.; Bianchini, G.; Billi, P.; Marchina, C.; Natali, C. A preliminary note on carbon and nitrogen elemental and isotopic composition of Po River suspended load. Rend. Lincei, Sci. Fis. Nat. 2016, 27, 89–93. [Google Scholar] [CrossRef]
- Poulain, C.; Lorrain, A.; Mas, R.; Gillikin, D.P.; Dehairs, F.; Robert, R.; Paulet, Y.-M. Experimental shift of diet and DIC stable carbon isotopes: Influence on shell δ13C values in the Manila clam Ruditapes philippinarum. Chem. Geol. 2010, 272, 75–82. [Google Scholar] [CrossRef] [Green Version]
Adriatic lagoons | Samples | Shell | Tissues | Δ13C | ||||
---|---|---|---|---|---|---|---|---|
δ13C (‰) | C (wt%) | N (wt%) | C/N | δ13C (‰) | δ15N (‰) | |||
Sacca di Goro (2015) | 10 | –4.2 ± 0.3 a | 36.1 ± 2.7 a | 7.9 ± 0.4 ab | 4.6 ± 0.2 b | –23.7 ± 0.6 a | 9.7 ± 1.3 ab | 19.5 ± 0.4 b |
Sacca di Goro (2018) | 4 | –4.0 ± 0.4 a | 36.6 ± 2.2 a | 9.1 ± 0.3 c | 4.0 ± 0.1 a | –21.5 ± 0.2 b | 10.3 ± 0.2 b | 17.5 ± 0.4 a |
Supermarket (from Sacca di Goro; 2018) | 3 | –3.6 ± 0.5 ab | 35.0 ± 2.1 a | 9.2 ± 0.7 c | 3.8 ± 0.1 a | –20.2 ± 0.1 b | 9.4 ± 0.1 ab | 16.6 ± 0.6 a |
Sacca di Scardovari (2016) | 4 | –3.0 ± 0.4 b | 34.1 ± 3.4 a | 7.2 ± 0.5 a | 4.7 ± 0.2 b | –20.8 ± 0.8 b | 8.0 ± 0.7 a | 17.8 ± 0.6 a |
Comacchio Lagoon (2017) | 3 | –4.2 ± 0.4 a | 38.0 ± 1.0 a | 8.5 ± 0.5 bc | 4.5 ± 0.3 b | –23.8 ± 0.9 b | 14.7 ± 0.5 c | 19.6 ± 1.2 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchini, G.; Brombin, V.; Carlino, P.; Mistri, E.; Natali, C.; Salani, G.M. Traceability and Authentication of Manila Clams from North-Western Adriatic Lagoons Using C and N Stable Isotope Analysis. Molecules 2021, 26, 1859. https://doi.org/10.3390/molecules26071859
Bianchini G, Brombin V, Carlino P, Mistri E, Natali C, Salani GM. Traceability and Authentication of Manila Clams from North-Western Adriatic Lagoons Using C and N Stable Isotope Analysis. Molecules. 2021; 26(7):1859. https://doi.org/10.3390/molecules26071859
Chicago/Turabian StyleBianchini, Gianluca, Valentina Brombin, Pasquale Carlino, Enrico Mistri, Claudio Natali, and Gian Marco Salani. 2021. "Traceability and Authentication of Manila Clams from North-Western Adriatic Lagoons Using C and N Stable Isotope Analysis" Molecules 26, no. 7: 1859. https://doi.org/10.3390/molecules26071859
APA StyleBianchini, G., Brombin, V., Carlino, P., Mistri, E., Natali, C., & Salani, G. M. (2021). Traceability and Authentication of Manila Clams from North-Western Adriatic Lagoons Using C and N Stable Isotope Analysis. Molecules, 26(7), 1859. https://doi.org/10.3390/molecules26071859