The Addition of Microencapsulated or Nanoemulsified Bioactive Compounds Influences the Antioxidant and Antimicrobial Activities of a Fresh Cheese
Abstract
:1. Introduction
2. Results
2.1. Microcapsules and Nanoemulsion: Size and Concentration of Bioactive Compounds
2.2. Physicochemical Analysis of Cheeses with Added Bioactive Compounds
2.3. Microbiological Analysis
2.4. Bioactive Compounds and Antioxidant Capacity
2.5. Texture Profile Analysis
3. Discussion
3.1. Physicochemical Analysis of Cheeses Added with Bioactive Compounds
3.2. Microbiological Analysis
3.3. Bioactive Compounds and Antioxidant Capacity
3.4. Texture Profile Analysis
4. Materials and Methods
4.1. Materials
4.2. Extraction of Bioactive Compounds from the Xoconostle Fruit
4.3. Preparation of the Microcapsules
4.4. Preparation of the Nanoemulsion
4.5. Manufacture of Cheeses Added with Bioactive Compounds
4.6. Determination of Physicochemical Parameters
4.7. Microbiological Analysis
4.8. Extraction of Bioactive Compounds
4.9. Determination of Total Phenols
4.10. Determination of Total Flavonoids
4.11. Evaluation of Antioxidant Capacity by Inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH)
4.12. Evaluation of the Antioxidant Capacity by the Inhibition of 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)
4.13. Texture Profile Analysis
4.14. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vrdoljak, J.; Dobranić, V.; Filipović, I.; Zdolec, N. Microbiological quality of soft, semi-hard and hard cheeses during the shelf-life. Maced. Vet. Rev. 2016, 39, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Saxer, S.; Schwenninger, S.M.; Lacroix, C. Characterization of the microflora of industrial Mexican cheeses produced without added chemical preservatives. LWT Food Sci. Technol. 2013, 53, 314–320. [Google Scholar] [CrossRef]
- Caro, I.; Soto, S.; Franco, M.J.; Meza-Nieto, M.; Alfaro-Rodríguez, R.H.; Mateo, J. Composition, yield, and functionality of reduced-fat Oaxaca cheese: Effects of using skim milk or a dry milk protein concentrate. J. Dairy Sci. 2011, 94, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, L.; Mateo, J.; Quinto, E.J.; Caro, I. Changes in quality of nonaged pasta filata Mexican cheese during refrigerated vacuum storage. J. Dairy Sci. 2015, 98, 2833–2842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summer, A.; Formaggioni, P.; Franceschi, P.; Di Frangia, F.; Righi, F.; Malacarne, M. Cheese as functional food: The example of parmigiano reggiano and grana padano. Food Technol. Biotechnol. 2017, 55, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Caleja, C.; Barros, L.; Santos-Buelga, C.; Barreiro, M.F.; Ferreira, I.C. Rosemary extracts in functional foods: Extraction, chemical characterization and incorporation of free and microencapsulated forms in cottage cheese. Food Funct. 2016, 7, 2185–2196. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.T.; Hwang, J.E.; Eum, S.J.; Paik, H.D. Physiochemical analysis, antioxidant effects, and sensory characteristics of quark cheese supplemented with ginseng Extract. Food Sci. Anim. Resour. 2019, 39, 324. [Google Scholar] [CrossRef]
- León-López, A.; Fuentes-Jiménez, L.; Hernández-Fuentes, A.D.; Campos-Montiel, R.G.; Aguirre-Álvarez, G. Hydrolysed collagen from sheepskins as a source of functional peptides with antioxidant activity. Int. J. Mol. Sci. 2019, 20, 3931. [Google Scholar] [CrossRef] [Green Version]
- Cenobio-Galindo, A.J.; Pimentel-González, D.J.; Del Razo-Rodríguez, O.E.; Medina-Pérez, G.; Carrillo-Inungaray, M.L.; Reyes-Munguía, A.; Campos-Montiel, R.G. Antioxidant and antibacterial activities of a starch film with bioextracts microencapsulated from cactus fruits (Opuntia oligacantha). Food Sci. Biotechnol. 2019, 28, 1553–1561. [Google Scholar] [CrossRef]
- Medina-Pérez, G.; Zaldívar-Ortega, A.K.; Cenobio-Galindo, A.J.; Afanador-Barajas, L.N.; Vieyra-Alberto, R.; Estefes-Duarte, J.A.; Campos-Montiel, R.G. Antidiabetic Activity of Cactus Acid Fruit Extracts: Simulated Intestinal Conditions of the Inhibitory Effects on α-amylase and α-glucosidase. Appl. Sci. 2019, 9, 4066. [Google Scholar] [CrossRef] [Green Version]
- Pimentel-González, D.J.; Aguilar-García, M.E.; Aguirre-Álvarez, G.; Salcedo-Hernández, R.; Guevara-Arauza, J.C.; Campos-Montiel, R.G. The Process and Maturation Stability of Chihuahua Cheese with Antioxidants in Multiple Emulsions. J. Food Process. Preserv. 2015, 39, 1027–1035. [Google Scholar] [CrossRef]
- Ochoa-Velasco, C.E.; Salazar-González, C.; Cid-Ortega, S.; Guerrero-Beltrán, J.A. Antioxidant characteristics of extracts of Hibiscus sabdariffa calyces encapsulated with mesquite gum. J. Food Sci. Technol. 2017, 54, 1747–1756. [Google Scholar] [CrossRef]
- Zanoni, F.; Primiterra, M.; Angeli, N.; Zoccatelli, G. Microencapsulation by spray-drying of polyphenols extracted from red chicory and red cabbage: Effects on stability and color properties. Food Chem. 2020, 307, 125535. [Google Scholar] [CrossRef]
- Zhang, Z.; Vriesekoop, F.; Yuan, Q.; Liang, H. Effects of nisin on the antimicrobial activity of D-limonene and its nanoemulsion. Food Chem. 2014, 150, 307–312. [Google Scholar] [CrossRef]
- Hashtjin, A.M.; Abbasi, S. Nano-emulsification of orange peel essential oil using sonication and native gums. Food Hydrocoll. 2015, 44, 40–48. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 2017, 76, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bedoya-Serna, C.M.; Dacanal, G.C.; Fernandes, A.M.; Pinho, S.C. Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: In vitro study and application in Minas Padrão cheese. Braz. J. Microbiol. 2018, 49, 929–935. [Google Scholar] [CrossRef]
- Buffa, M.N.; Trujillo, A.J.; Pavia, M.; Guamis, B. Changes in textural, microstructural, and colour characteristics during ripening of cheeses made from raw, pasteurized or high-pressure-treated goats’ milk. Int. Dairy J. 2001, 11, 927–934. [Google Scholar] [CrossRef]
- Sandoval-Copado, J.; Orozco-Villafuerte, J.; Pedrero-Fuehrer, D.; Colín-Cruz, M.A. Sensory profile development of Oaxaca cheese and relationship with physicochemical parameters. Int. J. Dairy Sci. 2016, 99, 7075–7084. [Google Scholar] [CrossRef] [Green Version]
- Colín-Cruz, M.D.L.Á.; Dublán-García, O.; Espinoza-Ortega, A.; Dominguez-Lopez, A. The effect of varying fat content on the microstructure of Oaxaca cheese, a typical pasta filata cheese. Int. J. Dairy Technol. 2012, 65, 71–80. [Google Scholar] [CrossRef]
- Almaráz-Buendia, I.; Hernández-Escalona, A.; González-Tenorio, R.; Santos-Ordoñez, N.; Espino-García, J.J.; Martínez-Juárez, V.; Meza-Nieto, M.A.; Campos Montiel, R.G. Producing an Emulsified Meat System by Partially Substituting Pig Fat with Nanoemulsions that Contain Antioxidant Compounds: The Effect on Oxidative Stability, Nutritional Contribution, and Texture Profile. Foods 2019, 8, 357. [Google Scholar] [CrossRef] [Green Version]
- Villanueva-Carvajal, A.; Esteban-Chávez, M.; Espinoza-Ortega, A.; Arriaga-Jordán, C.M.; Dominguez-Lopez, A. Oaxaca cheese: Flavour, texture and their interaction in a Mexican traditional pasta filata type cheese. CYTA J. Food 2012, 10, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Ramos, Ó.L.; Pereira, J.O.; Silva, S.I.; Fernandes, J.C.; Franco, M.I.; Lopes-da-Silva, J.A.; Pintado, M.E.; Malcata, F.X. Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese. J. Dairy Sci. 2012, 95, 6282–6292. [Google Scholar] [CrossRef]
- Caro, I.; Soto, S.; Fuentes, L.; Gutiérrez-Méndez, N.; García-Islas, B.; Monroy-Gayosso, K.E.; Mateo, J. Compositional, functional and sensory characteristics of selected Mexican cheeses. Food Nutr. Sci. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Benítez-Rojas, A.C.; Delgado-Macuil, R.J.; Amador-Espejo, G.G.; Eustaquio-Rosales, E.; Martinez-Martinez, Y.L. Evaluation of Microbiological and Toxicological Quality (Heavy Metals) in Fresh Artisan Cheese Commercialized in Puebla City, Mexico. Int. J. Food Eng. 2019, 5. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll. 2015, 43, 547–556. [Google Scholar] [CrossRef]
- Espinosa-Muñoz, V.; Roldán-Cruz, C.A.; Hernández-Fuentes, A.D.; Quintero-Lira, A.; Almaraz-Buendía, I.; Campos-Montiel, R.G. Ultrasonic-assisted extraction of phenols, flavonoids, and biocompounds with inhibitory effect against Salmonella Typhimurium and Staphylococcus Aureus from Cactus pear. J. Food Process. Eng. 2017, 40, e12358. [Google Scholar] [CrossRef]
- de Gomes, M.D.S.; Cardoso, M.D.G.; Guimarães, A.C.G.; Guerreiro, A.C.; Gago, C.M.L.; Vilas Boas, E.V.D.B.; Dias, C.M.B.; Manhita, A.C.C.; Faleiro, M.L.; Miguel, M.G.C.; et al. Effect of edible coatings with essential oils on the quality of red raspberries over shelf-life. J. Sci. Food Agric. 2017, 97, 929–938. [Google Scholar] [CrossRef]
- Gallegos-Acevedo, M.A.; Chavez-Martinez, A.; Corral-Luna, A.; Renteria-Monterrubio, A.L.; Burrola-Barraza, M.E.; Lechuga-Valles, R.; Dominguez-Viveros, J.; Castillo-González, A.R.; Sanchez-Vega, R. Microbial characterization and diversity of artisanal Ranchero cheese with emphasis in Lactococcus strains. Food Sci. Technol. 2019, 39, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control 2008, 19, 1130–1138. [Google Scholar] [CrossRef]
- Radi, M.; Akhavan-Darabi, S.; Akhavan, H.R.; Amiri, S. The use of orange peel essential oil microemulsion and nanoemulsion in pectin-based coating to extend the shelf life of fresh-cut orange. J. Food Process. Preserv. 2018, 42, e13441. [Google Scholar] [CrossRef]
- Ganesan, B.; Irish, D.A.; Brothersen, C.; McMahon, D.J. Evaluation of microbial survival post-incidence on fresh Mozzarella cheese. J. Dairy Sci. 2012, 95, 6891–6896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayek, S.A.; Ibrahim, S.A. Antimicrobial activity of xoconostle pears (Opuntia matudae) against Escherichia coli O157: H7 in laboratory medium. Int. J. Microbiol. 2012, 2012. [Google Scholar] [CrossRef]
- Alparslan, Y.; Baygar, T.; Metin, C.; Yapici, H.H.; Baygar, T. The Role of Gelatin-Based Film Coating Combined with Orange Peel Essential Oil on the Quality of Refrigerated Shrimp. Acta Aquat. Turc. 2019, 15, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.V.D.B.; Guimarães, I.C.; Ferreira, C.L.R.; Botrel, D.A.; Borges, S.V.; de Souza, A.U. Microencapsulated rosemary (Rosmarinus officinalis) essential oil as a biopreservative in minas frescal cheese. J. Food Process. Preserv. 2017, 41, e12759. [Google Scholar] [CrossRef]
- Osorio-Esquivel, O.; Álvarez, V.B.; Dorantes-Álvarez, L.; Giusti, M.M. Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Res. Int. 2011, 44, 2160–2168. [Google Scholar] [CrossRef]
- Khan, M.M.; Iqbal, M.; Hanif, M.A.; Mahmood, M.S.; Naqvi, S.A.; Shahid, M.; Jaskani, M.J. Antioxidant and antipathogenic activities of citrus peel oils. J. Essent. Oil-Bear. Plants 2012, 15, 972–979. [Google Scholar] [CrossRef]
- Deolindo, C.T.P.; Monteiro, P.I.; Santos, J.S.; Cruz, A.G.; da Silva, M.C.; Granato, D. Phenolic-rich Petit Suisse cheese manufactured with organic Bordeaux grape juice, skin, and seed extract: Technological, sensory, and functional properties. LWT 2019, 115, 108493. [Google Scholar] [CrossRef]
- Jansen-Alves, C.; Fernandes, K.F.; Crizel-Cardozo, M.M.; Krumreich, F.D.; Borges, C.D.; Zambiazi, R.C. Microencapsulation of propolis in protein matrix using spray drying for application in food systems. Food Bioprocess Technol. 2018, 11, 1422–1436. [Google Scholar] [CrossRef]
- Tenorio Dominguez, M. Flavonoids extracted from orange peelings tangelo (Citrus reticulata x Citrus paradisi) and their application as a natural antioxidant in sacha inchi (Plukenetia volubilis) vegetable oil. Sci. Agropecu. 2016, 7, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Cortez-García, R.M.; Ortiz-Moreno, A.; Zepeda-Vallejo, L.G.; Necoechea-Mondragón, H. Effects of cooking methods on phenolic compounds in xoconostle (Opuntia joconostle). Plant Foods Hum. Nutr. 2015, 70, 85–90. [Google Scholar] [CrossRef]
- Revilla, I.; González-Martín, M.I.; Vivar-Quintana, A.M.; Blanco-López, M.A.; Lobos-Ortega, I.A.; Hernández-Hierro, J.M. Antioxidant capacity of different cheeses: Affecting factors and prediction by near infrared spectroscopy. J. Dairy Sci. 2016, 99, 5074–5082. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.K.; Nam, M.S.; Bae, H.C. Characteristics of Gouda cheese supplemented with chili pepper extract microcapsules. Korean J. Food Sci. Anim. Resour. 2017, 37, 833. [Google Scholar] [CrossRef]
- Pérez-Alonso, C.; Campos-Montiel, R.G.; Morales-Luna, E.; Reyes-Munguía, A.; Aguirre-Álvarez, G.; Pimentel-González, D.J. Estabilización de compuestos fenólicos de Opuntia oligacantha Först por microencapsulación con agave SAP (aguamiel). Revista Mexicana de Ingeniería Química 2015, 14, 579–588. [Google Scholar]
- Espino-Manzano, S.O.; León-López, A.; Aguirre-Álvarez, G.; González-Lemus, U.; Prince, L.; Campos-Montiel, R.G. Application of Nanoemulsions (W/O) of Extract of Opuntia oligacantha CF Först and Orange Oil in Gelatine Films. Molecules 2020, 25, 3487. [Google Scholar] [CrossRef]
- Cenobio-Galindo, A.J.; Ocampo-López, J.; Reyes-Munguía, A.; Carrillo-Inungaray, M.L.; Cawood, M.; Medina-Pérez, G.; Fernández-Luqueño, F.; Campos-Montiel, R.G. Influence of bioactive compounds incorporated in a nanoemulsion as coating on avocado fruits (Persea americana) during postharvest storage: Antioxidant activity, physicochemical changes and structural evaluation. Antioxidants 2019, 8, 500. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Huezo, M.E.; Estrada-Fernández, A.G.; García-Almendárez, B.E.; Ludena-Urquizo, F.; Campos-Montiel, R.G.; Pimentel-González, D.J. Viability of Lactobacillus plantarum entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. LWT Food Sci. Technol. 2014, 59, 768–773. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International. Volume I, Agricultural Chemicals, Contaminants, Drugs; AOAC International: Gaithersburg, MD, USA, 2010; ISBN 0935584676. Available online: http://hdl.handle.net/10637/3158 (accessed on 30 October 2019).
- Ashenafi, M. Microbiological quality of Ayib, a traditional Ethiopian cottage cheese. Int. J. Food Microbiol. 1990, 10, 263–268. [Google Scholar] [CrossRef]
- Munir, M.; Nadeem, M.; Qureshi, T.M.; Gamlath, C.J.; Martin, G.J.; Hemar, Y.; Ashokkumar, M. Effect of sonication, microwaves and high-pressure processing on ACE-inhibitory activity and antioxidant potential of Cheddar cheese during ripening. Ultrason. Sonochem. 2020, 105140. [Google Scholar] [CrossRef]
Days/Treatments | Control | Micro | Nano |
---|---|---|---|
Moisture (%) | |||
0 | 48.11 ± 2.96 aA | 49.92 ± 0.75 aA | 49.07 ± 0.42 aA |
15 | 44.43 ± 2.68 aB | 47.42 ± 1.74 aAB | 46.34 ± 1.52 aB |
30 | 42.28 ± 1.58 aB | 44.06 ± 3.06 aB | 44.41 ± 0.51 aBC |
45 | 39.47 ± 0.25 bC | 43.59 ± 1.43 aA | 42.74 ± 1.31 aC |
Ash (%) | |||
0 | 3.15 ± 0.34 aA | 3.44 ± 0.17 aA | 3.27 ± 0.08 aB |
15 | 3.37 ± 0.07 aA | 3.64 ± 0.35 aA | 3.53 ± 0.32 aAB |
30 | 3.52 ± 0.29 aA | 3.70 ± 0.16 aA | 3.60 ± 0.20 aA |
45 | 3.55 ± 0.14 aA | 3.72 ± 0.06 aA | 3.62 ± 0.11 aA |
Fat (%) | |||
0 | 24.66 ± 0.57 aB | 22.43 ± 1.92 aB | 25.33 ± 1.52 aB |
15 | 26.33 ± 1.52 abAB | 24.67 ± 1.15 bAB | 27.71 ± 2.05 aAB |
30 | 27.66 ± 1.18 abA | 25.60 ± 1.52 bA | 28.67 ± 0.55 aA |
45 | 28.31 ± 1.04 aA | 26.33 ± 1.14 aA | 29.33 ± 2.08 aA |
Protein (%) | |||
0 | 22.65 ± 0.89 aB | 22.49 ± 0.51 aC | 19.26 ± 1.01 bC |
15 | 24.03 ± 0.51 aB | 23.65 ± 0.09 aB | 21.03 ± 0.56 bB |
30 | 24.71 ± 0.55 aA | 24.21 ± 1.03 aA | 22.60 ± 0.42 bA |
45 | 25.00 ± 0.31 aA | 25.43 ± 0.56 aA | 23.42 ± 0.39 bA |
pH | |||
0 | 5.52 ± 0.05 aA | 5.57 ± 0.01 aA | 5.29 ± 0.00 bA |
15 | 5.19 ± 0.01 abB | 5.23 ± 0.06 bB | 5.13 ± 0.08 aB |
30 | 4.98 ± 0.03 aC | 5.02 ± 0.14 aB | 5.05 ± 0.09 aBC |
45 | 4.53 ± 0.02 cD | 4.71 ± 0.02 bC | 4.93 ± 0.04 aC |
Days/Treatments | Control | Micro | Nano |
---|---|---|---|
Aerobic mesophilic bacteria | |||
0 | 4.88 ± 0.06 bA | 5.04 ± 0.15 bA | 4.01 ± 0.17 aA |
15 | 5.84 ± 0.03 cB | 5.58 ± 0.01 bB | 5.08 ± 0.02 aB |
30 | 7.84 ± 0.06 cC | 7.27 ± 0.08 bC | 6.36 ± 0.01 aC |
45 | 8.45 ± 0.01 cD | 7.64 ± 0.09 bD | 7.27 ± 0.05 aD |
Molds and yeasts | |||
0 | 2.60 ± 0.11 aA | 2.89 ± 0.22 aA | 2.36 ± 0.51 aA |
15 | 4.72 ± 0.05 cB | 3.47 ± 0.04 bB | 3.01 ± 0.06 aB |
30 | 7.86 ± 0.18 cC | 5.99 ± 0.10 bC | 5.49 ± 0.28 aC |
45 | 8.48 ± 0.06 cD | 7.91 ± 0.03 bD | 6.59 ± 0.08 aD |
Total coliforms | |||
0 | 4.23 ± 0.12 cA | 3.27 ± 0.02 bA | 2.68 ± 0.08 aA |
15 | 4.58 ± 0.15 cB | 3.54 ± 0.03 bB | 3.59 ± 0.01 aB |
30 | 6.30 ± 0.09 cC | 5.47 ± 0.03 bC | 4.64 ± 0.02 aC |
45 | 8.83 ± 0.09 cD | 6.79 ± 0.08 bD | 5.73 ± 0.04 aD |
Days/Treatments | Control | Micro | Nano |
---|---|---|---|
Hardness (N) | |||
0 | 8.60 ± 1.12 aA | 1.61 ± 0.31 cA | 3.27 ± 0.37 bA |
15 | 6.90 ± 0.34 aB | 0.98 ± 0.12 cB | 3.64 ± 0.18 bA |
30 | 5.02 ± 0.77 aC | 1.23 ± 0.33 cB | 1.78 ± 0.12 bB |
45 | 2.88 ± 0.80 aD | 0.83 ± 0.27 cB | 1.62 ± 0.17 bB |
Elasticity (Adimensional) | |||
0 | 0.75 ± 0.05 aA | 0.72 ± 0.05 aA | 0.75 ± 0.05 aA |
15 | 0.80 ± 0.08 aA | 0.85 ± 0.05 aA | 0.75 ± 0.05 aA |
30 | 0.75 ± 0.11 aA | 0.85 ± 0.17 aA | 0.81 ± 0.14 aA |
45 | 0.72 ± 0.05 aA | 0.72 ± 0.09 aA | 0.77 ± 0.09 aA |
Cohesiveness (Adimensional) | |||
0 | 0.50 ± 0.02 aA | 0.56 ± 0.07 aA | 0.51 ± 0.04 aA |
15 | 0.54 ± 0.09 aA | 0.52 ± 0.01 aA | 0.55 ± 0.02 aA |
30 | 0.55 ± 0.02 aA | 0.49 ± 0.03 bA | 0.46 ± 0.07 bA |
45 | 0.55 ± 0.03 aA | 0.50 ± 0.04 aA | 0.51 ± 0.08 aA |
Chewiness (N) | |||
0 | 6.16 ± 1.9 aA | 5.12 ± 1.58 aA | 5.11 ± 0.85 bA |
15 | 5.38 ± 0.68 aA | 5.20 ± 0.89 aA | 5.37 ± 0.29 aA |
30 | 5.77 ± 0.77 aA | 5.87 ± 2.07 aA | 5.84 ± 2.56 aA |
45 | 6.02 ± 0.33 bA | 5.03 ± 1.33 aA | 4.92 ± 1.29 aA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Soto, E.; Cenobio-Galindo, A.d.J.; Espino-Manzano, S.O.; Franco-Fernández, M.J.; Ludeña-Urquizo, F.E.; Jiménez-Alvarado, R.; Zepeda-Velázquez, A.P.; Campos-Montiel, R.G. The Addition of Microencapsulated or Nanoemulsified Bioactive Compounds Influences the Antioxidant and Antimicrobial Activities of a Fresh Cheese. Molecules 2021, 26, 2170. https://doi.org/10.3390/molecules26082170
Pérez-Soto E, Cenobio-Galindo AdJ, Espino-Manzano SO, Franco-Fernández MJ, Ludeña-Urquizo FE, Jiménez-Alvarado R, Zepeda-Velázquez AP, Campos-Montiel RG. The Addition of Microencapsulated or Nanoemulsified Bioactive Compounds Influences the Antioxidant and Antimicrobial Activities of a Fresh Cheese. Molecules. 2021; 26(8):2170. https://doi.org/10.3390/molecules26082170
Chicago/Turabian StylePérez-Soto, Elizabeth, Antonio de Jesús Cenobio-Galindo, Salvador Omar Espino-Manzano, Melitón Jesús Franco-Fernández, Fanny Emma Ludeña-Urquizo, Rubén Jiménez-Alvarado, Andrea Paloma Zepeda-Velázquez, and Rafael Germán Campos-Montiel. 2021. "The Addition of Microencapsulated or Nanoemulsified Bioactive Compounds Influences the Antioxidant and Antimicrobial Activities of a Fresh Cheese" Molecules 26, no. 8: 2170. https://doi.org/10.3390/molecules26082170
APA StylePérez-Soto, E., Cenobio-Galindo, A. d. J., Espino-Manzano, S. O., Franco-Fernández, M. J., Ludeña-Urquizo, F. E., Jiménez-Alvarado, R., Zepeda-Velázquez, A. P., & Campos-Montiel, R. G. (2021). The Addition of Microencapsulated or Nanoemulsified Bioactive Compounds Influences the Antioxidant and Antimicrobial Activities of a Fresh Cheese. Molecules, 26(8), 2170. https://doi.org/10.3390/molecules26082170