Synthesis, Biological Evaluation, and Molecular Modeling of Aza-Crown Ethers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Crown Ethers
2.2. Biological Activity of Aza-Crown Ethers
2.3. Molecular Modeling
3. Materials and Methods
3.1. General Information
3.2. Chemistry
3.2.1. General Procedure for Synthesis Compounds 1–4, 10, and 11
3.2.2. General Procedure for Synthesis Compounds 14 and 15
3.2.3. General Procedure for Synthesis Compound 19
3.2.4. General Procedure for Synthesis Compounds 22 and 23
3.2.5. General Procedure for Synthesis Compounds 25–27
3.3. Biological Methods
3.3.1. Materials for Biological Studies
3.3.2. Cell Culture
3.3.3. Isolation of Human Neutrophils
3.3.4. Ca2+ Mobilization Assay
3.3.5. Chemotaxis Assay
3.3.6. Competition Binding Assay
3.3.7. ROS Production
3.3.8. Assessment of Compound Cytotoxicity
3.4. Molecular Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Alfonso, I.; Quesada, R. Biological activity of synthetic ionophores: Ion transporters as prospective drugs? Chem. Sci. 2013, 4, 3009–3019. [Google Scholar] [CrossRef]
- Pedersen, C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 2495–2496, 7017–7036. [Google Scholar] [CrossRef]
- Moczar, I.; Huszthy, P. Optically active crown ether-based fluorescent sensor molecules: A mini-review. Chirality 2019, 31, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yim, D.; Jang, W.D.; Yoon, J. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem. Soc. Rev. 2017, 46, 2437–2458. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, F.Z.; Wu, J.Y.; Xie, J.Q.; Li, S. Development of the aza-crown ether metal complexes as artificial hydrolase. J. Inorg. Biochem. 2016, 154, 89–102. [Google Scholar] [CrossRef]
- Otis, F.; Auger, M.; Voyer, N. Exploiting peptide nanostructures to construct functional artificial ion channels. Acc. Chem. Res. 2013, 46, 2934–2943. [Google Scholar] [CrossRef]
- Gokel, G.W. Hydraphiles: Design, synthesis and analysis of a family of synthetic, cation-conducting channels. Chem. Commun. 2000, 1–9. [Google Scholar] [CrossRef]
- Kralj, M.; Tusek-Bozic, L.; Frkanec, L. Biomedical potentials of crown ethers: Prospective antitumor agents. ChemMedChem 2008, 3, 1478–1492. [Google Scholar] [CrossRef]
- Tso, W.W.; Fung, W.P.; Tso, M.Y.W. Variability of crown ether toxicity. J. Inorg. Biochem. 1981, 14, 237–244. [Google Scholar] [CrossRef]
- Karawajew, L.; Glibin, E.N.; Maleev, V.Y.; Czerwony, G.; Dorken, B.; Davies, D.B.; Veselkov, A.N. Role of crown-like side chains in the biological activity of substituted-phenoxazone drugs. Anti-Cancer Drug Des. 2000, 15, 331–338. [Google Scholar]
- Fukuda, R.; Takenaka, S.; Takagi, M. Metal-ion assisted DNA-intercalation of crown ether-linked acridine-derivatives. J. Chem. Soc. Chem. Comm. 1990, 1028–1030. [Google Scholar] [CrossRef]
- Adamovich, S.N.; Mirskova, A.N.; Mirskov, R.G.; Perminova, O.M.; Chipanina, N.N.; Aksamentova, T.N.; Voronkov, M.G. New quaternary ammonium salts and metal complexes of organylheteroacetic acids with diaza-18-crown-6 ether. Russ. J. Gen. Chem. 2010, 80, 1007–1010. [Google Scholar] [CrossRef]
- Marjanovic, M.; Kralj, M.; Supek, F.; Frkanec, L.; Piantanida, I.; Smuc, T.; Tusek-Bozic, L. Antitumor potential of crown ethers: Structure-activity relationships, cell cycle disturbances, and cell death studies of a series of ionophores. J. Med. Chem. 2007, 50, 1007–1018. [Google Scholar] [CrossRef] [PubMed]
- Zasukhina, G.A.; Vasil’eva, I.M.; Vedernikov, A.I.; Gromov, S.P.; Alfimov, M.V. Antimutagenic characteristics of new diazacrown compounds with n-carboxyalkyl substitutes. Bull. Exp. Biol. Med. 2006, 141, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Gredicak, M.; Supek, F.; Kralj, M.; Majer, Z.; Hollosi, M.; Smuc, T.; Mlinaric-Majerski, K.; Horvat, S. Computational structure-activity study directs synthesis of novel antitumor enkephalin analogs. Amino Acids 2010, 38, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Supek, F.; Ramljak, T.S.; Marjanovic, M.; Buljubasic, M.; Kragol, G.; Ilic, N.; Smuc, T.; Zahradka, D.; Mlinaric-Majerski, K.; Kralj, M. Could LogP be a principal determinant of biological activity in 18-crown-6 ethers? Synthesis of biologically active adamantane-substituted diaza-crowns. Eur. J. Med. Chem. 2011, 46, 3444–3454. [Google Scholar] [CrossRef]
- Guberovic, I.; Marjanovic, M.; Mioc, M.; Ester, K.; Martin-Kleiner, I.M.; Ramljak, T.S.; Mlinaric-Majerski, K.M.; Kralj, M. Crown ethers reverse p-glycoprotein-mediated multidrug resistance in cancer cells. Sci. Rep. 2018, 8, 14467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanova, U.A.; Ramazanov, M.A.; Maharramov, A.M.; Gakhramanova, Z.; Hajiyeva, S.F.; Vezirova, L.; Eyvazova, G.M.; Hajiyeva, F.V.; Huseynova, P.; Agamaliyev, Z. The functionalization of magnetite nanoparticles by hydroxyl substituted diazacrown ether, able to mimic natural siderophores, and investigation of their antimicrobial activity. J. Incl. Phenom. Macrocycl. Chem. 2016, 86, 19–25. [Google Scholar] [CrossRef]
- Cantwell, R.; Garrad, E.C.; Gokel, M.R.; Hayes, M.J.; Meisel, J.W.; Negin, S.; Patel, M.B.; Gokel, G.W. Biological activity of macrocyclic cation transporters. Curr. Org. Chem. 2015, 19, 2229–2236. [Google Scholar] [CrossRef]
- Negin, S.; Patel, M.B.; Gokel, M.R.; Meisel, J.W.; Gokel, G.W. Antibiotic potency against E. coli is enhanced by channel-forming alkyl lariat ethers. ChemBioChem 2016, 17, 2153–2161. [Google Scholar] [CrossRef]
- Gurbanov, K.G.; Paperno, A.A.; Spasov, A.A.; Vasil’ev, P.M.; Breslaukhov, A.G.; Luk’ianenko, N.G.; Basok, S.S.; Kulygina, E.; Bogashchenko, T. The relationship between the magnitude of the negative inotropic action and chemical structure of crown-ether derivatives. Eksp. Klin. Farm. 1993, 56, 32–34. [Google Scholar]
- Samiei, E.F.; Boojar, M.M.A.; Moradi-Sardareh, H. The effects of macrocyclic dinaphtho diamide on the oxidative states and stimulating the csf production lung tissue and colony formation of bone marrow cells. J. Incl. Phenom. Macrocycl. Chem. 2017, 87, 259–266. [Google Scholar] [CrossRef]
- Voronina, T.A.; Karasyova, T.L.; Golovenko, N.Y.; Rokachinskaya, M.G.; Basok, S.S.; Sharapova, S.E.; Kulygina, E.Y.; Lukyanenko, N.G. Psychotropic properties of aza-15-crown-5 derivatives with pharmacophoric groups. Khimiko-Farmatsevticheskii Zhurnal 1988, 22, 679–682. [Google Scholar] [CrossRef]
- Karaseva, T.L.; Tsapenko, Z.N.; Golovenko, N.; Timofeeva, S.E.; Luk’ianenko, N.G. Gamma-aminobutyric acid metabolism in the rat brain after administration of nootropic agents. Vopr. Med. Khim. 1988, 34, 81–84. [Google Scholar]
- Lukyanenko, N.G.; Bogatsky, A.V.; Voronina, T.A.; Golovenko, N.Y.; Karaseva, T.L.; Timofeeva, S.E.; Basok, S.S.; Pastushok, V.N.; Garibova, T.L.; Kostyanovsky, R.G. Macroheterocycles; XXIII. Antihypoxic and antiamnesic activity of azacrown esters with pharmacophoric groups. Khimiko-Farmatsevticheskii Zhurnal 1985, 19, 691–693. [Google Scholar] [CrossRef]
- Zabirov, N.G.; Pozdeev, O.K.; Shcherbakova, V.A.; Shumilova, T.N.; Gilmanova, G.K.; Cherkasov, R.A. Phosphorus-containing derivatives of diaza-18-crown-6. Khimiko-Farmatsevticheskii Zhurnal 1990, 24, 51–53. [Google Scholar]
- Famaey, J.P.; Whitehouse, M.W. About some possible anti-inflammatory properties of various membrane permeant agents. Agents Actions 1975, 5, 133–136. [Google Scholar] [CrossRef]
- Kiss, E.; Balazs, C.; Bene, L.; Damjanovich, S.; Matko, J. Effect of TSH and anti-TSH receptor antibodies on the plasma membrane potential of polymorphonuclear granulocytes. Immunol. Lett. 1997, 55, 173–177. [Google Scholar] [CrossRef]
- Divirgilio, F.; Lew, P.D.; Andersson, T.; Pozzan, T. Plasma-membrane potential modulates chemotactic peptide-stimulated cytosolic free Ca2+ changes in human-neutrophils. J. Biol. Chem. 1987, 262, 4574–4579. [Google Scholar] [CrossRef]
- De Oliveira, R.M.; Antunes, E.; Pedrazzoli, J.; Gambero, A. The inhibitory effects of H+K+ ATPase inhibitors on human neutrophils in vitro: Restoration by a K+ ionophore. Inflamm. Res. 2007, 56, 105–111. [Google Scholar] [CrossRef]
- Demaurex, N.; Downey, G.P.; Waddell, T.K.; Grinstein, S. Intracellular pH regulation during spreading of human neutrophils. J. Cell. Biol. 1996, 133, 1391–1402. [Google Scholar] [CrossRef] [Green Version]
- Calafat, J.; Janssen, H.; Knol, E.F.; Malm, J.; Egesten, A. The bactericidal/permeability-increasing protein (BPI) is membrane-associated in azurophil granules of human neutrophils, and relocation occurs upon cellular activation. Apmis 2000, 108, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Fittschen, C.; Henson, P.M. Linkage of azurophil granule secretion in neutrophils to chloride-ion transport and endosomal transcytosis. J. Clin. Investig. 1994, 93, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Kulstad, S.; Malmsten, L.A. Diaza-crown ethers.1. Alkali ion promoted formation of diaza-crown ethers and syntheses of some N,N’-disubstituted derivatives. Acta Chem. Scand. B 1979, 33, 469–474. [Google Scholar] [CrossRef]
- Schaff, U.Y.; Yamayoshi, I.; Tse, T.; Griffin, D.; Kibathi, L.; Simon, S.I. Calcium flux in neutrophils synchronizes beta2 integrin adhesive and signaling events that guide inflammatory recruitment. Ann. Biomed. Eng. 2008, 36, 632–646. [Google Scholar] [CrossRef] [Green Version]
- Krause, K.H.; Campbell, K.P.; Welsh, M.J.; Lew, D.P. The calcium signal and neutrophil activation. Clin. Biochem. 1990, 23, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Stenfeldt, A.L.; Karlsson, J.; Wenneras, C.; Bylund, J.; Fu, H.; Dahlgren, C. Cyclosporin H, Boc-MLF and Boc-FLFLF are antagonists that preferentially inhibit activity triggered through the formyl peptide receptor. Inflammation 2007, 30, 224–229. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Cheng, N.; Ye, R.D.; Quinn, M.T. Antagonism of human formyl peptide receptor 1 (FPR1) by chromones and related isoflavones. Biochem. Pharm. 2014, 92, 627–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinckwich, N.; Schenten, V.; Melchior, C.; Brechard, S.; Tschirhart, E.J. An essential role of STIM1, Orai1, and S100A8-A9 proteins for Ca2+ signaling and FcγR-mediated phagosomal oxidative activity. J. Immunol. 2011, 186, 2182–2191. [Google Scholar] [CrossRef] [Green Version]
- Fay, A.J.; Qian, X.; Jan, Y.N.; Jan, L.Y. Sk channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes. Proc. Natl. Acad. Sci. USA 2006, 103, 17548–17553. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, R.K.; Kumar, M.; Sharma Nee Bhalla, V.; Kaur, I. Cesium ion selective electrode based on calix[4]crown ether-ester. Talanta 2002, 58, 445–450. [Google Scholar] [CrossRef]
- Suzuki, K.; Sato, K.; Hisamoto, H.; Siswanta, D.; Hayashi, K.; Kasahara, N.; Watanabe, K.; Yamamoto, N.; Sasakura, H. Design and synthesis of sodium ion-selective ionophores based on 16-crown-5 derivatives for an ion-selective electrode. Anal. Chem. 1996, 68, 208–215. [Google Scholar] [CrossRef]
- Islam, N.; Chimni, S.S. Binding and selectivity of phenazino-18-crown-6-ether with alkali, alkaline earth and toxic metal species: A dft study. J. Mol. Struct. 2017, 1130, 781–790. [Google Scholar] [CrossRef]
- Boda, A.; Ali, S.M.; Shenoi, M.R.K.; Rao, H.; Ghosh, S.K. DFT modeling on the suitable crown ether architecture for complexation with Cs+ and Sr2+ metal ions. J. Mol. Model. 2011, 17, 1091–1108. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.Q.; Guo, M.; Lv, B.L.; Wu, Z.J.; Zhou, W.Z. Experimental and theoretical investigations of Cs+ adsorption on crown ethers modified magnetic adsorbent. J. Hazard. Mater. 2019, 371, 712–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkachenko, N.V.; Sun, Z.M.; Boldyrev, A.I. Record low ionization potentials of alkali metal complexes with crown ethers and cryptands. ChemPhysChem 2019, 20, 2060–2062. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. Swissadme: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. Ilogp: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef]
- Luk’yanenko, N.G.; Basok, S.S.; Kulygina, E.Y.; Bogashchenko, T.Y.; Yakovenko, I.S. Synthesis of monoazacrown ethers under phase-transfer catalysis. Russ. J. Org. Chem. 2012, 48, 1345–1352. [Google Scholar] [CrossRef]
- Calverley, M.J.; Dale, J.; Jutand, A.; Nishida, T.; Enzell, C.R.; Berg, J.-E. 1,4,7-trioxa-10-azacyclododecane and some n-substituted derivatives-Synthesis and cation complexing. Acta Chem. Scand. B 1982, 36, 241–247. [Google Scholar] [CrossRef]
- Bogatsky, A.V.; Lukyanenko, N.G.; Basok, S.S.; Ostrovskaya, L.K. Macroheterocycles; XXI. The phase-transfer synthesis of azacrown ethers. Synthesis 1984, 1984, 138. [Google Scholar] [CrossRef]
- Lunn, W.H.W.; Podmore, W.D.; Szinai, S.S. Adamantane chemistry.I. Synthesis of 1,2-disubstituted adamantanes. J. Chem. Soc. C 1968, 1657–1660. [Google Scholar] [CrossRef]
- Tuemmler, B.; Maass, G.; Weber, E.; Wehner, W.; Voegtle, F. Noncyclic crown-type polyethers, pyridinophane cryptands, and their alkali-metal ion complexes-Synthesis, complex stability, and kinetics. J. Am. Chem. Soc. 1977, 99, 4683–4690. [Google Scholar] [CrossRef] [PubMed]
- Basok, S.S.; Lutsyuk, A.F.; Kirichenko, T.I. Synthesis of azacrown ether derivatives with adamantane fragments. Visnyk Odessa Natsionalnoho Univ. Khimia 2018, 23, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Mlinaric-Majerski, K.; Ramljak, T.S. Synthesis and alkali metal binding properties of novel n-adamantylaza-crown ethers. Tetrahedron 2002, 58, 4893–4898. [Google Scholar] [CrossRef]
- Basok, S.S.; Lutsyuk, A.F.; Gridina, T.L.; Fedchuk, A.S. Synthesis and antiviral activity of diaza-18-crown-6 derivatives with the fragments of 4-aminomethylbenzoic and 6-aminocaproic acids. Macroheterocycles 2018, 11, 442–448. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Quinn, M.T. High-throughput screening for small-molecule activators of neutrophils: Identification of novel n-formyl peptide receptor agonists. Mol. Pharm. 2007, 71, 1061–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 2002, 100, 65–73. [Google Scholar] [CrossRef]
Compound | EC50 (µM) (Efficacy, %) |
---|---|
5 | N.A. |
6 | N.A. |
7 | N.A. |
8 | 22.4 ± 4.3 (50) |
9 | N.A. |
10 | 9.7 ± 2.6 (35) |
11 | 15.6 ± 4.4 (40) |
12 | 23.8 ± 7.6 (25) |
13 | 6.9 ± 2.1 (25) |
14 | 9.5 ± 2.7 (40) |
15 | 4.7 ± 1.5 (110) |
16 | 15.7 ± 3.8 (25) |
17 | 15.9 ± 2.5 (50) |
18 | N.A. |
19 | N.A. |
20 | N.A. |
21 | 11.3 ± 3.1 (40) |
22 | N.A. |
23 | N.A. |
24 | N.A. |
25 | N.A. |
26 | N.A. |
27 | N.A. |
28 | N.A. |
Compound | FPR1/FPR2 Agonist-Induced Δ[Ca2+]i | PMA-Induced ROS Production IC50 (μM) | ||
---|---|---|---|---|
Neutrophils IC50 (μM) | FPR1-HL60 IC50 (μM) | FPR2-HL60 IC50 (μM) | ||
5 | N.A. | N.A. | N.A. | N.A. |
6 | N.A. | N.A. | N.A. | N.A. |
7 | N.A. | N.A. | N.A. | N.A. |
8 | 2.6 ± 0.4 | 37.1 ± 4.8 | N.A. | N.A. |
9 | N.A. | N.A. | N.A. | N.A. |
10 | 11.2 ± 2.7 | 12.2 ± 1.9 | 36.4 ± 5.6 | N.A. |
11 | 9.4 ± 0.6 | N.A. | 29.1 ± 3.2 | N.A. |
12 | 4.0 ± 1.4 | N.A. | N.A. | N.A. |
13 | 7.4 ± 1.3 | 16.5 ± 3.2 | 32.6 ± 4.5 | 25.9 ± 2.7 |
14 | 3.5 ± 0.4 | 11.6 ± 2.1 | 8.3 ± 2.3 | 21.9 ± 2.2 |
15 | 4.1 ± 0.6 | 4.8 ± 0.9 | 7.2 ± 1.7 | 4.1 ± 0.1 |
16 | 3.4 ± 0.8 | 7.3 ± 2.6 | 30.7 ± 6.4 | N.A. |
17 | 1.5 ± 0.4 | 3.7 ± 0.7 | 7.6 ± 1.9 | 8.2 ± 0.1 |
18 | N.A. | N.A. | N.A. | N.A. |
19 | N.A. | N.A. | N.A. | N.A. |
20 | N.A. | N.A. | N.A. | N.A. |
21 | 10.2 ± 2.6 | 9.6 ± 2.1 | 28.2 ± 2.6 | 15.3 ± 1.8 |
22 | N.A. | N.A. | N.A. | N.A. |
23 | N.A. | N.A. | N.A. | N.A. |
24 | N.A. | N.A. | N.A. | N.A. |
25 | N.A. | N.A. | N.A. | N.A. |
26 | N.A. | N.A. | N.A. | N.A. |
27 | N.A. | N.A. | N.A. | N.A. |
28 | N.A. | N.A. | N.A. | N.A. |
Compound | Chemotaxis, IC50, µM |
---|---|
8 | 13.2 ± 3.8 |
11 | 12.8 ± 5.3 |
12 | 15.7 ± 4.2 |
13 | 5.8 ± 1.4 |
14 | 6.1 ± 2.1 |
15 | 5.7 ± 0.2 |
16 | 5.3 ± 0.4 |
17 | 5.2 ± 1.7 |
Ligand | Cation (Mn+) | NBO Charge at the Cation | Metal-Oxygen Distances, Å | Metal-Nitrogen Distances, Å | ΔU, kcal/mol |
---|---|---|---|---|---|
12 | Na+ | 0.963 | 2.192…4.434 | 3.582 | −71.06 |
K+ | 0.979 | 2.576…4.916 | 4.008 | −50.65 | |
Ca2+ | 1.814 | 2.302…2.444 | 2.673 | −216.65 | |
13 | Na+ | 0.899 | 2.332…2.622 | 2.930, 3.030 | −75.26 |
K+ | 0.919 | 2.733…2.938 | 3.189, 3.130 | −55.84 | |
Ca2+ | 1.813 | 2.295…2.490 | 3.092, 2.618 | −239.26 | |
14 | Na+ | 0.886 | 2.316…2.621 | 3.146, 3.267 | −81.89 |
K+ | 0.924 | 2.733…3.007 | 3.267, 3.690 | −59.46 | |
Ca2+ | 1.794 | 2.327…2.444 | 2.993, 3.055 | −257.27 | |
15 | Na+ | 0.951 | 4.145 *, 2.257…2.507 | 3.581, 3.624 | −79.30 |
K+ | 0.967 | 4.499 *, 2.636…2.980 | 3.933, 3.997 | −60.10 | |
Ca2+ | 1.818 | 2.674 *, 2.279…2.385 | 3.090, 2.837 | −234.04 | |
19 | Na+ | 0.900 | 2.334…2.373 | 2.514, 2.516 | −81.01 |
K+ | 0.944 | 2.709…2.749 | 2.882, 2.885 | −59.44 | |
Ca2+ | 1.790 | 2.316…2.382 | 2.482, 2.480 | −240.81 |
Compd. | MW | Nha | Nar | Csp3 | Nrot | NHBA | NHBD | MR | tPSA | iLog P | NC=O | NAd | 1/[EC50] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 337.45 | 24 | 0 | 0.95 | 2 | 4 | 0 | 95 | 48.00 | 3.29 | 1 | 1 | 0 |
6 | 381.51 | 25 | 0 | 0.95 | 2 | 5 | 0 | 105.7 | 57.23 | 3.65 | 1 | 1 | 0 |
7 | 425.56 | 30 | 0 | 0.96 | 2 | 6 | 0 | 116.39 | 66.46 | 3.94 | 1 | 1 | 0 |
8 | 395.53 | 28 | 0 | 0.95 | 3 | 5 | 0 | 110.5 | 57.23 | 3.81 | 1 | 1 | 0.04464 |
9 | 439.59 | 31 | 0 | 0.96 | 3 | 6 | 0 | 121.2 | 66.46 | 3.83 | 1 | 1 | 0 |
10 | 429.55 | 31 | 6 | 0.72 | 2 | 5 | 0 | 121.61 | 57.23 | 3.69 | 1 | 1 | 0.10309 |
11 | 443.58 | 32 | 6 | 0.73 | 3 | 5 | 0 | 126.42 | 57.23 | 4.02 | 1 | 1 | 0.06410 |
12 | 498.7 | 36 | 0 | 0.93 | 4 | 4 | 0 | 147.2 | 59.08 | 4.36 | 2 | 2 | 0.04201 |
13 | 542.75 | 39 | 0 | 0.94 | 4 | 5 | 0 | 157.9 | 68.31 | 4.59 | 2 | 2 | 0.14493 |
14 | 586.8 | 42 | 0 | 0.94 | 4 | 6 | 0 | 168.6 | 77.54 | 4.73 | 2 | 2 | 0.10526 |
15 | 570.8 | 41 | 0 | 0.94 | 6 | 5 | 0 | 167.51 | 68.31 | 5.28 | 2 | 2 | 0.21277 |
16 | 586.8 | 42 | 0 | 0.94 | 4 | 6 | 0 | 168.6 | 77.54 | 5.31 | 2 | 2 | 0.06369 |
17 | 614.86 | 44 | 0 | 0.94 | 6 | 6 | 0 | 178.21 | 77.54 | 4.94 | 2 | 2 | 0.06289 |
18 | 367.52 | 26 | 0 | 1 | 2 | 5 | 0 | 105.5 | 40.16 | 3.72 | 0 | 1 | 0 |
19 | 514.78 | 37 | 0 | 1 | 4 | 5 | 0 | 157.5 | 34.17 | 4.72 | 0 | 2 | 0 |
20 | 558.84 | 40 | 0 | 1 | 4 | 6 | 0 | 168.2 | 43.40 | 5.74 | 0 | 2 | 0 |
21 | 586.89 | 42 | 0 | 1 | 6 | 6 | 0 | 177.81 | 43.40 | 6.44 | 0 | 2 | 0.08850 |
22 | 444.61 | 31 | 0 | 0.91 | 12 | 7 | 2 | 128.45 | 120.35 | 3.81 | 2 | 0 | 0 |
23 | 400.56 | 28 | 0 | 0.90 | 12 | 6 | 2 | 117.75 | 111.12 | 3.19 | 2 | 0 | 0 |
24 | 528.64 | 38 | 12 | 0.50 | 6 | 8 | 2 | 150.42 | 129.58 | 2.99 | 2 | 0 | 0 |
25 | 376.49 | 26 | 0 | 0.94 | 6 | 7 | 1 | 101.67 | 92.48 | 3.59 | 1 | 0 | 0 |
26 | 332.44 | 23 | 0 | 0.94 | 6 | 6 | 1 | 90.97 | 83.25 | 2.95 | 1 | 0 | 0 |
27 | 352.43 | 25 | 6 | 0.61 | 3 | 6 | 1 | 96.61 | 83.25 | 2.31 | 1 | 0 | 0 |
28 | 378.42 | 26 | 0 | 0.88 | 4 | 10 | 2 | 98.42 | 118.00 | 2.07 | 2 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basok, S.S.; Schepetkin, I.A.; Khlebnikov, A.I.; Lutsyuk, A.F.; Kirichenko, T.I.; Kirpotina, L.N.; Pavlovsky, V.I.; Leonov, K.A.; Vishenkova, D.A.; Quinn, M.T. Synthesis, Biological Evaluation, and Molecular Modeling of Aza-Crown Ethers. Molecules 2021, 26, 2225. https://doi.org/10.3390/molecules26082225
Basok SS, Schepetkin IA, Khlebnikov AI, Lutsyuk AF, Kirichenko TI, Kirpotina LN, Pavlovsky VI, Leonov KA, Vishenkova DA, Quinn MT. Synthesis, Biological Evaluation, and Molecular Modeling of Aza-Crown Ethers. Molecules. 2021; 26(8):2225. https://doi.org/10.3390/molecules26082225
Chicago/Turabian StyleBasok, Stepan S., Igor A. Schepetkin, Andrei I. Khlebnikov, Anatoliy F. Lutsyuk, Tatiana I. Kirichenko, Liliya N. Kirpotina, Victor I. Pavlovsky, Klim A. Leonov, Darya A. Vishenkova, and Mark T. Quinn. 2021. "Synthesis, Biological Evaluation, and Molecular Modeling of Aza-Crown Ethers" Molecules 26, no. 8: 2225. https://doi.org/10.3390/molecules26082225
APA StyleBasok, S. S., Schepetkin, I. A., Khlebnikov, A. I., Lutsyuk, A. F., Kirichenko, T. I., Kirpotina, L. N., Pavlovsky, V. I., Leonov, K. A., Vishenkova, D. A., & Quinn, M. T. (2021). Synthesis, Biological Evaluation, and Molecular Modeling of Aza-Crown Ethers. Molecules, 26(8), 2225. https://doi.org/10.3390/molecules26082225