Treatment of Wastewaters with Zirconium Phosphate Based Materials: A Review on Efficient Systems for the Removal of Heavy Metal and Dye Water Pollutants
Abstract
:1. Introduction
2. Structure of Zirconium Phosphate
3. Removal of Heavy Metals
3.1. ZrP–Polymer Composites
3.2. Other ZrP Based Materials
4. Removal of Dyes
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Lawrence, E.; Jackson, J.M.; Jackson, A.R. Longman Dictionary of Environmental Science; Pearson Publications: Essex, UK, 1998. [Google Scholar]
- Premkumar, M.P.; Thiruvengadaravi, K.V.; Kumar, P.S.; Nandagopal, J.; Sivanesan, S. Eco-Friendly Treatment Strategies for Wastewater Containing Dyes and Heavy Metals. In Environmental Contaminants Measurement, Modelling and Control; Gupta, T., Agarwal, A.K., Agarwal, R.A., Labhsetwar N., K., Eds.; Springer Nature: Singapore, Singapore, 2018; pp. 317–360. [Google Scholar]
- Mirsal, I.A. Major Types of Soil Pollutants. In Soil Pollution; Springer: Berlin/Heidelberg, Germany, 2008; pp. 117–136. [Google Scholar]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 2020, 10, 8434–8437. [Google Scholar] [CrossRef] [PubMed]
- Mansourri, G.; Madani, M. Examination of the level of heavy metals in wastewater of Bandar Abbas Wastewater Treatment Plant. Open J. Ecol. 2016, 6, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Dotto, G.L.; McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 2020, 8, 103988. [Google Scholar] [CrossRef]
- Ali, I.; Asim, M.; Khan, T.A. Low-Cost Adsorbents for the Removal of Organic Pollutants from Wastewater. J. Environ. Manage 2012, 113, 170–183. [Google Scholar] [CrossRef]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383–122405. [Google Scholar] [CrossRef]
- Nimibofa, A.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 2017, 1–11. [Google Scholar]
- Faust, S.D.; Osman, M.A. Adsorption Processes for Water Treatment; Butterworth Publishers: Waltham, MA, USA, 2013. [Google Scholar]
- Bonilla-Petriciolet, A.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E. (Eds.) Adsorption Processes for Water Treatment and Purification; Springer International Publishing: Berlin, Germany, 2017. [Google Scholar]
- Gupta, S.S.; Bhattacharyya, K.G. Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Colloid Interface Sci. 2011, 162, 39–58. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Crini, G.; Badot, P.M. (Eds.) Sorption Processes and Pollution: Conventional and Non-conventional Sorbents for Pollutant Removal from Wastewaters; Presses Universitaires de Franche-Comté,: Besançon, France, 2010. [Google Scholar]
- Walcarius, A.; Mercier, L. Mesoporous organosilica adsorbents: Nanoengineered materials for removal of organic and inorganic pollutants. J. Mater. Chem. 2010, 20, 4478–4511. [Google Scholar] [CrossRef]
- Cashin, V.B.; Eldridge, D.S.; Yu, A.; Zhao, D. Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: A review. Environ. Sci. Water Res.Technol. 2018, 4, 110–128. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents based on montmorillonite for contaminant removal from water: A review. App. Clay Sci. 2016, 123, 239–258. [Google Scholar] [CrossRef] [Green Version]
- Desta, M.B. Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis tef) Agricultural Waste. J. Thermodyn. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hameed, B.H. Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 2009, 161, 753–759. [Google Scholar] [CrossRef]
- Agouborde, L.; Navia, R. Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes. J. Hazard. Mater. 2009, 167, 536–544. [Google Scholar] [CrossRef]
- Collins, O.N.; Onu Chijioke, E. Adsorption of a dye (crystal violet) on an acid modified non-conventional adsorbent. J. Chem. Technol. Metall. 2019, 54, 95–110. [Google Scholar]
- Da Costa, T.B.; da Silva, M.G.C.; Gurgel Adeodato Vieira, M. Recovery of rare-earth metals from aqueous solutions by bio/adsorption using non-conventional materials: A review with recent studies and promising approaches in column applications. J. Rare Earths 2020, 38, 339–355. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut. 2019, 252, 352–365. [Google Scholar] [CrossRef]
- Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351–364. [Google Scholar] [CrossRef]
- Cao, Y.; Li, X. Adsorption of graphene for the removal of inorganic pollutants in water purification: A review. Adsorption 2014, 20, 713–727. [Google Scholar] [CrossRef]
- Baig, N.; Sajid, M.; Saleh, T.A. Graphene-based adsorbents for the removal of toxic organic pollutants: A review. J. Environ. Manag. 2019, 244, 370–382. [Google Scholar] [CrossRef]
- Khan, N.A.; Hasan, Z.; Jhung, S.H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. J. Hazard. Mater. 2013, 244, 444–456. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 2019, 252, 62–73. [Google Scholar] [CrossRef]
- Clearfield, A.; Costantino, U. Layered Metal Phosphates and their Intercalation Chemistry. In Comprehensive Supramolecular Chemistry, Solid-state Supramolecular Chemistry: Two-and Three-Dimensional Inorganic Networks; Alberti, G., Bein, T., Eds.; Pergamon: Oxford, UK, 1996; Volume 7. [Google Scholar]
- Bashir, A.; Ahad, S.; Malik, L.A.; Qureashi, A.; Manzoor, T.; Dar, G.N.; Pandith, A.H. Revisiting the Old and Golden Inorganic Material, Zirconium Phosphate: Synthesis, Intercalation, Surface Functionalization, and Metal Ion Uptake. Ind. Eng. Chem. Res. 2020, 59, 22353–22397. [Google Scholar] [CrossRef]
- Kraus, K.A.; Phillips, H.O. Adsorption on inorganic materials. I. Cation exchange properties of zirconium phosphate1. J. Am. Chem. Soc. 1956, 78, 694. [Google Scholar] [CrossRef]
- Amphlett, C.B.; McDonald, L.A.; Redman, M.J. Synthetic inorganic ionexchange materials—I zirconium phosphate. J. Inorg. Nucl. Chem. 1958, 6, 220–235. [Google Scholar] [CrossRef]
- Amphlett, C.B.; McDonald, L.A.; Burgess, J.S.; Maynard, J.C. Synthetic inorganic ion-exchange materials—III. The separation of rubidium and caesium on zirconium phosphate. J. Inorg. Nucl. Chem. 1959, 10, 69–73. [Google Scholar] [CrossRef]
- Vivani, R.; Alberti, G.; Costantino, F.; Nocchetti, M. New advances in zirconium phosphate and phosphonate chemistry: Structural archetypes. Micropor. Mesopor. Mat. 2008, 107, 58–70. [Google Scholar] [CrossRef]
- Troup, J.M.; Clearfield, A. Mechanism of ion exchange in zirconium phosphates. 20. Refinement of the crystal structure of alpha-zirconium phosphate. Inorg. Chem. 1977, 16, 3311–3314. [Google Scholar] [CrossRef]
- Albertsson, J.; Oskarsson, A.; Tellgren, R.; Thomas, J.O. Inorganic ion exchangers. 10. A neutron powder diffraction study of the hydrogen bond geometry in alpha-zirconium bis (monohydrogen orthophosphate) monohydrate. A model for the ion exchange. J. Phys. Chem. 1977, 81, 1574–1578. [Google Scholar] [CrossRef]
- Pica, M.; Donnadio, A.; Casciola, M. From microcrystalline to nanosized α-zirconium phosphate: Synthetic approaches and applications of an old material with a bright future. Coord. Chem. Rev. 2018, 374, 218–235. [Google Scholar] [CrossRef]
- Pan, B.; Zhang, Q.; Du, W.; Zhang, W.; Pan, B.; Zhang, Q.; Xu, Z.; Zhang, Q. Selective heavy metals removal from waters by amorphous zirconium phosphate: Behavior and mechanism. Water Res. 2007, 41, 3103–3111. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, S. Zirconium phosphate (ZrP)-based functional materials: Synthesis, properties and applications. Mater. Des. 2018, 155, 19–35. [Google Scholar] [CrossRef]
- Khalameida, S.; Sydorchuk, V.; Skubiszewska-Zięba, J.; Charmas, B.; Skwarek, E.; Janusz, W. Hydrothermal, microwave and mechanochemical modification of amorphous zirconium phosphate structure. J. Therm. Anal. Calorim. 2017, 128, 795–806. [Google Scholar] [CrossRef]
- Baran, V.; Caletka, R.; Tympl, M.; Urbanek, V. Application of the sol-gel method for the preparation of some inorganic ion-exchangers in spherical form. J. Radioanal. Nucl. Chem. 1975, 24, 353–359. [Google Scholar] [CrossRef]
- Bogdanov, S.; Valiev, E.; Dorofeev, Y.A.; Pirogov, A.; Sharygin, L.; Moisseev, V.; Galkin, V. Structure of zirconium phosphate gels produced by the sol-gel method. J. Phys. Condens. Matter 1997, 9, 4031–4039. [Google Scholar] [CrossRef]
- Benhamza, H.; Barboux, P.; Bouhaouss, A.; Josien, F.-A.; Livage, J. Sol–gel synthesis of Zr(HPO4)2H2O. J. Mater. Chem. 1991, 1, 681–684. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, J.; Maireles-Torres, P.; Olivera-Pastor, P.; Rodríguez-Castellón, E.; Jiménez-López, A.; Jones, D.J.; Rozière, J. Surfactant-Assisted Synthesis of a Mesoporous Form of Zirconium Phosphate with Acidic Properties. Adv. Mat. 1998, 10, 812–815. [Google Scholar] [CrossRef]
- Ferragina, C.; Cafarelli, P.; De Stefanis, A.; Di Rocco, R.; Petrilli, L. Synthesis and characterization of sol-gel zirconium phosphate with template surfactants by different methods. J. Therm. Anal. Calorim. 2003, 71, 1023–1034. [Google Scholar] [CrossRef]
- Tarafdar, A.; Panda, A.B.; Pradhan, N.C.; Pramanik, P. Synthesis of spherical mesostructured zirconium phosphate with acidic properties. Micropor. Mesopor. Mat. 2006, 95, 360–365. [Google Scholar] [CrossRef]
- Bellezza, F.; Cipiciani, A.; Costantino, U.; Marmottini, F. Adsorption of myoglobin onto porous zirconium phosphate and zirconium benzenephosphonate obtained with template synthesis. Langmuir 2006, 22, 5064–5069. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; He, W.; Cui, J.; Zhang, X.; Zhou, W.; Yan, S.; Sun, X.; Han, X.; Han, S.; Yue, Y. Mesoporous zirconium phosphate from yeast biotemplate. J. Colloid Interface Sci. 2010, 343, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Boo, W.J.; Sue, H.J.; Clearfield, A. Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J. Chem. 2007, 31, 39–43. [Google Scholar] [CrossRef]
- Alberti, G.; Torracca, E. Crystalline insoluble salts of polybasic metals-II. Synthesis of crystalline zirconium or titanium phosphate by direct precipitation. J. Inorg. Nucl. Chem. 1968, 30, 317–318. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, X.; Jaenicke, S.; Chuah, G.-K. Minimalistic liquid-assisted route to highly crystalline α-zirconium phosphate. ChemSusChem 2017, 10, 3235–3242. [Google Scholar] [CrossRef]
- Capitani, D.; Casciola, M.; Donnadio, A.; Vivani, R. High yield precipitation of crystalline a-zirconium phosphate from oxalic acid solutions. Inorg. Chem. 2010, 49, 9409–9415. [Google Scholar] [CrossRef]
- Pica, M.; Donnadio, A.; Capitani, D.; Vivani, R.; Troni, E.; Casciola, M. Advances in the chemistry of nanosized zirconium phosphates: A new mild and quick route to the synthesis of nanocrystals. Inorg. Chem. 2011, 50, 11623–11630. [Google Scholar] [CrossRef]
- Alexandratos, S.D.; Zhu, X.P. Bifunctional coordinating polymers: Auxiliary groups as a means of tuning the ionic affinity of immobilized phosphate ligands. Macromol. 2005, 38, 5981–5986. [Google Scholar] [CrossRef]
- Misono, M.; Ochiai, E.; Saito, Y.; Yoneda, Y. A new dual parameter scale for the strength of Lewis acids and bases with the evaluation of their softness. J. Inorg. Nucl. Chem. 1967, 29, 2685–2691. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3534–3539. [Google Scholar] [CrossRef]
- Zhang, Q.R.; Du, W.; Pan, B.C.; Pan, B.J.; Zhang, W.M.; Zhang, Q.J.; Xu, Z.W.; Zhang, Q.X. A comparative study on Pb2+, Zn2+ and Cd2+ sorption onto zirconium phosphate supported by a cation exchanger. J. Hazard. Mater. 2008, 152, 469–475. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, J.; Pan, S.; Qian, J.; Pan, B. Metastable Zirconium Phosphate under Nanoconfinement with Superior Adsorption Capability for Water Treatment. Adv. Funct. Mater. 2020, 1909014. [Google Scholar] [CrossRef]
- Alberti, G.; Bartocci, M.; Santarelli, M.; Vivani, R. Zirconium Phosphate Chloride Dimethyl Sulfoxide, a Reactive Precursor of a Large Family of Layered Compounds. Inorg. Chem. 1997, 36, 3574–3575. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Li, X.; Yang, L.; Wang, X. Preparation of novel polysulfone capsules containing zirconium phosphate and their properties for Pb2+ removal from aqueous solution. J. Hazard. Mater. 2011, 188, 296–303. [Google Scholar] [CrossRef]
- Naiya, T.K.; Bhattacharya, A.K.; Das, S.K. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. J. Colloid Interface Sci. 2009, 333, 14–26. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Osman, M.M.; Hafez, O.F.; Elmelegy, E. Removal and preconcentration of lead (II), copper (II), chromium (III) and iron (III) from wastewaters by surface developed alumina adsorbents with immobilized 1-nitroso-2- naphthol. J. Hazard. Mater. 2010, 173, 349–357. [Google Scholar] [CrossRef]
- Nagata, N.; Kubota, L.T.; Bueno, M.I.M.S.; Peralta-Zamora, P.G. Adsorption parameters of Cd(II), Pb(II), and Hg(II) on Zirconium(IV) phosphate chemically grafted onto silica gel surface. J. Colloid Interface Sci. 1998, 200, 121–125. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, B.; Zhang, S.; Wang, J.; Zhang, W.; Lv, L. New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal. J. Nanopart. Res. 2011, 13, 5355–5364. [Google Scholar] [CrossRef]
- AlOthman, Z.A.; Alam, M.M.; Naushad, M. Heavy toxic metal ion exchange kinetics: Validation of ion exchange process on composite cation exchanger nylon 6,6 Zr(IV) phosphate. J. Ind. Eng. Chem. 2013, 19, 956–960. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, X.; Ma, X.; Hao, X.; Guan, G.; Wang, Z.; Xue, C.; Zhang, Z.; Zuo, Z. Facile preparation of electroactive amorphous α-ZrP/PANI hybrid film for potential-triggered adsorption of Pb2+ ions. J. Hazard. Mater. 2015, 289, 91–100. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Y.; Hao, X.; Huang, W.; Feng, X. A novel potential-responsive ion exchange film system for heavy metal removal. J. Mater. Chem. A 2014, 2, 10263–10272. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, Y.; Chen, J.P. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA. Water Res. 2016, 101, 564–573. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Abdulkarem, E.; Naddeo, V.; Banat, F.; Hasan, S.W. Synthesis of super hydrophilic cellulose-alpha zirconium phosphate ion exchange membrane via surface coating for the removal of heavy metals from wastewater. Sci. Total Environ. 2019, 690, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Das, D.P.; Parida, K.; De, B.R. Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation. J. Mol. Cat. A: Chem. 2006, 245, 217–224. [Google Scholar] [CrossRef]
- Yoneyama, H.; Haga, S.; Yamanaka, S. Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay. J. Phys. Chem. 1989, 93, 4833–4837. [Google Scholar] [CrossRef]
- Pourbeyram, S. Effective Removal of Heavy Metals from Aqueous Solutions by Graphene Oxide–Zirconium Phosphate (GO–Zr-P) Nanocomposite. Ind. Eng. Chem. Res. 2016, 55, 5608–5617. [Google Scholar] [CrossRef]
- Christensen, J.J.; Eatough, D.J.; Izatt, R.M. The Synthesis and Ion Bindings of Synthetic Multidentate Macrocyclic Compounds. Chem. Rev. 1974, 74, 351–384. [Google Scholar] [CrossRef]
- Alberti, G.; Boccali, L.; Dionigi, C.; Vivani, R.; Kalchenko V., I.; Atamas L., I. Preparation and first characterization of a layered γ-zirconium phosphate derivative containing benzo 15-crown-5 groups covalently attached to inorganic layers. Supramol. Chem. 1996, 7, 129–135. [Google Scholar] [CrossRef]
- Yamamoto, K.; Hasegawa, Y.; Nikki, K. Intercalation of Aminomethylcrowns into α-Zirconium Phosphate. J. Incl. Phenom. Mol. Recognit. Chem. 1998, 31, 289–303. [Google Scholar] [CrossRef]
- Mu, W.; Yu, Q.; Gu, J.; Li, X.; Yang, Y.; Wei, H.; Peng, S. Bonding of crown ethers to α-zirconium phosphate—Novel layered adsorbent for radioactive strontium separation. Sep. Purif. Technol. 2020, 240, 116658–116667. [Google Scholar] [CrossRef]
- Wang, L.; Guo, J.; Xiang, X.; Sang, Y.; Huang, J. Melamine-supported porous organic polymers for efficient CO2 capture and Hg2+ removal. Chem. Eng. J. 2020, 387, 124070–124077. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Li, B.; Dai, Y.; Chen, X. Melamine-induced novel MSONs heterostructured framework: Controlled-switching between MOF and SOF via a self-assembling approach for rapid uranium sequestration. Chem. Eng. J. 2020, 379, 122279–122292. [Google Scholar] [CrossRef]
- Bakry, A.M.; Awad, F.S.; Bobb, J.A.; Ibrahim, A.A.; El-Shall, M.S. Melamine-based functionalized graphene oxide and zirconium phosphate for high performance removal of mercury and lead ions from water. RSC Adv. 2020, 10, 37883–37890. [Google Scholar] [CrossRef]
- Zhu, Y.; Shimizu, T.; Kitajima, T.; Morisato, K.; Moitra, N.; Brun, N.; Kiyomura, T.; Kanamori, K.; Takeda, K.; Kurata, H.; et al. Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption. New J. Chem. 2015, 39, 2444–2450. [Google Scholar] [CrossRef]
- Ali, A.H. Potentiality of zirconium phosphate synthesized from zircon mineral for uptaking uranium. Separ. Sci. Tech. 2018, 53, 2284–2296. [Google Scholar] [CrossRef]
- Bashir, A.; Malik, L.A.; Dar, G.N.; Pandith, A.H. Microwave-Assisted Hydrothermal Synthesis of Agglomerated Spherical Zirconium Phosphate for Removal of Cs+ and Sr2+ Ions from Aqueous System. In Applications of Ion Exchange Materials in the Environment; Inamuddin, A.M., Asiri, A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Cheng, Y.; Chui, S.S.-Y.; Wang, X.D.T.; Jaenicke, S.; Chuah, G.-K. One-Pot Synthesis of Layered Disodium Zirconium Phosphate: Crystal Structure and Application in the Remediation of Heavy-Metal-Contaminated Wastewater. Inorg. Chem. 2019, 58, 13020–13029. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, H.; Jaenicke, J.A.; Tan, E.C.P.; Chuah, G.-K. Minimalistic Synthesis of α-Zirconium Diammonium Phosphate and Zirconia for Applications in Ion Exchange and Catalysis. ACS Sustain. Chem. Eng. 2019, 7, 895–904. [Google Scholar] [CrossRef]
- Ferragina, C.; La Ginestra, A.; Massucci, M.A.; Patrono, P.; Tomlinson, A.A.G. Intercalation of 2,2’-Bipyridyil into -Zirconlum Phosphate and in Situ Formation of Co2+, Ni2+, and Cu2+/2,2’-Blpyridyl Complex Pillars. J. Phys. Chem. 1985, 89, 4762–4769. [Google Scholar] [CrossRef]
- Fujimoto, S.; Takei, T.; Yanagida, S.; Kumada, N. Hybridization of layered zirconium phosphate with azo compounds and its photoresponsivity and adsorption of rare earth elements. J. Ceram. Soc. Japan 2019, 127, 830–836. [Google Scholar] [CrossRef]
- Galindo, C.; Jacques, P.; Dalt, A. Photooxidation of the phenylazonaphthol AO20 on TIO2: Kinetic and mechanistic investigations. Chemosphere 2001, 45, 997–1005. [Google Scholar] [CrossRef]
- Pica, M. Zirconium phosphate catalysts in the XXI century: State of the art from 2010 to date. Catalysts 2017, 7, 190. [Google Scholar] [CrossRef]
- Das, D.P.; Baliarsingh, N.; Parida, K.M. Photocatalytic decolorisation of methylene blue (MB) over titania pillared zirconium phosphate (ZrP) and titanium phosphate (TiP) under solar radiation. J. Mol. Catal. A: Chem. 2007, 261, 254–261. [Google Scholar] [CrossRef]
- Feldheim, D.L.; Foss, C.A., Jr. Metal Nanoparticles: Synthesis, Characterization, and Applications; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- Schmid, G. Nanoparticles: From Theory to Application; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004. [Google Scholar]
- Pica, M. Silver halide-based composite photocatalysts: An updated account. Rend. Fis. Acc. Lincei 2019, 30, 453–467. [Google Scholar] [CrossRef]
- Barhon, Z.; Saffaj, N.; Albizane, A.; Azzi, M.; Mamouni, R.; El Haddad, M. Effect of Modification of Zirconium Phosphate by Silver on Photodegradation of Methylene Blue. J. Mater. Environ. Sci. 2012, 3, 879–884. [Google Scholar]
- Pica, M.; Nocchetti, M.; Ridolfi, B.; Donnadio, A.; Costantino, F.; Gentili, P.L.; Casciola, M. Nanosized zirconium phosphate/AgCl composite materials: A new synergy for efficient photocatalytic degradation of organic dye pollutants. J. Mater. Chem. A. 2015, 3, 5525–5534. [Google Scholar] [CrossRef]
- Pica, M.; Calzuola, S.; Donnadio, A.; Gentili, P.L.; Nocchetti, M.; Casciola, M. De-ethylation and cleavage of rhodamine B by a zirconium phosphate/silver bromide composite photocatalyst. Catalysts. 2019, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Takirawa, T.; Honda, K. Photocatalysis through Excitation of Adsorbates. Rhodamine B Adsorbed to CdS. J. Phys. Chem. 1977, 81, 1845–1851. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L.; Guan, Q.; Ning, P.; Ye, D. Preparation of α-zirconium phosphate-pillared reduced graphene oxide with increased adsorption towards methylene blue. Chem. Eng. Journal 2014, 258, 77–84. [Google Scholar] [CrossRef]
- Qing, S.; Chen, H.; Han, L.J.; Ye, Z.; Shi, L.; Shu, Z.; Chen, L.; Xu, L.; Xu, Q. Photocatalytic Activity Investigation of α-Zirconium Phosphate Nanoparticles Compositing with C3N4 under Ultraviolet Light. ACS Omega 2020, 5, 27873–27879. [Google Scholar] [CrossRef]
- Thakur, M.; Sharma, G.; Ahamad, T.; Ghfar, A.A.; Pathania, D.; Naushad, M. Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity. Colloids Surf. B. 2017, 157, 456–463. [Google Scholar] [CrossRef]
- Clearfield, A.; Perry, H.P.; Gagnon, K.J. 5.08-Porous Pillared Clays and Layered Phosphates. In Comprehensive Inorganic Chemistry II, 2nd ed.; Reedijk, J., Poeppelmeier, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 169–211. [Google Scholar] [CrossRef]
- Costantino, F.; Vivani, R.; Bastianini, M.; Ortolani, L.; Piermatti, O.; Nocchetti, M.; Vaccaro, L. Accessing stable zirconium carboxyaminophosphonate nanosheets as support for highly active Pd nanoparticles. Chem. Commun. 2015, 51, 15990–15993. [Google Scholar] [CrossRef]
- Kozell, V.; Giannoni, T.; Nocchetti, M.; Vivani, R.; Piermatti, O.; Vaccaro, L. Immobilized palladium nanoparticles on zirconium carboxy-aminophosphonatesnanosheets as an efficient recoverable heterogeneous catalyst for Suzuki-Miyaura and Heck coupling. Catalysts 2017, 7, 186. [Google Scholar] [CrossRef] [Green Version]
- Costantino, F.; Nocchetti, M.; Bastianini, M.; Lavacchi, A.; Caporali, M.; Liguori, F. Robust zirconium phosphate-phosphonate nanosheets containing palladium nanoparticles as efficient catalyst for alkynes and nitroarenes hydrogenation reactions. ACS Appl. Nano Mater. 2018, 1, 1750–1757. [Google Scholar] [CrossRef]
Heavy Metal | Upper Limit Concentration in Drinking Water (mg/L) | Toxic Effects on Human Body |
---|---|---|
Lead | 0.01 | Harmful to heart, bones, intestines, reproductive and nervous systems. |
Copper | 2 | Mucosal irritation, capillary damage, hepatic and renal damage, central nervous system damage. |
Cadmium | 0.003 | Bone lesions, cancer, lung insufficiency, hypertension. |
Zinc | 3 | Gastrointestinal effects. |
Nickel | 0.02 | Cancer, skin allergy, lung fibrosis. |
Mercury | 0.001 | Kidney disease, haemorrhagic gastritis and colitis, brain damage, cancer. |
Chromium | 0.05 (hexavalent chromium) | Cancer, healing ulcers. |
Sorbent | Maximum Pb2+ Uptake (meq/g) or Adsorption Percentage (%) | Adsorption Mode | Ref. |
---|---|---|---|
Amorphous ZrP | ≈3 at pH 5.5 | Batch | [42] |
ZrP monoliths | 100% | Continuous | [82] |
Zr(NaPO4)2⋅H2O | ≈5 at pH 5 | Batch | [85] |
Zr(NH4PO4)2⋅H2O | ≈3.8 at pH ≈4.3–5 | Batch | [86] |
Amorphous ZrP/D001 | 100% | Continuous | [59] |
α, γ-ZrP/mesoporous polystyrene | ≈1.6 at pH = 5 | Batch | [60] |
Amorphous ZrP/polysulfone capsules | ≈3 at pH 5.75 | Batch | [62] |
α-ZrP/polyaniline | ≈1 | Electrochemical quartz crystal microbalance | [68] |
Amorphous ZrP/ (polyvinyl alcohol-polyvinylidene fluoride) | ≈1.2 at pH 5.5 | Batch | [70] |
ZrP nanoparticles/cellulose | 60% | Continuous | [71] |
Amorphous ZrP/graphene oxide | ≈3.5 at pH = 6 | Batch | [74] |
Amorphous ZrP/melamine | ≈9.7 at pH 5.5 | Batch | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pica, M. Treatment of Wastewaters with Zirconium Phosphate Based Materials: A Review on Efficient Systems for the Removal of Heavy Metal and Dye Water Pollutants. Molecules 2021, 26, 2392. https://doi.org/10.3390/molecules26082392
Pica M. Treatment of Wastewaters with Zirconium Phosphate Based Materials: A Review on Efficient Systems for the Removal of Heavy Metal and Dye Water Pollutants. Molecules. 2021; 26(8):2392. https://doi.org/10.3390/molecules26082392
Chicago/Turabian StylePica, Monica. 2021. "Treatment of Wastewaters with Zirconium Phosphate Based Materials: A Review on Efficient Systems for the Removal of Heavy Metal and Dye Water Pollutants" Molecules 26, no. 8: 2392. https://doi.org/10.3390/molecules26082392
APA StylePica, M. (2021). Treatment of Wastewaters with Zirconium Phosphate Based Materials: A Review on Efficient Systems for the Removal of Heavy Metal and Dye Water Pollutants. Molecules, 26(8), 2392. https://doi.org/10.3390/molecules26082392