Exploratory Study Using Urinary Volatile Organic Compounds for the Detection of Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Results from GC-IMS
2.2. Results from GC-TOF-MS Chemical Identification
3. Discussion
4. Materials and Methods
4.1. Study Characteristics
4.2. GC-IMS Methodology
4.3. GC-TOF-MS Methodology
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer; Liver; World Health Organization. 2020. Available online: http://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf (accessed on 30 January 2021).
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.-L.; Schirmacher, P.; Vilgrain, V. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatol. 2018, 67, 358–380. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, A. Hepatocellular Carcinoma. New Engl. J. Med. 2019, 380, 1450–1462. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Tan, Y.; Yin, P.; Ye, G.; Gao, P.; Lu, X.; Wang, H.; Xu, G. Metabolic Characterization of Hepatocellular Carcinoma Using Nontargeted Tissue Metabolomics. Cancer Res. 2013, 73, 4992–5002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.; Bayha, C.; Vetter, S.; Hofmann, U.; Schwarz, M.; Zanger, U.M.; Braeuning, A. Activating and Inhibitory Functions of WNT/β-Catenin in the Induction of Cytochromes P450 by Nuclear Receptors in HepaRG Cells. Mol. Pharmacol. 2015, 87, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Hamamoto, I.; Tanaka, S.; Maeba, T.; Chikaishi, K.; Ichikawa, Y. Microsomal cytochrome P-450-linked monooxygenase systems and lipid composition of human hepatocellular carcinoma. Br. J. Cancer 1989, 59, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Liu, Z.-Z.; Yan, L.-N.; Dong, C.-N.; Ma, N.; Yuan, M.-N.; Zhou, J. Cytochrome P450 family members are associated with fast-growing hepatocellular carcinoma and patient survival: An integrated analysis of gene expression profiles. Saudi J. Gastroenterol. 2019, 25, 167–175. [Google Scholar] [CrossRef]
- Tsutsumi, M.; Matsuda, Y.; Takada, A. Role of ethanol-inducible cytochrome P-450 2E1 in the development of hepatocellular carcinoma by the chemical carcinogen, N-nitrosodimethylamine. Hepatology 1993, 18, 1483–1489. [Google Scholar] [CrossRef]
- Eun, H.S.; Cho, S.Y.; Lee, B.S.; Seong, I.O.; Kim, K. HProfiling cytochrome P450 family 4 gene expression in human hepatocellular carcinoma. Mol. Med. Rep. 2018, 18, 4865–4876. [Google Scholar] [CrossRef] [Green Version]
- Daulton, E.; Wicaksono, A.N.; Tiele, A.; Kocher, H.M.; Debernardi, S.; Crnogorac-Jurcevic, T.; Covington, J.A. Volatile organic compounds (VOCs) for the non-invasive detection of pancreatic cancer from urine. Talanta 2021, 221, 121604. [Google Scholar] [CrossRef]
- Tiele, A.; Wicaksono, A.; Daulton, E.; Ifeachor, E.; Eyre, V.; Clarke, S.; Timings, L.; Pearson, S.; A Covington, J.; Li, X. Breath-based non-invasive diagnosis of Alzheimer’s disease: A pilot study. J. Breath Res. 2019, 14, 026003. [Google Scholar] [CrossRef]
- Daulton, E.; Wicaksono, A.; Bechar, J.; Covington, J.A.; Hardwicke, J. The Detection of Wound Infection by Ion Mobility Chemical Analysis. Biosensors 2020, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Mochalski, P.; Sponring, A.; King, J.; Unterkofler, K.; Troppmair, J.; Amann, A. Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro. Cancer Cell Int. 2013, 13, 72. [Google Scholar] [CrossRef] [Green Version]
- Haick, H.; Amal, H.; Ding, L.; Liu, B.; Tisch, U.; Xu, Z.-Q.; Shi, D.-Y.; Zhao, Y.; Chen, J.; Sun, R.-X.; et al. The scent fingerprint of hepatocarcinoma: In-vitro metastasis prediction with volatile organic compounds (VOCs). Int. J. Nanomed. 2012, 7, 4135–4146. [Google Scholar] [CrossRef] [Green Version]
- Qin, T.; Liu, H.; Song, Q.; Song, G.; Wang, H.-Z.; Pan, Y.-Y.; Xiong, F.-X.; Gu, K.-S.; Sun, G.-P.; Chen, Z.-D. The Screening of Volatile Markers for Hepatocellular Carcinoma. Cancer Epidemiology Biomarkers Prev. 2010, 19, 2247–2253. [Google Scholar] [CrossRef] [Green Version]
- Miller-Atkins, G.; Acevedo-Moreno, L.; Grove, D.; Dweik, R.A.; Tonelli, A.R.; Brown, J.M.; Allende, D.S.; Aucejo, F.; Rotroff, D.M. Breath Metabolomics Provides an Accurate and Noninvasive Approach for Screening Cirrhosis, Primary, and Secondary Liver Tumors. Hepatol. Commun. 2020, 4, 1041–1055. [Google Scholar] [CrossRef] [Green Version]
- Becker, R. Non-invasive cancer detection using volatile biomarkers: Is urine superior to breath? Med. Hypotheses 2020, 143, 110060. [Google Scholar] [CrossRef]
- Bannaga, A.S.I.; Kvasnik, F.; Persaud, K.C.; Arasaradnam, R.P. Differentiating cancer types using a urine test for volatile organic compounds. J. Breath Res. 2020, 15, 017102. [Google Scholar] [CrossRef]
- Traiger, G.J.; Bruckner, J.V.; Jiang, W.; Dietz, F.K.; Cooke, P.H. Effect of 2-butanol and 2-butanone on rat hepatic ultrastructure and drug metabolizing enzyme activity. J. Toxicol. Environ. Heal. Part A 1989, 28, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Toftgard, R.; Nilsen, O.G.; Gustafsson, J.Å. Changes in rat liver microsomal cytochrome P-450 and enzymatic activities after the inhalation of n-hexane, xylene, methyl ethyl ketone and methylchloroform for four weeks. Scand. J. Work. Environ. Heal. 1981, 7, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Wlodzimirow, K.; Abu-Hanna, A.; Schultz, M.; Maas, M.; Bos, L.; Sterk, P.; Knobel, H.; Soers, R.; Chamuleau, R.A. Exhaled breath analysis with electronic nose technology for detection of acute liver failure in rats. Biosens. Bioelectron. 2014, 53, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Raunio, H.; Liira, J.; Elovaara, E.; Riihimäki, V.; Pelkonen, O. Cytochrome P450 isozyme induction by methyl ethyl ketone and m-xylene in rat liver. Toxicol. Appl. Pharmacol. 1990, 103, 175–179. [Google Scholar] [CrossRef]
- Peng, H.; Raner, G.; Vaz, A.; Coon, M. Oxidative Cleavage of Esters and Amides to Carbonyl Products by Cytochrome P450. Arch. Biochem. Biophys. 1995, 318, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; Hewitt, W.R. Dose-response relationships in ketone-induced potentiation of chloroform hepato- and nephrotoxicity. Toxicol. Appl. Pharmacol. 1984, 76, 437–453. [Google Scholar] [CrossRef]
- Raymond, P.; Plaa, G.L. Ketone potentiation of haloalkane-induced hepato- and nephrotoxicity. I. dose-response relationships. J. Toxicol. Environ. Heal. Part A 1995, 45, 465–480. [Google Scholar] [CrossRef]
- Fowler, C.J.; Oreland, L. The effect of lipid-depletion on the kinetic properties of rat liver monoamine oxidase-B. J. Pharm. Pharmacol. 1980, 32, 681–688. [Google Scholar] [CrossRef]
- Kinemuchi, H.; Sunami, Y.; Sudo, M.; Suh, Y.H.; Arai, Y.; Kamijo, K. Membrane lipid environment of carp brain and liver mitochondrial monoamine oxidase. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1985, 80, 245–252. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.-M.; Wang, Y.-H.; Feng, M.-X.; Liu, X.-J.; Zhang, Y.-L.; Huang, S.; Wu, Z.; Xue, F.; Qin, W.-X.; et al. Monoamine oxidase A suppresses hepatocellular carcinoma metastasis by inhibiting the adrenergic system and its transactivation of EGFR signaling. J. Hepatol. 2014, 60, 1225–1234. [Google Scholar] [CrossRef] [Green Version]
- Del Chierico, F.; Nobili, V.; Vernocchi, P.; Russo, A.; De Stefanis, C.; Gnani, D.; Furlanello, C.; Zandonà, A.; Paci, P.; Capuani, G.; et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 2017, 65, 451–464. [Google Scholar] [CrossRef]
- Del Río, R.F.; O’Hara, M.; Holt, A.; Pemberton, P.; Shah, T.; Whitehouse, T.; Mayhew, C. Volatile Biomarkers in Breath Associated With Liver Cirrhosis—Comparisons of Pre- and Post-liver Transplant Breath Samples. EBioMedicine 2015, 2, 1243–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Cai, C.; Cheng, J.; Cheng, M.; Zhou, H.; Deng, J. Polydopamine/dialdehyde starch/chitosan composite coating for in-tube solid-phase microextraction and in-situ derivation to analysis of two liver cancer biomarkers in human blood. Anal. Chim. Acta 2016, 935, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Morisco, F.; Aprea, E.; Lembo, V.; Fogliano, V.; Vitaglione, P.; Mazzone, G.; Cappellin, L.; Gasperi, F.; Masone, S.; De Palma, G.D.; et al. Rapid “Breath-Print” of Liver Cirrhosis by Proton Transfer Reaction Time-of-Flight Mass Spectrometry. A Pilot Study. PLoS ONE 2013, 8, e59658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velde, S.V.D.; Nevens, F.; Van Hee, P.; Van Steenberghe, D.; Quirynen, M. GC–MS analysis of breath odor compounds in liver patients. J. Chromatogr. B 2008, 875, 344–348. [Google Scholar] [CrossRef]
- Liu, S.-H.; Su, C.-C.; Lee, K.-I.; Chen, Y.-W. Effects of Bisphenol A Metabolite 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on Lung Function and Type 2 Pulmonary Alveolar Epithelial Cell Growth. Sci. Rep. 2016, 6, 39254. [Google Scholar] [CrossRef] [Green Version]
- Hirao-Suzuki, M.; Takeda, S.; Okuda, K.; Takiguchi, M.; Yoshihara, S. Repeated Exposure to 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an Active Metabolite of Bisphenol A, Aggressively Stimulates Breast Cancer Cell Growth in an Estrogen Receptor β (ERβ)–Dependent Manner. Mol. Pharmacol. 2018, 95, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Villa, E. Role of Estrogen in Liver Cancer. Women’s Heal. 2008, 4, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Cowlen, M.S.; Hewitt, W.R.; Schroeder, F. 2-Hexanone potentiation of [14C]chloroform hepatotoxicity: Covalent interaction of a reactive intermediate with rat liver phospholipid. Toxicol. Appl. Pharmacol. 1984, 73, 478–491. [Google Scholar] [CrossRef]
- Hewitt, L.A.; Valiquette, C.; Plaa, G.L. The role of biotransformation–detoxication in acetone-, 2-butanone-, and 2-hexanone-potentiated chloroform-induced hepatotoxicity. Can. J. Physiol. Pharmacol. 1987, 65, 2313–2318. [Google Scholar] [CrossRef]
- Nakajima, T.; Elovaara, E.; Park, S.S.; Gelboin, H.V.; Vainio, H. Immunochemical detection of cytochrome P450 isozymes induced in rat liver byn-hexane, 2-hexanone and acetonyl acetone. Arch. Toxicol. 1991, 65, 542–547. [Google Scholar] [CrossRef]
- Nakajima, T.; Elovaara, E.; Okino, T.; Gelboin, H.; Klockars, M.; Riihimaki, V.; Aoyama, T.; Vainio, H. Different Contributions of Cytochrome P450 2E1 and P450 2B1/2 to Chloroform Hepatotoxicity in Rat. Toxicol. Appl. Pharmacol. 1995, 133, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Cowlen, M.S.; Hewitt, W.R.; Schroeder, F. Mechanisms in 2-hexanone potentiation of chloroform hepatotoxicity. Toxicol. Lett. 1984, 22, 293–299. [Google Scholar] [CrossRef]
- Hughes, B.; Thomas, J.; Lynch, A.; Borghoff, S.; Green, S.; Mensing, T.; Sarang, S.; LeBaron, M. Methyl isobutyl ketone-induced hepatocellular carcinogenesis in B6C3F1 mice: A constitutive androstane receptor (CAR)-mediated mode of action. Regul. Toxicol. Pharmacol. 2016, 81, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Stout, M.D.; Herbert, R.A.; Kissling, G.E.; Suarez, F.; Roycroft, J.H.; Chhabra, R.S.; Bucher, J.R. Toxicity and carcinogenicity of methyl isobutyl ketone in F344N rats and B6C3F1 mice following 2-year inhalation exposure. Toxicology 2008, 244, 209–219. [Google Scholar] [CrossRef] [Green Version]
- National Toxicology Program. Toxicology and carcinogenesis studies of methyl isobutyl ketone (Cas No. 108-10-1) in F344/N rats and B6C3F1 mice (inhalation studies). Natl. Toxicol. Prog. Tech. Rep. Ser. 2007, 538, 1–236. [Google Scholar]
- Xue, R.; Dong, L.; Zhang, S.; Deng, C.; Liu, T.; Wang, J.; Shen, X. Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 1181–1186. [Google Scholar] [CrossRef]
- Ohmoto, K.; Yamamoto, S.; Hirokawa, M. Symptomatic Primary Biliary Cirrhosis Triggered by Administration of Sulpiride. Am. J. Gastroenterol. 1999, 94. [Google Scholar] [CrossRef]
- Zhou, X.; Ren, L.; Yu, Z.; Huang, X.; Li, Y.; Wang, C. The antipsychotics sulpiride induces fatty liver in rats via phosphorylation of insulin receptor substrate-1 at Serine 307-mediated adipose tissue insulin resistance. Toxicol. Appl. Pharmacol. 2018, 345, 66–74. [Google Scholar] [CrossRef]
- Gustafsson, F.; Foster, A.J.; Sarda, S.; Bridgland-Taylor, M.H.; Kenna, J.G. A Correlation Between the In Vitro Drug Toxicity of Drugs to Cell Lines That Express Human P450s and Their Propensity to Cause Liver Injury in Humans. Toxicol. Sci. 2013, 137, 189–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.-C.; Tsai, S.-W.; Zhang, X.; Zeng, C.; Yang, H.-Y. The Investigation of the Volatile Metabolites of Lung Cancer from the Microenvironment of Malignant Pleural Effusion. 2021. Available online: https://www.researchsquare.com/article/rs-144572/v1 (accessed on 25 March 2021).
- Esfahani, S.; Sagar, N.M.; Kyrou, I.; Mozdiak, E.; O’Connell, N.; Nwokolo, C.; Bardhan, K.D.; Arasaradnam, R.P.; Covington, J.A. Variation in Gas and Volatile Compound Emissions from Human Urine as It Ages, Measured by an Electronic Nose. Biosensors 2016, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- McFarlane, M.; Mozdiak, E.; Daulton, E.; Arasaradnam, R.; Covington, J.; Nwokolo, C. Pre-analytical and analytical variables that influence urinary volatile organic compound measurements. PLoS ONE 2020, 15, e0236591. [Google Scholar] [CrossRef] [PubMed]
- Mozdiak, E.; Wicaksono, A.N.; Covington, J.A.; Arasaradnam, R.P. Colorectal cancer and adenoma screening using urinary volatile organic compound (VOC) detection: Early results from a single-centre bowel screening population (UK BCSP). Tech. Coloproctology 2019, 23, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Comparison | Classifier | AUC | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|
HCC vs. Fibrosis | Random Forest | 0.97 (0.91–1.00) | 0.43 (0.13–0.75) | 0.95 (0.86–1.00) | 0.75 (0.33–1.00) | 0.83 (0.68–0.95) |
HCC vs. Non-Fibrosis | Random Forest | 0.62 (0.48–0.76) | 0.60 (0.41–0.78) | 0.74 (0.61–0.87) | 0.60 (0.42–0.78) | 0.74 (0.61–0.88) |
Fibrosis vs. Non-Fibrosis | Linear Regression | 0.63 (0.36–0.89) | 0.29 (0.00–0.60) | 0.90 (0.81–0.97) | 0.40 (0.00–0.83) | 0.85 (0.74–0.94) |
No. | Retention Time (min) | Chemical | p-value | Abundance Change |
---|---|---|---|---|
1 | 15.25 | 4-Methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 2TMS derivative | <0.01 | Lower for HCC |
2 | 2.5998 | 2-Butanone | 0.03637 | Higher for HCC |
3 | 4.5684 | 2-Hexanone | 0.04309 | Lower for HCC |
4 | 6.3215 | Benzene, 1-ethyl-2-methyl- | 0.04183 | Lower for HCC |
5 | 12.1318 | 3-Butene-1,2-diol, 1-(2-furanyl)- | 0.03247 | Lower for HCC |
6 | 8.2054 | Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-(1a,3ß,6a)]- | 0.03553 | Lower for HCC |
7 | 13.861 | Sulpiride | 0.04369 | Lower for HCC |
Covariate | HCC Cases | Non-HCC Cases |
---|---|---|
No. of Patients | 20 | 38 |
Age: Mean (Range) | 73 (53–84) | 58.08 (29–89) |
Gender: Female/Male | 2/18 | 11/27 |
Cause of Liver Disease | 3 Alcohol 1 HBV 1 HCV 13 NASH 2 Primary/Idiopathic | 1 HBV Cirrhosis 9 NAFLD 10 NASH 6 NASH Cirrhosis 12 without Liver Disease |
Histological/Radiological Features of Liver Cirrhosis: Present/Absent | 16/4 | 7/31 |
Diabetes: Present/Absent | 11/9 | 7/31 |
AFP: Mean (Range), KU/L | 1380.60 (1–9400) | - |
ALT: Mean (Range), U/L | 44.60 (13–149) | 50.74 (5–304) |
ALP: Mean (Range), U/L | 150.90 (83–326) | 89.76 (53–279) |
Albumin: Mean (Range), g/L | 39 (24–44) | 43.87 (28–50) |
Bilirubin: Mean (Range), µmol/L | 24.30 (5–84) | 7.97 (5–21) |
Stage of the HCC: Hepatic/Extra-Hepatic | 13/7 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bannaga, A.S.; Tyagi, H.; Daulton, E.; Covington, J.A.; Arasaradnam, R.P. Exploratory Study Using Urinary Volatile Organic Compounds for the Detection of Hepatocellular Carcinoma. Molecules 2021, 26, 2447. https://doi.org/10.3390/molecules26092447
Bannaga AS, Tyagi H, Daulton E, Covington JA, Arasaradnam RP. Exploratory Study Using Urinary Volatile Organic Compounds for the Detection of Hepatocellular Carcinoma. Molecules. 2021; 26(9):2447. https://doi.org/10.3390/molecules26092447
Chicago/Turabian StyleBannaga, Ayman S., Heena Tyagi, Emma Daulton, James A. Covington, and Ramesh P. Arasaradnam. 2021. "Exploratory Study Using Urinary Volatile Organic Compounds for the Detection of Hepatocellular Carcinoma" Molecules 26, no. 9: 2447. https://doi.org/10.3390/molecules26092447
APA StyleBannaga, A. S., Tyagi, H., Daulton, E., Covington, J. A., & Arasaradnam, R. P. (2021). Exploratory Study Using Urinary Volatile Organic Compounds for the Detection of Hepatocellular Carcinoma. Molecules, 26(9), 2447. https://doi.org/10.3390/molecules26092447