Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach
Abstract
:1. Introduction
2. Mushroom—A Culinary Delicacy
3. Mushroom as Bioactive Functional Food Ingredients
3.1. Nutritive Profile of Mushrooms
Mushroom | Common Name | Protein | Fat | Crude Fibre | Ash | Carbohydrate | Energy Value (kcal/100 g) | Ref. |
---|---|---|---|---|---|---|---|---|
Fresh/Raw (g/100 g) | ||||||||
Agaricus bisporus | White button, Agaric, Pizza | 3.00 | 0.34 | 1.45 | 0.79 | 3.69 | 24 | [27] |
Flammulina velutipes | Winter, Enoki | 2.66 | 0.28 | 2.80 | 0.91 | 8.42 | 29 | |
Grifola frondosa | Maitake | 1.94 | 0.20 | 2.70 | 0.52 | 2.70 | 29 | |
Pleurotus ostreatus | Oyster | 2.00 | 0.99 | 2.10 | 0.24 | 5.35 | 39 | [67] |
Pleurotus sajor caju | Oyster | 23.3 | 3.0 | 35.6 | 3.2 | 65.5 | [68] | |
Dried (g/100 g) | ||||||||
Pleurotus eryngii | King trumpet oyster | 28.8 | 3.0 | - | 3.5 | 52.2 | - | [69] |
F. velutipes | Winter, Enoki | 18.42 | 2.94 | 7.81 | 6.33 | 56.37 | - | [70] |
Termitomyces heimii | Wild edible | 23.75 | 3.58 | 4.40 | 54.70 | 345 | [54] | |
A. bisporus | White button, Agaric, Pizza | 29.29 | 2.22 | 24.56 | 7.12 | 20.57 | - | [71] |
P. sajor caju (stalk) | Oyster | 22.51 | 2.6 | 16.24 | 8.54 | 40.2 | - | [41] |
P. sajor caju (cap) | Oyster | 26.34 | 3.07 | 8.97 | 10.37 | 38.17 | - | |
P. ostreatus | Oyster | 20.04 | 8.65 | - | 7.78 | 60.21 | 421 | [67] |
Tricholoma nauseosum | Matsutake | 18.1 | 2.0 | 30.1 | 31.1 | - | [55] | |
Sarcodon imbricatus | Scaly hedgehog | 12.0 | 2.8 | 5.1 | 64.6 | - | ||
G. frondosa | Maitake | 21.1 | 3.1 | 10.1 | 7.0 | 58.8 | - | [72] |
Hericium erinaceus | Pom pom or Lion’s mane | 22.3 | 3.5 | 7.8 | 9.4 | 57.0 | - | |
Boletus aereus | Bronze bolete or The dark cep | 17.86 | 4.4 | - | 8.87 | 72.83 | 306 | [73] |
Boletus edulis | Cep or Porcini | 21.07 | 2.45 | - | 5.53 | 70.95 | 423 | |
Boletus reticulatus | Summer cep | 22.57 | 2.55 | - | 19.72 | 55.16 | 297 | |
Pleurotus florida | Oyster | 34.56 | 2.11 | 11.41 | 7.40 | 31.59 | - | [74] |
Pleurotus ostreatus | Oyster mushroom | 30.92 | 1.68 | 12.10 | 7.05 | 31.40 | - | |
Calocybe gambosa | St. George or Milky | 15.46 | 0.83 | 13.89 | 69.82 | 317 | [75] | |
Clitocybe odora | Aniseed | 17.33 | 2.46 | 9.55 | 70.66 | 431 | ||
Coprinus comatus | Shaggy ink cap | 15.67 | 1.13 | 12.85 | 70.35 | 525 | ||
F. velutipes (stem waste) | Winter, Enoki | 13.50 | 1.47 | 32.30 | 8.24 | 63.89 | - | [53] |
P. florida | Oyster | 27.83 | 1.54 | 23.18 | 9.41 | 32.08 | - | [76] |
Russula delica | Milk-white | 26.25 | 5.38 | 15.42 | 17.92 | 34.88 | - | |
Lyophyllum decastes | Fried chicken | 18.31 | 2.14 | 29.02 | 14.20 | 34.36 | - | |
Fistulina hepatica | Beefsteak fungus | 63.69 | 2.63 | - | 11.30 | 22.98 | 364 | [77] |
Laccaria laccata | Deceiver or Waxy laccaria | 62.78 | 3.76 | - | 20.69 | 12.77 | 336 | |
Suillus mediterraneesis | - | 24.32 | 2.61 | - | 27.64 | 45.42 | 302 | |
Tricholoma imbricatum | Matsutake | 50.45 | 1.88 | - | 6.45 | 41.21 | 383 | |
Volvariella volvacea | Paddy straw | 29.5 | 5.7 | - | 10.4 | 60.0 | 374 | [78] |
Lentinula edodes | Shiitake | 17.5 | 8.0 | - | 8.0 | 67.5 | 387 | |
Auricularia polytricha | Wood ear, Jelly ear | 7.7 | 0.8 | - | 14.0 | 87.6 | 347 | |
Tremella fuciformis | White Jelly | 4.6 | 0.2 | 1.4 | 0.4 | 94.8 | - | |
Pholiota microspore | Nameko | 20.8 | 4.2 | - | 6.3 | 66.7 | 372 | |
Calvatia utriformis | Mosaic puffball | 20.37 | 1.90 | - | 17.81 | 59.92 | 744 | [60] |
Lycoperdon echinatum | Spiny puffball | 23.52 | 1.22 | - | 9.43 | 65.83 | 544 | |
Russula cyanoxantha | Charcoal burner | 16.80 | 1.52 | - | 7.03 | 74.65 | 590 | |
Agaricus campestris | Field or Meadow | 18.57 | 1.1 | 23.16 | 58.16 | - | [79] | |
Boletus armeniacus | - | 18.25 | 1.56 | 12.09 | 68.10 | - | ||
Tricholoma giganteum | Matsutake | 16.1 | 4.3 | 4.5 | 5.0 | 70.1 | - | [80] |
V. volvacea | Paddy straw | 30.1 | 6.4 | 11.9 | 12.6 | 50.90 | - |
3.2. Nutraceutical Components in Mushrooms
3.3. Prebiotic Effects of Mushrooms
4. Effects of Edible Mushrooms on Muscle Food Products
5. Effect of Mushrooms on Quality Aspects of Muscle Food Products
5.1. Mushrooms on the Physicochemical Properties of Muscle Foods
5.2. Mushrooms on Lipid Oxidation in Muscle Foods
5.3. Mushrooms on the Textural Properties of Muscle Foods
5.4. Mushrooms on the Appearance of Meat Products
5.5. Mushrooms on the Microbiological Quality of Muscle Foods
5.6. Mushroom on Sensory Attributes of Muscle Foods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lawrie, R.A.; Ledward, D. Lawrie’s Meat Science, 7th ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 0849387264. [Google Scholar]
- Corpet, D.E. Red meat and colon cancer: Should we become vegetarians, or can we make meat safer? Meat Sci. 2011, 89, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Young, J.F.; Therkildsen, M.; Ekstrand, B.; Che, B.N.; Larsen, M.K.; Oksbjerg, N.; Stagsted, J. Novel aspects of health promoting compounds in meat. Meat Sci. 2013, 95, 904–911. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Barrangou, R.; Hill, C.; Kokini, J.L.; Ann Lila, M.; Meyer, A.S.; Yu, L. Building a Resilient, Sustainable, and Healthier Food Supply through Innovation and Technology. Annu. Rev. Food Sci. Technol. 2021, 12, 1–28. [Google Scholar] [CrossRef]
- WHO. Global Strategy on Diet, Physical Activity and Health; WHO Library Cataloguing-in-Publication Data: Geneva, Switzerland, 2004; ISBN 9241592222. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J.; Das, A.K.; Dhar, P.; Nanda, P.K.; Chatterjee, N. Nanoemulsion-based technologies for delivering natural plant-based antimicrobials in foods. Front. Sustain. Food Syst. 2021, 5, 35. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Madane, P.; Biswas, S.; Das, A.; Zhang, W.; Lorenzo, J.M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Technol. 2020, 99, 323–336. [Google Scholar] [CrossRef]
- Bano, Z.; Rajarathnam, S. Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. Crit. Rev. Food Sci. Nutr. 1988, 27, 87–158. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Martínez, R.; Navarro-Blasco, I. Surveillance of aflatoxin content in dairy cow feedstuff from Navarra (Spain). Anim. Feed Sci. Technol. 2015, 200, 35–46. [Google Scholar] [CrossRef]
- Kurt, A.; Gençcelep, H. Enrichment of meat emulsion with mushroom (Agaricus bisporus) powder: Impact on rheological and structural characteristics. J. Food Eng. 2018, 237, 128–136. [Google Scholar] [CrossRef]
- Lu, X.; Brennan, M.A.; Narciso, J.; Guan, W.; Zhang, J.; Yuan, L.; Serventi, L.; Brennan, C.S. Correlations between the phenolic and fibre composition of mushrooms and the glycaemic and textural characteristics of mushroom enriched extruded products. LWT 2020, 118, 108730. [Google Scholar] [CrossRef]
- Lakhanpal, T.N.; Rana, M. Medicinal and nutraceutical genetic resources of mushrooms. Plant Genet. Resour. 2005, 3, 288–303. [Google Scholar] [CrossRef]
- Chang, S.T. Overview of Mushroom Cultivation and Utilization as Functional Foods. In Mushrooms as Functional Foods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 1–33. ISBN 9780470054062. [Google Scholar]
- Wang, H.X.; Liu, W.K.; Ng, T.B.; Ooi, V.E.C.; Chang, S.T. The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology 1996, 31, 205–211. [Google Scholar] [CrossRef]
- Liu, F.; Ooi, V.E.C.; Liu, W.K.; Chang, S.T. Immunomodulation and antitumor activity of polysaccharide-protein complex from the culture filtrates of a local edible mushroom, Tricholoma lobayense. Gen. Pharmacol. 1996, 27, 621–624. [Google Scholar] [CrossRef]
- Tam, S.C.; Yip, K.P.; Fung, K.P.; Chang, S.T. Hypotensive and renal effects of an extract of the edible mushroom Pleurotus sajor-caju. Life Sci. 1986, 38, 1155–1161. [Google Scholar] [CrossRef]
- Jana, P.; Acharya, K. Mushroom: A New Resource for Anti-Angiogenic Therapeutics. Food Rev. Int. 2020. [Google Scholar] [CrossRef]
- Spencer, M.; Guinard, J.X. The Flexitarian FlipTM: Testing the modalities of flavor as sensory strategies to accomplish the shift from meat-centered to vegetable-forward mixed dishes. J. Food Sci. 2018, 83, 175–187. [Google Scholar] [CrossRef]
- Lang, M. Consumer acceptance of blending plant-based ingredients into traditional meat-based foods: Evidence from the meat-mushroom blend. Food Qual. Prefer. 2020, 79, 103758. [Google Scholar] [CrossRef]
- Guinard, J.X.; Myrdal Miller, A.; Mills, K.; Wong, T.; Lee, S.M.; Sirimuangmoon, C.; Schaefer, S.E.; Drescher, G. Consumer acceptance of dishes in which beef has been partially substituted with mushrooms and sodium has been reduced. Appetite 2016, 105, 449–459. [Google Scholar] [CrossRef]
- Summers, A.; Ezike, A.; Smith, P.; Frutchey, R.; Leslie, L.; Paredes, S.; Alvarado, C.; Karani, S.; Taylor, J.; Cheskin, L. Acceptance of a mushroom-soy-beef blended burger among school-aged children. Heal. Behav. Policy Rev. 2017, 4, 274–281. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2639–2656. [Google Scholar] [CrossRef]
- Raghavendra, V.B.; Venkitasamy, C.; Pan, Z.; Nayak, C. Functional foods from mushroom. In Microbial Functional Foods and Nutraceuticals; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 65–91. [Google Scholar]
- Chang, S.T. The world mushroom industry: Trends and technological development. Int. J. Med. Mushrooms 2006, 8, 297–314. [Google Scholar] [CrossRef]
- Feeney, M.J.; Dwyer, J.; Hasler-Lewis, C.M.; Milner, J.A.; Noakes, M.; Rowe, S.; Wach, M.; Beelman, R.B.; Caldwell, J.; Cantorna, M.T.; et al. Mushrooms and health summit proceedings. J. Nutr. 2014, 144, 1128S–1136S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royse, D.J.; Baars, J.; Tan, Q. Current overview of mushroom production in the world. In Edible and Medicinal Mushrooms: Technology and Applications; Zied, D.C., Pardo-Giminez, A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 5–13. ISBN 978-1-119-14941-5. [Google Scholar]
- Beulah, G.H.; Margret, A.A.; Nelson, J. Marvelous Medicinal Mushrooms. Int. J. Pharm. Biol. Sci. 2013, 3, 611–615. [Google Scholar]
- Kumar, K. Nutraceutical Potential and Processing Aspects of Oyster Mushrooms (Pleurotus Species). Curr. Nutr. Food Sci. 2018, 16, 3–14. [Google Scholar] [CrossRef]
- Papoutsis, K.; Grasso, S.; Menon, A.; Brunton, N.P.; Lyng, J.G.; Jacquier, J.C.; Bhuyan, D.J. Recovery of ergosterol and vitamin D2 from mushroom waste—Potential valorization by food and pharmaceutical industries. Trends Food Sci. Technol. 2020, 99, 351–366. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Fadel, J.G. Oyster mushroom cultivation with rice and wheat straw. Bioresour. Technol. 2002, 82, 277–284. [Google Scholar] [CrossRef]
- Wu, S.R.; Zhao, C.Y.; Hou, B.; Tai, L.M.; Gui, M.Y. Analysis on Chinese edible fungus production area layout of nearly five years. Edible Fungi China 2013, 1, 51–53. [Google Scholar]
- Fasseas, M.K.K.; Mountzouris, K.C.C.; Tarantilis, P.A.A.; Polissiou, M.; Zervas, G. Antioxidant activity in meat treated with oregano and sage essential oils. Food Chem. 2008, 106, 1188–1194. [Google Scholar] [CrossRef]
- El Sohaimy, S. Functional foods and nutraceuticals-modern approach to food science. World Appl. Sci. J. 2012, 20, 691–708. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar] [CrossRef]
- Hasler, C.M. Functional Foods: Benefits, Concerns and Challenges—A Position Paper from the American Council on Science and Health. J. Nutr. 2002, 132, 3772–3781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgar, M.A.; Fazilah, A.; Huda, N.; Bhat, R.; Karim, A.A. Nonmeat protein alternatives as meat extenders and meat analogs. Compr. Rev. Food Sci. Food Saf. 2010, 9, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Chadha, K.; Sharma, S. Mushroom research in India-History, Infrastructure and Achievements. In Advances in Horticulture; Chadha, K.L., Ed.; Malhotra Publishing House: New Delhi, India, 1995; pp. 1–8. [Google Scholar]
- Kakon, A.; Choudhury, M.B.K.; Saha, S. Mushroom is an ideal food supplement. J. Dhaka Natl. Med. Coll. Hosp. 2012, 18, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Oyetayo, F.L.; Akindahunsi, A.A.; Oyetayo, V.O. Chemical profile and amino acids composition of edible mushrooms Pleurotus sajor-caju. Nutr. Health 2007, 18, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Rathore, H.; Sharma, S.; Yadav, A.S. Medicinal Mushrooms as a Source of Novel Functional Food. Int. J. Food Sci. Nutr. Diet. 2015, 221–225. [Google Scholar] [CrossRef]
- Rathore, H.; Prasad, S.; Sharma, S. Mushroom nutraceuticals for improved nutrition and better human health: A review. Pharma Nutr. 2017, 5, 35–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.; Wang, W. Recent developments on umami ingredients of edible mushrooms—A review. Trends Food Sci. Technol. 2013, 33, 78–92. [Google Scholar] [CrossRef]
- Jeng-Leun, M. The Umami Taste of Edible and Medicinal Mushrooms. Int. J. Med. Mushrooms 2005, 7, 119–125. [Google Scholar]
- Dunkel, A.; Köster, J.; Hofmann, T. Molecular and sensory characterization of γ-glutamyl peptides as key contributors to the kokumi taste of edible beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2007, 55, 6712–6719. [Google Scholar] [CrossRef]
- Kong, Y.; Yang, X.; Ding, Q.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T.; Sun, Y. Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate. Food Res. Int. 2017, 102, 559–566. [Google Scholar] [CrossRef]
- Kong, Y.; Zhang, L.L.; Zhao, J.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T. Isolation and identification of the umami peptides from shiitake mushroom by consecutive chromatography and LC-Q-TOF-MS. Food Res. Int. 2019, 121, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Wu, Y.; Zhang, Z.; Song, S.; Zhuang, H.; Xu, Z.; Yao, L.; Sun, M. Purification, identification, and sensory evaluation of kokumi peptides from agaricus bisporus mushroom. Foods 2019, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Ueda, Y.; Yonemitsu, M.; Tsubuku, T.; Sakaguchi, M.; Miyajima, R. Flavor characteristics of glutathione in raw and cooked foodstuffs. Biosci. Biotechnol. Biochem. 1997, 61, 1977–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.T. Buswell Mushroom Production. In Biotechnology, Vol. VII. Encyclopedia of Life Support Systems; Eolss Publishers: Oxford, UK, 2003; ISBN 978-1-84826-256-0. [Google Scholar]
- Synytsya, A.; Míčková, K.; Jablonský, I.; Sluková, M.; Čopíková, J. Mushrooms of Genus Pleurotus as a source of dietary fibres and glucans for food supplements. Czech J. Food Sci. 2008, 26, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, D.K.; Das, A.K.; Banerjee, R.; Pateiro, M.; Nanda, P.K.; Gadekar, Y.P.; Biswas, S.; McClements, D.J.; Lorenzo, J.M. Application of enoki mushroom (Flammulina velutipes) stem wastes as functional ingredients in processed meat. Foods 2020, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Due, E.A.; Michel, K.D.; Digbeu, Y.D. Physicochemical and Functional Properties of Flour from the Wild Edible Mushroom Termitomyces heimii Natarajan Harvested in Côte d’Ivoire. Turkish J. Agric. Food Sci. Technol. 2016, 4, 651. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, V.K.; Agarwal, S.; Gupta, K.K.; Ramteke, P.W.; Singh, M.P. Medicinal mushroom: Boon for therapeutic applications. 3 Biotech 2018, 8, 334. [Google Scholar] [CrossRef]
- Sawangwan, T.; Wansanit, W.; Pattani, L.; Noysang, C. Study of prebiotic properties from edible mushroom extraction. Agric. Nat. Resour. 2018, 52, 519–524. [Google Scholar] [CrossRef]
- Aida, F.M.N.A.; Shuhaimi, M.; Yazid, M.; Maaruf, A.G. Mushroom as a potential source of prebiotics: A review. Trends Food Sci. Technol. 2009, 20, 567–575. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrović, P.; Niksic, M.; Vrvic, M.M.; Van Griensven, L. Antioxidants of edible mushrooms. Molecules 2015, 20, 19489–19525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randive, S.D. Cultivation and study of growth of oyster mushroom on different agricultural waste substrate and its nutrient analysis. Adv. Appl. Sci. Res. 2012, 3, 1938–1949. [Google Scholar]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Friedman, M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016, 5, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A review of mushrooms as a potential source of dietary vitamin D. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef] [Green Version]
- Gençcelep, H. The effect of using dried mushroom (Agaricus bisporus) on lipid oxidation and color properties of sucuk. J. Food Biochem. 2012, 36, 587–594. [Google Scholar] [CrossRef]
- Ferreira, I.; Barros, L.; Abreu, R. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009, 16, 1543–1560. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.-H.; Asyikeen Zulkifli, N.; Tan, T.-C. Edible Mushroom: Nutritional Properties, Potential Nutraceutical Values, and Its Utilisation in Food Product Development. In An Introduction to Mushroom; IntechOpen Limited: London, UK, 2020. [Google Scholar] [CrossRef]
- Marçal, S.; Sousa, A.S.; Taofiq, O.; Antunes, F.; Morais, A.M.M.B.; Freitas, A.C.; Barros, L.; Ferreira, I.C.F.R.; Pintado, M. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends Food Sci. Technol. 2021, 110, 418–431. [Google Scholar] [CrossRef]
- El-Refai, A.; El-Zeiny, A.R.; Rabo, E.A. Quality attributes of mushroom-beef patties as a functional meat product. J. Hyg. Eng. Des. 2014, 6, 49–62. [Google Scholar]
- Wan Rosli, W.I.; Solihah, M.A. Nutritional composition and sensory properties of oyster mushroom-based patties packed with biodegradable packaging. Sains Malays. 2014, 43, 65–71. [Google Scholar]
- Dosh, K.S.; Tawfiq, N.N.; Jabbar, S.H. Preparation of modified chicken burger by partial replacement of chicken meat with powdered of oyster mushroom and study its physical and sensory Properties. Iraqi J. Agric. Sci. 2016, 74, 138–143. [Google Scholar]
- Jo, K.; Lee, J.; Jung, S. Quality characteristics of low-salt chicken sausage supplemented with a winter mushroom powder. Korean J. Food Sci. Anim. Resour. 2018, 38, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.C.; Raju, C.V.; Lakshmisha, I.P.; Singh, R.R.; Sofi, F.R. Influence of Button mushroom (Agaricus bisporus) on quality and refrigerated storage stability of patties prepared from sutchi catfish (Pangasius hypophthalmus). J. Food Sci. Technol. 2015, 52, 3529–3538. [Google Scholar] [CrossRef] [Green Version]
- Mau, J.L.; Lin, H.C.; Ma, J.T.; Song, S.F. Non-volatile taste components of several speciality mushrooms. Food Chem. 2001, 73, 461–466. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Santos-Buelga, C.; Ferreira, I.C.F.R. Targeted metabolites analysis in wild Boletus species. LWT Food Sci. Technol. 2011, 44, 1343–1348. [Google Scholar] [CrossRef]
- Michael, H.W.; Bultosa, G.; Pant, L.M. Nutritional contents of three edible oyster mushrooms grown on two substrates at Haramaya, Ethiopia, and sensory properties of boiled mushroom and mushroom sauce. Int. J. Food Sci. Technol. 2011, 46, 732–738. [Google Scholar] [CrossRef]
- Vaz, J.A.; Barros, L.; Martins, A.; Santos-Buelga, C.; Vasconcelos, M.H.; Ferreira, I.C.F.R. Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions. Food Chem. 2011, 126, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Teklit, G.A. Chemical composition and nutritional value of the most widely used mushrooms cultivated in Mekelle Tigray Ethiopia. J. Nutr. Food Sci. 2015, 5, 1000408. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C.F.R. Study and characterization of selected nutrients in wild mushrooms from Portugal by gas chromatography and high performance liquid chromatography. Microchem. J. 2009, 93, 195–199. [Google Scholar] [CrossRef]
- Crisan, E.V.; Sands, A. Nutritional value. Biol. Cultiv. Edible Mushrooms 1978, 137–168. [Google Scholar] [CrossRef]
- Pereira, M.C.; Steffens, R.S.; Jablonski, A.; Hertz, P.F.; de Rios, A.O.; Vizzotto, M.; Flôres, S.H. Characterization and Antioxidant Potential of Brazilian Fruits from the Myrtaceae Family. J. Agric. Food Chem. 2012, 60, 3061–3067. [Google Scholar] [CrossRef]
- Ghosh, K. A review: Edible mushrooms as source of dietary fiber and its healtheffects. J. Phys. Sci. 2016, 21, 129–137. [Google Scholar]
- Chang, S.T.; Buswell, J.A. Mushroom nutriceuticals. World J. Microbiol. Biotechnol. 1996, 12, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Yang, W.; Zhao, L.; Pei, F.; Fang, D.; Hu, Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci. Hum. Wellness 2018, 7, 125–133. [Google Scholar] [CrossRef]
- El Enshasy, H.A.; Hatti-Kaul, R. Mushroom immunomodulators: Unique molecules with unlimited applications. Trends Biotechnol. 2013, 31, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Goyal, A. Recent developments in mushrooms as anti-cancer therapeutics: A review. 3 Biotech 2012, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ina, K.; Kataoka, T.; Ando, T. The Use of Lentinan for Treating Gastric Cancer. Anticancer Agents Med. Chem. 2013, 13, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Nowacka-Jechalke, N.; Olech, M.; Nowak, R. Mushroom polyphenols as chemopreventive agents. In Polyphenols: Prevention and Treatment of Human Disease; Academic Press: Cambridge, MA, USA, 2018; pp. 137–150. ISBN 9780128130087. [Google Scholar]
- Ruthes, A.C.; Smiderle, F.R.; Iacomini, M. D-Glucans from edible mushrooms: A review on the extraction, purification and chemical characterization approaches. Carbohydr. Polym. 2015, 117, 753–761. [Google Scholar] [CrossRef]
- Borchers, A.T.; Krishnamurthy, A.; Keen, C.L.; Meyers, F.J.; Gershwin, M.E. The immunobiology of mushrooms. Exp. Biol. Med. 2008, 233, 259–276. [Google Scholar] [CrossRef]
- Zhang, C.-X.; Ho, S.C.; Chen, Y.-M.; Lin, F.-Y.; Fu, J.-H.; Cheng, S.-Z. Meat and egg consumption and risk of breast cancer among Chinese women. Cancer Causes Control 2009, 20, 1845–1853. [Google Scholar] [CrossRef]
- Khan, I.; Huang, G.; Li, X.; Leong, W.; Xia, W.; Hsiao, W.L.W. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. J. Funct. Foods 2018, 41, 191–201. [Google Scholar] [CrossRef]
- Jayachandran, M.; Xiao, J.; Xu, B. A critical review on health promoting benefits of edible mushrooms through gut microbiota. Int. J. Mol. Sci. 2017, 18, 1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, C.; Noratto, G.D.; Fan, X.; Chen, Z.; Yao, F.; Shi, D.; Gao, H. The Impact of Mushroom Polysaccharides on Gut Microbiota and Its Beneficial Effects to Host: A Review. Carbohydr. Polym. 2020, 250, 116942. [Google Scholar] [CrossRef]
- Cheung, M.K.; Yue, G.G.L.; Chiu, P.W.Y.; Lau, C.B.S. A Review of the Effects of Natural Compounds, Medicinal Plants, and Mushrooms on the Gut Microbiota in Colitis and Cancer. Front. Pharmacol. 2020, 11, 744. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.T.; Sheih, I.C.; Fang, T.J. The applications of polysaccharides from various mushroom wastes as prebiotics in different systems. J. Food Sci. 2013, 78, 1171–1185. [Google Scholar] [CrossRef] [PubMed]
- Synytsya, A.; Mickova, K.; Jablonsky, I.; Spevacek, J.; Erban, V.; Kovarikova, E.; Copikova, J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009, 76, 548–556. [Google Scholar] [CrossRef]
- Arora, T.; Sharma, R. Fermentation potential of the gut microbiome: Implications for energy homeostasis and weight management. Nutr. Rev. 2011, 69, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.J.; Lin, C.S.; Lu, C.C.; Martel, J.; Ko, Y.F.; Ojcius, D.M.; Tseng, S.F.; Wu, T.R.; Chen, Y.Y.M.; Young, J.D.; et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat. Commun. 2015, 6, 7489. [Google Scholar] [CrossRef] [Green Version]
- Delzenne, N.M.; Bindels, L.B. Gut microbiota: Ganoderma lucidum, a new prebiotic agent to treat obesity? Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 553–554. [Google Scholar] [CrossRef]
- Lo, H.C.; Wasser, S.P. Medicinal mushrooms for glycemic control in diabetes mellitus: History, current status, future perspectives, and unsolved problems (review). Int. J. Med. Mushrooms 2011, 13, 401–426. [Google Scholar] [CrossRef]
- Ouzouni, P.K.; Petridis, D.; Koller, W.D.; Riganakos, K.A. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem. 2009, 115, 1575–1580. [Google Scholar] [CrossRef]
- Lee, Y.L.; Jian, S.Y.; Mau, J.L. Composition and non-volatile taste components of Hypsizigus marmoreus. LWT Food Sci. Technol. 2009, 42, 594–598. [Google Scholar] [CrossRef]
- Ulziijargal, E.; Yang, J.H.; Lin, L.Y.; Chen, C.P.; Mau, J.L. Quality of bread supplemented with mushroom mycelia. Food Chem. 2013, 138, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.N.D.; Ushio, H.; Ohshima, T. Antioxidative activities of mushroom (Flammulina velutipes) extract added to bigeye tuna meat: Dose-dependent efficacy and comparison with other biological antioxidants. J. Food Sci. 2009, 74, C162–C169. [Google Scholar] [CrossRef]
- Biao, Y.; Chen, X.; Wang, S.; Chen, G.; Mcclements, D.J.; Zhao, L. Impact of mushroom (Pleurotus eryngii) flour upon quality attributes of wheat dough and functional cookies-baked products. Food Sci. Nutr. 2020, 8, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Tuley, L. Swell time for dehydrated vegetables. Int. Food Ingred. 1996, 4, 23–27. [Google Scholar]
- Gothandapani, L.; Parvathi, K.; John Kennedy, Z. Evaluation of different methods of drying on the quality of oyster mushroom (Pleurotus sp.). Dry. Technol. 1997, 15, 1995–2004. [Google Scholar] [CrossRef]
- Van Ba, H.; Seo, H.W.; Cho, S.H.; Kim, Y.S.; Kim, J.H.; Ham, J.S.; Park, B.Y.; Pil-Nam, S. Effects of extraction methods of shiitake by-products on their antioxidant and antimicrobial activities in fermented sausages during storage. Food Control 2017, 79, 109–118. [Google Scholar] [CrossRef]
- Süfer, Ö.; Bozok, F.; Demir, H. Usage of Edible Mushrooms in Various Food Products. Turkish J. Agric. Food Sci. Technol. 2016, 4, 144. [Google Scholar] [CrossRef] [Green Version]
- Choe, J.; Lee, J.; Jo, K.; Jo, C.; Song, M.; Jung, S. Application of winter mushroom powder as an alternative to phosphates in emulsion-type sausages. Meat Sci. 2018, 143, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Gençcelep, H.; Uzun, Y.; Tunçtürk, Y.; Demirel, K. Determination of mineral contents of wild-grown edible mushrooms. Food Chem. 2009, 113, 1033–1036. [Google Scholar] [CrossRef]
- Vetter, J. Data on sodium content of common edible mushrooms. Food Chem. 2003, 81, 589–593. [Google Scholar] [CrossRef]
- Seeger, R.; Trumpfheller, S.; Schweinshaut, P. On the occurrence of sodium in fungi. Dtsch. Leb. 1983, 79, 80–87. [Google Scholar]
- Inguglia, E.S.; Zhang, Z.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Chrysant, S.G. Effects of high salt intake on blood pressure and cardiovascular disease: The role of COX inhibitors. Clin. Cardiol. 2016, 39, 240–242. [Google Scholar] [CrossRef] [Green Version]
- Ruusunen, M.; Puolanne, E. Reducing sodium intake from meat products. Meat Sci. 2005, 70, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Alnoumani, H.; Ataman, Z.A.; Were, L. Lipid and protein antioxidant capacity of dried Agaricus bisporus in salted cooked ground beef. Meat Sci. 2017, 129, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.N.D.; Shinomiya, Y.; Ikeda, H.; Ohshima, T. Preventing discoloration and lipid oxidation in dark muscle of yellowtail by feeding an extract prepared from mushroom (Flammulina velutipes) cultured medium. Aquaculture 2009, 295, 243–249. [Google Scholar] [CrossRef]
- Encarnacion, A.B.; Fagutao, F.; Hirono, I.; Ushio, H.; Ohshima, T. Effects of ergothioneine from mushrooms (Flammulina velutipes) on melanosis and lipid oxidation of kuruma shrimp (Marsupenaeus japonicus). J. Agric. Food Chem. 2010, 58, 2577–2585. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Barreira, J.C.M.; Grangeia, C.; Batista, C.; Cadavez, V.A.P.; Ferreira, I.C.F.R. Beef burger patties incorporated with Boletus edulis extracts: Lipid peroxidation inhibition effects. Eur. J. Lipid Sci. Technol. 2011, 113, 737–743. [Google Scholar] [CrossRef]
- Wan Rosli, W.I.; Solihah, M.A.; Mohsin, S.S.J. On the ability of oyster mushroom (Pleurotus sajor-caju) confering changes in proximate composition and sensory evaluation of chicken patty. Int. Food Res. J. 2011, 18, 1463–1469. [Google Scholar]
- Chung, S.I.; Kim, S.Y.; Nam, Y.J.; Kang, M.Y. Development of surimi gel from king oyster mushroom and cuttlefish meat paste. Food Sci. Biotechnol. 2010, 19, 51–56. [Google Scholar] [CrossRef]
- Myrdal Miller, A.; Mills, K.; Wong, T.; Drescher, G.; Lee, S.M.; Sirimuangmoon, C.; Schaefer, S.; Langstaff, S.; Minor, B.; Guinard, J.X. Flavor-enhancing properties of mushrooms in meat-based dishes in which sodium has been reduced and meat has been partially substituted with mushrooms. J. Food Sci. 2014, 79, S1795–S1804. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.N.D.; Osako, K.; Ohshima, T. Value-added use of mushroom ergothioneine as a colour stabilizer in processed fish meats. J. Sci. Food Agric. 2010, 90, 1634–1641. [Google Scholar] [CrossRef] [PubMed]
- Wan Rosli, W.I.; Nor Maihiza, M.S.; Raushan, M. The ability of oyster mushroom in improving nutritional composition, β-glucan and textural properties of chicken frankfurter. Int. Food Res. J. 2015, 22, 311–317. [Google Scholar]
- Chun, S.; Chambers, E., IV; Chambers, D. Perception of pork patties with shiitake (Lentinus edode P.) mushroom powder and sodium tripolyphosphate as measured by Korean and United States consumers. J. Sens. Stud. 2005, 20, 156–166. [Google Scholar] [CrossRef]
- Cha, M.H.; Heo, J.Y.; Lee, C.; Lo, Y.M.; Moon, B. Quality and sensory characterization of white jelly mushroom (Tremella fuciformis) as a meat substitute in pork patty formulation. J. Food Process. Preserv. 2014, 38, 2014–2019. [Google Scholar] [CrossRef]
- Patinho, I.; Saldaña, E.; Selani, M.M.; de Camargo, A.C.; Merlo, T.C.; Menegali, B.S.; de Souza Silva, A.P.; Contreras-Castillo, C.J. Use of Agaricus bisporus mushroom in beef burgers: Antioxidant, flavor enhancer and fat replacing potential. Food Prod. Process. Nutr. 2019, 1, 7. [Google Scholar] [CrossRef]
- Ha, J.-U.; Koo, S.-G.; Lee, H.-Y.; Hwang, Y.-M.; Lee, S.-C. Physical properties of fish paste containing Agaricus bisporus. Korean J. Food Sci. Technol. 2001, 33, 451–454. [Google Scholar]
- Kim, S.Y.; Son, M.H.; Ha, J.U.; Lee, S.C. Preparation and characterization of friend surimi gel containing king oyster mushroom (Pleurotus eryngii). J. Korean Soc. Food Sci. Nutr. 2003, 32, 855–858. [Google Scholar] [CrossRef]
- Van Ba, H.; Seo, H.W.; Cho, S.H.; Kim, Y.S.; Kim, J.H.; Ham, J.S.; Park, B.Y.; Pil Nam, S. Antioxidant and anti-foodborne bacteria activities of shiitake by-product extract in fermented sausages. Food Control 2016, 70, 201–209. [Google Scholar] [CrossRef]
- Wong, K.M.; Corradini, M.G.; Autio, W.; Kinchla, A.J. Sodium reduction strategies through use of meat extenders (white button mushrooms vs. textured soy) in beef patties. Food Sci. Nutr. 2019, 7, 506–518. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Banerjee, R.; Bhattacharyya, D.; Patra, G.; Das, A.K.; Das, S.K. Technological investigation into duck meat and its products—A potential alternative to chicken. Worlds. Poult. Sci. J. 2019, 75, 609–620. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M. Influence of type of muscles on nutritional value of foal meat. Meat Sci. 2013, 93, 630–638. [Google Scholar] [CrossRef]
- Wan Rosli, W.I.; Solihah, M.A.; Aishah, M.; Nik Fakurudin, N.A.; Mohsin, S.S.J. Colour, textural properties, cooking characteristics and fibre content of chicken patty added with oyster mushroom (Pleurotus sajor-caju). Int. Food Res. J. 2011, 18, 621–627. [Google Scholar]
- Bao, H.N.D.; Ushio, H.; Ohshima, T. Antioxidative activity and antidiscoloration efficacy of ergothioneine in mushroom (Flammulina velutipes) extract added to beef and fish meats. J. Agric. Food Chem. 2008, 56, 10032–10040. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Ueno, H.; Kikuzaki, H. Construction of a free-form amino acid database for vegetables and mushrooms. Integr. Food, Nutr. Metab. 2017, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ko, M.S.; Kim, S.A. Sensory and physicochemical characteristics of jeungpyun with Pleurotus eryngii powder. Korean J. Food Sci. Technol. 2007, 39, 194–199. [Google Scholar]
- Guyon, C.; Meynier, A.; de Lamballerie, M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Technol. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Chowdhury, N.R.; Dandapat, P.; Gagaoua, M.; Chauhan, P.; Pateiro, M.; Lorenzo, J.M. Application of Pomegranate by-Products in Muscle Foods: Oxidative Indices, Colour Stability, Shelf Life and Health Benefits. Molecules 2021, 26, 467. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estevez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef]
- Miller, D.K.; Gomez-Basauri, J.V.; Smith, V.L.; Kanner, J.; Miller, D.D. Dietary Iron in Swine Rations Affects Nonheme Iron and TBARS in Pork Skeletal Muscles. J. Food Sci. 1994, 59, 747–750. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef]
- Lobo, F.; Ventanas, S.; Morcuende, D.; Estévez, M. Underlying chemical mechanisms of the contradictory effects of NaCl reduction on the redox-state of meat proteins in fermented sausages. LWT-Food Sci. Technol. 2016, 69, 110–116. [Google Scholar] [CrossRef]
- Ferioli, F.; Dutta, P.C.; Caboni, M.F. Cholesterol and lipid oxidation in raw and pan-fried minced beef stored under aerobic packaging. J. Sci. Food Agric. 2010, 90, 1050–1055. [Google Scholar] [CrossRef]
- Gatellier, P.; Kondjoyan, A.; Portanguen, S.; Santé-Lhoutellier, V. Effect of cooking on protein oxidation in n-3 polyunsaturated fatty acids enriched beef. Implication on nutritional quality. Meat Sci. 2010, 85, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, S.; Benjakul, S.; Abushelaibi, A.; Alam, A. Phenolic compounds andplant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: A detailed review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1125–1140. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Rajkumar, V.; Nanda, P.K.; Chauhan, P.; Pradhan, S.R.; Biswas, S. Antioxidant efficacy of litchi (Litchi chinensis Sonn.) pericarp extract in sheep meat nuggets. Antioxidants 2016, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Das, A.K.; Rajkumar, V.; Verma, A.K. Bael pulp residue as a new source of antioxidant dietary fiber in goat meat nuggets. J. Food Process. Preserv. 2015, 39, 1626–1635. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Shpigelman, A.; Granato, D.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef]
- Ren, X.; Wang, J.; Huang, L.; Cheng, K.; Zhang, M.; Yang, H. Comparative studies on bioactive compounds, ganoderic acid biosynthesis, and antioxidant activity of pileus and stipes of lingzhi or reishi medicinal mushroom, ganoderma lucidum (Agaricomycetes) fruiting body at different growth stages. Int. J. Med. Mushrooms 2020, 22, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.S.; Shao, S.; Chen, J.C.; Zhou, T. Antimicrobials from Mushrooms for Assuring Food Safety. Compr. Rev. Food Sci. Food Saf. 2017, 16, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, H.M.H.; Kubra, K.; Ahmed, R.R. Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.G.; Lee, J.; Jo, K.; Lee, C.W.; Lee, H.J.; Jo, C.; Jung, S. Improved oxidative stability of enhanced pork loins using red perilla extract. Korean J. Food Sci. Anim. Resour. 2017, 37, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Yen, M.T.; Tseng, Y.H.; Li, R.C.; Mau, J.L. Antioxidant properties of fungal chitosan from shiitake stipes. LWT Food Sci. Technol. 2007, 40, 255–261. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, H.; Zhang, Y.; Ma, L.; Xu, X. Comparative studies on chemical parameters and antioxidant properties of stipes and caps of shiitake mushroom as affected by different drying methods. J. Sci. Food Agric. 2013, 93, 3107–3113. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.Y.; Shieh, D.E.; Ho, C.T. Antioxidant and free radical scavenging activities of edible mushrooms. J. Food Lipids 2002, 9, 35–46. [Google Scholar] [CrossRef]
- Elmastas, M.; Isildak, O.; Turkekul, I.; Temur, N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J. Food Compos. Anal. 2007, 20, 337–345. [Google Scholar] [CrossRef]
- Kosanic, M.; Rankovic, B.; Dasic, M. Antioxidant and antimicrobial properties of mushrooms. Bulg. J. Agric. Sci. 2013, 19, 1040–1046. [Google Scholar]
- Hameed, A.; Hussain, S.A.; Ijaz, M.U.; Ullah, S.; Muhammad, Z.; Suleria, H.A.R.; Song, Y. Antioxidant activity of polyphenolic extracts of filamentous fungus Mucor circinelloides (WJ11): Extraction, characterization and storage stability of food emulsions. Food Biosci. 2020, 34, 100525. [Google Scholar] [CrossRef]
- Coggins, P.C. Attributes of muscle foods: Color, texture, flavor. In Handbook of Meat, Poultry and Seafood Quality; Nollet, L., Ed.; Blackwell Publishing: Ames, IA, USA, 2007; pp. 89–100. [Google Scholar]
- Han, M.; Bertram, H.C. Designing healthier comminuted meat products: Effect of dietary fibers on water distribution and texture of a fat-reduced meat model system. Meat Sci. 2017, 133, 159–165. [Google Scholar] [CrossRef]
- Madane, P.; Das, A.K.; Nanda, P.K.; Bandyopadhyay, S.; Jagtap, P.; Shewalkar, A.; Maity, B. Dragon fruit (Hylocereus undatus) peel as antioxidant dietary fibre on quality and lipid oxidation of chicken nuggets. J. Food Sci. Technol. 2020, 57, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Das, A.K.; Das, A.; Bhattacharya, D.; Nanda, P.K. Effect of black cumin and arjuna fruit extract on lipid oxidation in pork nuggets during refrigerated storage. J. Meat Sci. 2018, 13, 73–80. [Google Scholar] [CrossRef]
- Madane, P.; Das, A.K.; Pateiro, M.; Nanda, P.K.; Bandyopadhyay, S.; Jagtap, P.; Barba, F.J.; Shewalkar, A.; Maity, B.; Lorenzo, J.M. Drumstick (Moringa oleifera) flower as an antioxidant dietary fibre in chicken meat nuggets. Foods 2019, 8, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, C.P.; Andersen, H.J. Myoglobin-induced lipid oxidation. A review. J. Agric. Food Chem. 2002, 50, 3887–3897. [Google Scholar] [CrossRef] [PubMed]
- Pil-Nam, S.; Park, K.M.; Kang, G.H.; Cho, S.H.; Park, B.Y.; Van-Ba, H. The impact of addition of shiitake on quality characteristics of frankfurter during refrigerated storage. LWT Food Sci. Technol. 2015, 62, 62–68. [Google Scholar] [CrossRef]
- Wong, K.M.; Decker, E.A.; Autio, W.R.; Toong, K.; DiStefano, G.; Kinchla, A.J. Utilizing Mushrooms to Reduce Overall Sodium in Taco Filling Using Physical and Sensory Evaluation. J. Food Sci. 2017, 82, 2379–2386. [Google Scholar] [CrossRef]
- Hunt, M.C.; Kropf, D.H. Color and appearance. In Restructured Meat and Poultry Products, Advanced in Meat Research; Pearson, A.M., Ed.; Van Nostrand: New York, NY, USA, 1987; Volume 3, pp. 125–159. [Google Scholar]
- Das, A.K.; Nanda, P.K.; Das, A.; Biswas, S. Hazards and safety issues of meat and meat products. In Food Safety and Human Health; Elsevier Academic Press: Cambridge, MA, USA, 2019; pp. 145–168. [Google Scholar]
- Sharma, A.K.; Jana, A.M.; Srivastav, A.; Gupta, M.; Sharma, S.; Gill, S.S. Antimicrobial properties of some edible mushrooms: A review. World J. Pharm. Pharm. Sci. 2014, 3, 1009–1023. [Google Scholar]
- Alves, M.; Ferreira, I.; Dias, J.; Teixeira, V.; Martins, A.; Pintado, M. A review on antifungal activity of mushroom (Basidiomycetes) extracts and isolated compounds. Curr. Top. Med. Chem. 2013, 13, 2648–2659. [Google Scholar] [CrossRef] [Green Version]
- Akyuz, M.; Onganer, A.N.; Erecevit, P.; Kirbag, S. Antimicrobial activity of some edible mushrooms in the eastern and southeast anatolia region of Turkey. Gazi Univ. J. Sci. 2010, 23, 125–130. [Google Scholar]
- Lindequist, U.; Niedermeyer, T.H.J.; Jülich, W.D. The pharmacological potential of mushrooms. Evid. Based Complement. Altern. Med. 2005, 2, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Hatvani, N. Antibacterial effect of the culture fluid of Lentinus edodes mycelium grown in submerged liquid culture. Int. J. Antimicrob. Agents 2001, 17, 71–74. [Google Scholar] [CrossRef]
- Kitzberger, C.S.G.; Smânia, A.; Pedrosa, R.C.; Ferreira, S.R.S. Antioxidant and antimicrobial activities of shiitake (Lentinula edodes) extracts obtained by organic solvents and supercritical fluids. J. Food Eng. 2007, 80, 631–638. [Google Scholar] [CrossRef]
- Menaga, D.; Mahalingam, P.U.; Rajakumar, S.; Ayyasamy, P.M. Evaluation of phytochemical characteristics and antimicrobial activity of Pleurotus florida mushroom. Asian J. Pharm. Clin. Res. 2012, 5, 102–106. [Google Scholar]
- Stojković, D.S.; Reis, F.S.; Ćirić, A.; Barros, L.; Glamočlija, J.; Ferreira, I.C.F.R.; Soković, M. Boletus aereus growing wild in Serbia: Chemical profile, in vitro biological activities, inactivation and growth control of food-poisoning bacteria in meat. J. Food Sci. Technol. 2015, 52, 7385–7392. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Bandyopadhyay, S.; Banerjee, R.; Biswas, S.; McClements, D.J. Application of nanoemulsion-based approaches for improving the quality and safety of muscle foods: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2677–2700. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Lin, H.C.; Mau, J.L. Non-volatile taste components of several commercial mushrooms. Food Chem. 2001, 72, 465–471. [Google Scholar] [CrossRef]
- Jabłońska-Ryś, E.; Skrzypczak, K.; Sławińska, A.; Radzki, W.; Gustaw, W. Lactic Acid Fermentation of Edible Mushrooms: Tradition, Technology, Current State of Research: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 655–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mushroom Variety and Level Used | Types of Muscle Food | Quality Parameters and Storage Conditions | Effects | Ref. |
---|---|---|---|---|
Dried mushroom (Pleurotus ostreatus) @ 4%, 8% or 12% | Beef patties | Quality attributes (stored at −18 to −20 °C for 6 months) |
| [67] |
Mushroom (Agaricus bisporus or P. ostreatus) powder @ 5% or 10% | Traditional Turkish meatball | Sensory and physical (colour and texture) analysis |
| [108] |
Mushroom (Boletus edulis) extract @ 1%, 3% or 5% | Beef burger | Antioxidant activities (stored at 4 °C for 8 days) |
| [119] |
Winter mushroom (Flammulina velutipes) powder @ 0.5, 1%, 1.5% or 2% | Emulsion-type pork sausages | Quality parameters (pH, lipid oxidation, texture and sensory properties) |
| [109] |
King oyster mushroom (Pleurotus eryngii) powder @10% or 15% | Chicken burger | Physical properties and sensory evaluation (stored at 6 ± 1 °C for 7 days) |
| [69] |
Winter mushroom (F. velutipes) powder @ 0.5% or 1% | Low-salt chicken sausages | Sensory analysis (stored at 4 °C for 3 days) |
| [70] |
Blanched grey oyster mushroom (P. sajor caju) @ 25% or 50% | Chicken patties | Optical and textural properties (colour, textural and cooking characteristics) |
| [120] |
Mushroom (F. velutipes) extract @ 1 mL equivalent to 3 mg ergothioneine | Bigeye tuna (Thunnus obesus) meat | Antioxidative activity and anti-discolouration efficacy (frozen at −70 °C for 3 months) |
| [103] |
King oyster mushroom @ 20%, 30%, 40%, or 50% | Cuttlefish (Sepia esculenta) surimi gel | Physico-chemical and sensory attributes |
| [121] |
Mushroom (A. bisporus) powder @ 2% | Beef meat emulsion | Rheological and structural characteristics |
| [11] |
Ground white mushroom (A. bisporus) @ 50% or 80% | Meat based dish (beef taco blend) | Nutritional quality and flavor profiles |
| [122] |
Mushroom (A. bisporus) @ 0.5, 1% or 2% | Sucuk (dry-fermented product using beef meat (90%) and beef fat (10%) | Quality properties during ripening period at (18 ± 2 °C) up to 12 days (stored at 4 ± 1 °C in refrigerator for 60 days) |
| [63] |
Pleurotus eryngii, F. velutipes, Lentinula edodes, Pleurotus cornucopiae and processing waste of F. velutipes @ 1% of each extract separately | Yellow tail (Seriola quinqueradiata) dark muscle | Colour stabilizing effects (storage in cold room at 5 °C and replaced daily with fresh ice) |
| [123] |
Oyster mushroom (P. sajor caju) powder @ 2%, 4% or 6% | Chicken sausages/frankfurters | Nutritional composition and textural properties (stored at −18 °C until analysis) |
| [124] |
Button mushroom (A. bisporus) @ 15% | Patties from sutchi catfish (Pangasius hypophthalmus) | Physical, chemical, microbial and sensory properties (stored at 6 ± 2 °C for 20 days) |
| [71] |
Shiitake mushroom (L. edodes) powder @ 2%, 4% or 6% | Pork patties | Consumer acceptability and perception (stored at −20 °C up to one week) |
| [125] |
White jelly mushroom (Tremella fuciformis) @ 10%, 20% or 30% | Pork patties | Quality and sensory characteristics |
| [126] |
Mushroom (A. bisporus) @ 15% or 30% | Beef burger | Physico-chemical and sensory measurements (vacuum packed and stored at −18 °C) |
| [127] |
Mushroom (F. velutipes) extract @ 1% or 10% | Yellowtail (Seriola quinqueradiata) | Colour stability and lipid oxidation (stored at 0–2 °C for 4 days) |
| [103] |
Button mushroom (A. bisporus) @ 5%, 10%, 15% or 20% | Fish paste | Texture profile analysis |
| [128] |
King oyster mushroom (P. eryngii) @ 5%, 10%, 15% or 20% | Silver white croaker (Pennahiaargentata fried fish cake | Quality properties and sensory characteristics |
| [129] |
Dried mushroom (A. bisporus) @ 1%, 2% or 4% | Beef patties | Shelf-life and changes in lipid and protein oxidation (stored at 4 °C for 16 days) |
| [116] |
Enoki mushroom (F. velutipes) stem waste powder @ 2%, 4% or 6% | Goat meat nuggets | Physico-chemical qualities, antioxidant capacity and lipid oxidation stability (stored at 4 °C up to 12 days) |
| [53] |
Shiitake (L. edodes) by-products -stipes extract @ 0.3% or 0.6% | Fermented sausage (70% pork meat and 30% pork back-fat) | Quality characteristics, lipid oxidation and microbial stabilities (stored at 15 °C up to 30 days) |
| [130] |
Shiitake (L. edodes) by-products- stipes extract (aqueous or ethanolic) | Fermented sausages (80% pork ham and 20% pork fat) |
Antioxidant and microbial abilities (stored at 15 °C up to 40 days) |
| [107] |
Immature white button mushroom (A. bisporus) @ 10%, 20%, 30%, 40% or 50% | Ground beef (80/20 blend) | Physical and sensory characteristics (stored at −18 °C in between sheets of wax paper in plastic bags) |
| [131] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, A.K.; Nanda, P.K.; Dandapat, P.; Bandyopadhyay, S.; Gullón, P.; Sivaraman, G.K.; McClements, D.J.; Gullón, B.; Lorenzo, J.M. Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules 2021, 26, 2463. https://doi.org/10.3390/molecules26092463
Das AK, Nanda PK, Dandapat P, Bandyopadhyay S, Gullón P, Sivaraman GK, McClements DJ, Gullón B, Lorenzo JM. Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules. 2021; 26(9):2463. https://doi.org/10.3390/molecules26092463
Chicago/Turabian StyleDas, Arun K., Pramod K. Nanda, Premanshu Dandapat, Samiran Bandyopadhyay, Patricia Gullón, Gopalan Krishnan Sivaraman, David Julian McClements, Beatriz Gullón, and José M. Lorenzo. 2021. "Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach" Molecules 26, no. 9: 2463. https://doi.org/10.3390/molecules26092463
APA StyleDas, A. K., Nanda, P. K., Dandapat, P., Bandyopadhyay, S., Gullón, P., Sivaraman, G. K., McClements, D. J., Gullón, B., & Lorenzo, J. M. (2021). Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules, 26(9), 2463. https://doi.org/10.3390/molecules26092463