High-Pressure Processing and Ultrasonication of Minimally Processed Potatoes: Effect on the Colour, Microbial Counts, and Bioactive Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of HHP and US in Colour of Minimally Processed Potatoes
2.2. Effect of HPP and HPP/US on Microbial Shelf-Life
2.3. Effect of HPP and HPP/US on Total Phenolic Content
2.4. Effect of HPP and HPP/US on Antioxidant Activity
2.5. Effect of HPP and HPP/US on Phytochemicals
3. Materials and Methods
3.1. Fresh Potatoes
3.2. Chemicals
3.3. HPP/Ultrasound Treatment
3.4. Colourimetry
3.5. Microbial Shelf-Life Assessment
- Enterobacteriaceae based on ISO 21528:2017 (International Standards Organisation. ISO 21528-2:2017 Microbiology of the food chain—Horizontal method for the detection and enumeration of Enterobacteriaceae—Part 2: Colony-count technique): Sample dilutions were mixed with violet red bile glucose (VRBG) agar at 50 °C and after solidification they were covered with another layer of VRBG. Plates were incubated at 37 °C for 24 h.
- Yeasts and moulds count based on ISO 21527-1 (International Standards Organisation. ISO 21527-1:2008 Microbiology of food and animal feeding stuffs—Horizontal method for the enumeration of yeasts and moulds—Part 1: Colony-count technique in products with water activity greater than 0.95): pour plate method using oxytetracycline glucose yeast extract agar base with oxytetracycline supplement (OGYE). Plates were incubated for five days at 25 °C, with initial counts taken at three and four days.
- Aerobic plate count based on ISO 4833 (International Standards Organisation. ISO 4833-1:2013 Microbiology of the food chain—Horizontal method for the enumeration of microorganisms—Part 1: colony count at 30 °C by the pour plate technique): spread plate method on plate count agar. Plates are incubated for three days at 30 °C.
- Absence of Salmonella based on ISO 6579 (International Standards Organisation. ISO 6579-1:2017 Microbiology of the food chain—Horizontal method for the detection, enumeration and serotyping of salmonella—Part 1: Detection of Salmonella spp.): Samples were pre-enriched overnight in buffered peptone water, before 100 μL of each sample was pipetted onto modified semi-solid Rappaport-Vassiliadis (MSRV) agar plates and incubated at 42 °C for 24 h. If the MSRV plates were negative, they were incubated for a further 24 h. Presumptive Salmonella growth would be streaked onto xylose lysine deoxycholate (XLD) and brilliant green (BG) agar and incubated at 37 °C for 24 h with subsequent serological confirmation.
3.6. Bioactive Compounds Extraction
3.7. Total Phenolic Content
3.8. Determination of Antioxidant Activity (AOA)
3.8.1. Ferric Reducing Antioxidant Power (FRAP)
3.8.2. DPPH Radical Scavenging Capacity
3.9. Liquid Chromatography-Mass Spectrometry Analysis
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability Statement
References
- Severini, C.; Baiano, A.; De Pilli, T.; Romaniello, R.; Derossi, A. Prevention of enzymatic browning in sliced potatoes by blanching in boiling saline solutions. LWT Food Sci. Technol. 2003, 36, 657–665. [Google Scholar] [CrossRef]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and Human Health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef] [PubMed]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic compounds in the potato and its byproducts: An overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef]
- Dourado, C.; Pinto, C.; Barba, F.J.; Lorenzo, J.M.; Delgadillo, I.; Saraiva, J.A. Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends Food Sci. Technol. 2019, 88, 274–289. [Google Scholar] [CrossRef]
- Muntean, M.-V.; Marian, O.; Barbieru, V.; Cătunescu, G.M.; Ranta, O.; Drocas, I.; Terhes, S. High Pressure Processing in Food Industry—Characteristics and Applications. Agric. Agric. Sci. Procedia 2016, 10, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Kaushik, N.; Rao, P.S.; Mishra, H.N. High-pressure inactivation of enzymes: A review on its recent applications on fruit purees and juices. Compr. Rev. Food Sci. Food Saf. 2014, 13, 578–596. [Google Scholar] [CrossRef]
- Awad, T.S.; Moharram, H.A.; Shaltout, O.E.; Asker, D.; Youssef, M.M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 2012, 48, 410–427. [Google Scholar] [CrossRef]
- De Oliveira, M.M.; Tribst, A.A.L.; Leite Júnior, B.R.d.C.; de Oliveira, R.A.; Cristianini, M. Effects of high pressure processing on cocoyam, Peruvian carrot, and sweet potato: Changes in microstructure, physical characteristics, starch, and drying rate. Innov. Food Sci. Emerg. Technol. 2015, 31, 45–53. [Google Scholar] [CrossRef]
- Tribst, A.A.L.; Leite Júnior, B.R.D.C.; De Oliveira, M.M.; Cristianini, M. High pressure processing of cocoyam, Peruvian carrot and sweet potato: Effect on oxidative enzymes and impact in the tuber color. Innov. Food Sci. Emerg. Technol. 2016, 34, 302–309. [Google Scholar] [CrossRef]
- Woolf, A.B.; Wibisono, R.; Farr, J.; Hallett, I.; Richter, L.; Oey, I.; Wohlers, M.; Zhou, J.; Fletcher, G.C.; Requejo-Jackman, C. Effect of high pressure processing on avocado slices. Innov. Food Sci. Emerg. Technol. 2013, 18, 65–73. [Google Scholar] [CrossRef]
- Amaral, R.D.A.; Benedetti, B.C.; Pujola, M.; Achaerandio, I.; Bachelli, M.L.B. Effect of Ultrasound on Quality of Fresh-Cut Potatoes During Refrigerated Storage. Food Eng. Rev. 2015, 7, 176–184. [Google Scholar] [CrossRef]
- Amaral, R.D.A.; Achaerandio, I.; Benedetti, B.C.; Pujolà, M. The influence of edible coatings, blanching and ultrasound treatments on quality attributes and shelf-life of vacuum packaged potato strips. LWT Food Sci. Technol. 2017, 85, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Fan, K.; Zhang, M.; Jiang, F. Ultrasound treatment to modified atmospheric packaged fresh-cut cucumber: Influence on microbial inhibition and storage quality. Ultrason. Sonochem. 2019, 54, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Tsikrika, K.; O’Brien, N.; Rai, D.K. The Effect of High Pressure Processing on Polyphenol Oxidase Activity, Phytochemicals and Proximate Composition of Irish Potato Cultivars. Foods 2019, 8, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsikrika, K.; Rai, D.K. The Effect of High Pressure Processing on Antioxidant Activity of Irish Potato Cultivars. Proceedings 2019, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.-L.; Liu, W.; Zhao, J.; Yuan, C.; Song, Y.; Chen, D.; Ni, Y.-Y.; Li, Q.-H. The effect of high hydrostatic pressure on the microbiological quality and physical–chemical characteristics of Pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2014, 21, 24–34. [Google Scholar] [CrossRef]
- Oey, I.; Lille, M.; Van Loey, A.; Hendrickx, M. Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: A review. Trends Food Sci. Technol. 2008, 19, 320–328. [Google Scholar] [CrossRef]
- Calder, B.L.; Kash, E.A.; Davis-Dentici, K.; Bushway, A.A. Comparison of sodium acid sulfate to citric acid to inhibit browning of fresh-cut potatoes. J. Food Sci. 2011, 76, S164–S169. [Google Scholar] [CrossRef]
- Jabbar, S.; Abid, M.; Wu, T.; Muhammad Hashim, M.; Hu, B.; Lei, S.; Zhu, X.; Zeng, X. Study on combined effects of acidification and sonication on selected quality attributes of carrot juice during storage. Int. J. Food Sci. Nutr. 2014, 65, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Jabbar, S.; Hu, B.; Hashim, M.M.; Wu, T.; Lei, S.; Khan, M.A.; Zeng, X. Thermosonication as a potential quality enhancement technique of apple juice. Ultrason. Sonochem. 2014, 21, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Aadil, R.M.; Zeng, X.A.; Zhang, Z.H.; Wang, M.S.; Han, Z.; Jing, H.; Jabbar, S. Thermosonication: A potential technique that influences the quality of grapefruit juice. Int. J. Food Sci. Technol. 2015, 50, 1275–1282. [Google Scholar] [CrossRef]
- Ferrentino, G.; Spilimbergo, S. High pressure carbon dioxide combined with high power ultrasound pasteurization of fresh cut carrot. J. Supercrit. Fluids 2015, 105, 170–178. [Google Scholar] [CrossRef]
- Rojas, M.L.; Miano, A.C.; Augusto, P.E.D. Ultrasound Processing of Fruit and Vegetable Juices; Elsevier: London, UK, 2017; ISBN 9780128046142. [Google Scholar]
- Wang, Y.; Liu, F.; Cao, X.; Chen, F.; Hu, X.; Liao, X. Comparison of high hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innov. Food Sci. Emerg. Technol. 2012, 16, 326–334. [Google Scholar] [CrossRef]
- Hartmann, C.; Mathmann, K.; Delgado, A. Mechanical stresses in cellular structures under high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2006, 7, 1–12. [Google Scholar] [CrossRef]
- Mada, S.S.; Madhu, B.; Girijal, S. High Pressure Processing of Foods: A Review. Andhra Agric. 2018, 65, 467–476. [Google Scholar]
- Zudaire, L.; Lafarga, T.; Viñas, I.; Abadias, M.; Brunton, N.; Aguiló-Aguayo, I. Effect of Ultrasound Pre-Treatment on the Physical, Microbiological, and Antioxidant Properties of Calçots. Food Bioprocess. Technol. 2019, 12, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Valcarcel, J.; Reilly, K.; Gaffney, M.; O’Brien, N.M. Antioxidant Activity, Total Phenolic and Total Flavonoid Content in Sixty Varieties of Potato (Solanum tuberosum L.) Grown in Ireland. Potato Res. 2015, 58, 221–244. [Google Scholar] [CrossRef]
- Cilla, A.; Bosch, L.; Barberá, R.; Alegría, A. Effect of processing on the bioaccessibility of bioactive compounds—A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. J. Food Compos. Anal. 2018, 68, 3–15. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Li, R.; Bi, X.; Liao, X. Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars. Innov. Food Sci. Emerg. Technol. 2014, 21, 35–43. [Google Scholar] [CrossRef]
- Zheng, X.; Yu, Y.; Xiao, G.; Xu, Y.; Wu, J.; Tang, D.; Zhang, Y. Comparing product stability of probiotic beverages using litchi juice treated by high hydrostatic pressure and heat as substrates. Innov. Food Sci. Emerg. Technol. 2014, 23, 61–67. [Google Scholar] [CrossRef]
- Da Silveira, T.F.F.; Cristianini, M.; Kuhnle, G.G.; Ribeiro, A.B.; Filho, J.T.; Godoy, H.T. Anthocyanins, non-anthocyanin phenolics, tocopherols and antioxidant capacity of açaí juice (Euterpe oleracea) as affected by high pressure processing and thermal pasteurization. Innov. Food Sci. Emerg. Technol. 2019, 55, 88–96. [Google Scholar] [CrossRef]
- Varela-Santos, E.; Ochoa-Martinez, A.; Tabilo-Munizaga, G.; Reyes, J.E.; Pérez-Won, M.; Briones-Labarca, V.; Morales-Castro, J. Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innov. Food Sci. Emerg. Technol. 2012, 13, 13–22. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Zou, M.; Jiang, P.; Hu, W.; Li, J.; Zhi, Z.; Chen, J.; Li, S.; Ding, T.; et al. Effects of Ultrasound on Spoilage Microorganisms, Quality, and Antioxidant Capacity of Postharvest Cherry Tomatoes. J. Food Sci. 2015, 80, C2117–C2126. [Google Scholar] [CrossRef] [PubMed]
- Ferrentino, G.; Komes, D.; Spilimbergo, S. High-Power Ultrasound Assisted High-Pressure Carbon Dioxide Pasteurization of Fresh-Cut Coconut: A Microbial and Physicochemical Study. Food Bioprocess. Technol. 2015, 8, 2368–2382. [Google Scholar] [CrossRef]
- Golmohamadi, A.; Möller, G.; Powers, J.; Nindo, C. Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrason. Sonochem. 2013, 20, 1316–1323. [Google Scholar] [CrossRef]
- Ashokkumar, M.; Sunartio, D.; Kentish, S.; Mawson, R.; Simons, L.; Vilkhu, K.; Versteeg, C. (Kees) Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innov. Food Sci. Emerg. Technol. 2008, 9, 155–160. [Google Scholar] [CrossRef]
- Yeoh, W.K.; Ali, A. Ultrasound treatment on phenolic metabolism and antioxidant capacity of fresh-cut pineapple during cold storage. Food Chem. 2016. [Google Scholar] [CrossRef]
- Yuan, B.; Danao, M.G.C.; Stratton, J.E.; Weier, S.A.; Weller, C.L.; Lu, M. High pressure processing (HPP) of aronia berry purée: Effects on physicochemical properties, microbial counts, bioactive compounds, and antioxidant capacities. Innov. Food Sci. Emerg. Technol. 2018, 47, 249–255. [Google Scholar] [CrossRef]
- Andrés, V.; Villanueva, M.J.; Tenorio, M.D. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chem. 2016, 192, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Briones-Labarca, V.; Venegas-Cubillos, G.; Ortiz-Portilla, S.; Chacana-Ojeda, M.; Maureira, H. Effects of high hydrostatic pressure (HHP) on bioaccessibility, as well as antioxidant activity, mineral and starch contents in Granny Smith apple. Food Chem. 2011, 128, 520–529. [Google Scholar] [CrossRef]
- Di Scala, K.; Vega-Gálvez, A.; Ah-Hen, K.; Nuñez-Mancilla, Y.; Tabilo-Munizaga, G.; Pérez-Won, M.; Giovagnoli, C. Chemical and physical properties of aloe vera (Aloe barbadensis Miller) gel stored after high hydrostatic pressure processing. Cienc. E Tecnol. Aliment. 2013, 33, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Zafra-Rojas, Q.Y.; Cruz-Cansino, N.; Ramírez-Moreno, E.; Delgado-Olivares, L.; Villanueva-Sánchez, J.; Alanís-García, E. Effects of ultrasound treatment in purple cactus pear (Opuntia ficus-indica) juice. Ultrason. Sonochem. 2013, 20, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Santhirasegaram, V.; Razali, Z.; Somasundram, C. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrason. Sonochem. 2013, 20, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Levin, C.E. Analysis and Biological Activities of Potato Glycoalkaloids, Calystegine Alkaloids, Phenolic Compounds, and Anthocyanins. Adv. Potato Chem. Technol. 2009, 127–161. [Google Scholar] [CrossRef]
- Jeż, M.; Wiczkowski, W.; Zielińska, D.; Białobrzewski, I.; Błaszczak, W. The impact of high pressure processing on the phenolic profile, hydrophilic antioxidant and reducing capacity of purée obtained from commercial tomato varieties. Food Chem. 2018, 261, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cheng, C.; Ma, Y.; Jia, M. Degradation behavior of polyphenols in model aqueous extraction system based on mechanical and sonochemical effects induced by ultrasound. Sep. Purif. Technol. 2020, 247, 116967. [Google Scholar] [CrossRef]
- Bushway, R.J.; Bureau, J.L.; McGann, D.F. Alpha-Chaconine and Alpha-Solanine Content of Potato Peels and Potato Peel Products. J. Food Sci. 1983, 48, 84–86. [Google Scholar] [CrossRef]
- Mystkowska, I. Reduction of glycoalkaloids in potato under the influence of biostimulators. Appl. Ecol. Environ. Res. 2019, 17, 3567–3574. [Google Scholar] [CrossRef]
- Abu Bakar Siddique, M.; Brunton, N. Food Glycoalkaloids: Distribution, Structure, Cytotoxicity, Extraction, and Biological Activity. In Alkaloids—Their Importance in Nature and Human Life; IntechOpen: London, UK, 2019. [Google Scholar]
- Rytel, E. Changes in the Levels of Glycoalkaloids and Nitrates After the Dehydration of Cooked Potatoes. Am. J. Potato Res. 2012, 89, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Benzie, I.; Strain, J. The ferric reducing ability of plasma as a measure of antioxodant. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratil, P.; Klejdus, B.; Kubáň, V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables—Evaluation of spectrophotometric methods. J. Agric. Food Chem. 2006, 54, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
- Goupy, P.; Hugues, M.; Boivin, P.; Amiot, M.J. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J. Sci. Food Agric. 1999, 79, 1625–1634. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, A.C. Characterization of phenolic composition in lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef]
- Hossain, M.B.; Tiwari, B.K.; Gangopadhyay, N.; O’Donnell, C.P.; Brunton, N.P.; Rai, D.K. Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason. Sonochem. 2014, 21, 1470–1476. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P. Optimisation and validation of ultra-high performance liquid chromatographic-tandem mass spectrometry method for qualitative and quantitative analysis of potato steroidal alkaloids. J. Chromatogr. B 2015, 997, 110–115. [Google Scholar] [CrossRef]
Sample | Treatment | Colour | Day of Storage | ||||
---|---|---|---|---|---|---|---|
0 | 1 | 7 | 10 | 14 | |||
Maris Piper | untreated | L* | 64.16 ± 2.16 a | 62.24 ± 4.28 a | 59.47 ± 1.96 b | 62.52 ± 3.81 a | 62.41 ± 4.38 a |
HPP | 66.56 ± 2.54 a | 61.00 ± 4.95 a | 53.35 ± 2.05 b | 59.95 ± 2.01 b | 56.15 ± 3.64 b | ||
HPP/US | 61.17 ± 3.47 a | 53.77 ± 5.39 b | 49.72 ± 1.54 b | 49.19 ± 3.02 b | 49.03 ± 4.19 b | ||
untreated | a* | −0.13 ± 0.36 a | 1.01 ± 0.10 b | 2.32 ± 0.67 a b | 2.60 ± 0.84 a b | 3.00 ± 1.05 a b | |
HPP | −0.36 ± 0.66 a | 2.01 ± 1.18 b | 2.20 ± 0.46 b | 3.34 ± 0.51 b | 4.22 ± 0.56 a b | ||
HPP/US | −0.83 ± 0.54 a | 2.25 ± 1.27 b | 3.03 ± 0.18 a b | 2.72 ± 0.26 a b | 2.59 ± 0.17 a b | ||
untreated | b* | 14.49 ± 1.32 a | 13.79 ± 1.51 a | 15.23 ± 0.89 a | 16.05 ± 2.53 a | 15.58 ± 1.57 a | |
HPP | 12.59 ± 2.79 a | 12.20 ± 3.20 a | 10.47 ± 0.24 b | 12.11 ± 1.26 a | 12.86 ± 1.50 a | ||
HPP/US | 12.14 ± 1.65 a | 10.48 ± 0.97 b | 8.09 ± 0.75 c | 7.49 ± 0.99 c | 7.42 ± 0.90 c | ||
untreated | ΔE | 3.14 ± 1.01 a | 5.44 ± 0.60 b | 4.10 ± 0.69 a | 4.39 ± 0.83 a | ||
HPP | 3.38 ± 0.55 a | 6.89 ± 1.95 b | 13.88 ± 1.72 c | 7.11 ± 1.51 b | 10.10 ± 1.48 d | ||
HPP/US | 5.79 ± 0.61 b | 14.09 ± 1.80 c | 22.07 ± 1.16 e | 17.55 ± 3.65 f | 18.96 ± 2.43 f | ||
Rooster | untreated | L* | 63.98 ± 3.11 a | 61.31 ± 3.56 a | 59.91 ± 2.51 a | 60.07 ± 3.09 a | 59.13 ± 3.12 a |
HPP | 61.61 ± 2.25 a | 58.26 ± 2.79 a | 47.89 ± 3.11 b | 45.73 ± 2.49 b | 47.13 ± 2.32 b | ||
HPP/US | 63.17 ± 2.92 a | 61.05 ± 4.74 a | 48.15 ± 3.86 b | 50.87 ± 1.84 b | 48.11 ± 1.06 b | ||
untreated | a* | −0.78 ± 0.47 a | 0.26 ± 0.48 a | 2.44 ± 0.65 b | 2.59 ± 0.65 b | 2.97 ± 0.58 b | |
HPP | −0.40 ± 1.34 a | 3.62 ± 1.59 b | 2.20 ± 0.65 b | 2.20 ±0.61 b | 3.69 ± 1.57 b | ||
HPP/US | −0.86 ± 0.99 a | 1.17 ± 1.04 a | 2.06 ± 0.49 b | 2.60 ± 0.18 b | 3.68 ± 1.12 b | ||
untreated | b* | 23.33 ± 3.07 a | 21.38 ± 3.12 a | 20.13 ± 4.43 a | 19.47 ± 1.26 a | 18.70 ± 3.20 a | |
HPP | 18.19 ± 2.01 a | 17.35 ± 3.24 a | 12.18 ± 1.60 b | 12.47 ± 2.39 b | 11.24 ± 1.71 b | ||
HPP/US | 15.32 ± 1.96 b | 14.48 ± 2.54 b | 8.86 ± 2.39 c | 11.68 ± 0.97 c | 10.94 ± 0.93 c | ||
untreated | ΔE | 3.58 ± 0.97 a | 8.19 ± 1.16 b | 6.95 ± 0.78 b | 8.06 ± 0.84 b | ||
HPP | 5.79 ± 1.56 b | 8.43 ± 1.30 b | 19.98 ± 1.23 c | 18.77 ± 1.32 c | 21.23 ± 1.61 c | ||
HPP/US | 8.07 ± 1.61 b | 9.71 ± 2.36 b | 21.71 ± 1.40 c | 19.17 ± 1.05 c | 18.03 ± 1.57 c |
Ferulic Acid | Chlorogenic Acid | Quinic Acid | Caffeic Acid | α-Chaconine | α-Solanine | |
---|---|---|---|---|---|---|
Maris Piper Untreated | 50.41 ± 4.44 a | 80.60 ± 6.4 b | 24.12 ± 1.5 a | 3.45 ± 0.11 a | 1.52 ± 0.27 a | 1.73 ± 0.62 a |
Maris Piper HPP | 25.18 ± 2.52 b | 28.38 ± 6.7 c | 28.14 ± 1.66 b | 2.70 ± 0.27 b | 0.42 ± 0.09 b | 0.48 ± 0.05 b |
Maris Piper HPP/US | 29.21 ± 1.57 b | 3.31 ± 0.21 e | 35.07 ± 1.55 c | 0.51 ± 0.06 d | 0.05 ± 0.02 c | 0.06 ± 0.005 c |
Rooster Untreated | 56.47 ± 4.35 a | 97.19 ± 1.7 a | 26.51 ± 1.24 a | 4.76 ± 1.08 a | 1.06 ± 0.38 a | 1.10 ± 0.40 a |
Rooster HPP | 50.77 ± 2.93 a | 15.85 ± 0.4 d | 28.76 ± 0.12 b | 1.21 ± 0.63 c | 0.47 ± 0.06 b | 0.37 ± 0.02 b |
Rooster HPP/US | 35.48 ± 1.75 c | 1.78 ± 0.21 f | 33.25 ± 1.02 c | 0.48 ± 0.08 d | 0.06 ± 0.01 c | 0.06 ± 0.01 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsikrika, K.; Walsh, D.; Joseph, A.; Burgess, C.M.; Rai, D.K. High-Pressure Processing and Ultrasonication of Minimally Processed Potatoes: Effect on the Colour, Microbial Counts, and Bioactive Compounds. Molecules 2021, 26, 2614. https://doi.org/10.3390/molecules26092614
Tsikrika K, Walsh D, Joseph A, Burgess CM, Rai DK. High-Pressure Processing and Ultrasonication of Minimally Processed Potatoes: Effect on the Colour, Microbial Counts, and Bioactive Compounds. Molecules. 2021; 26(9):2614. https://doi.org/10.3390/molecules26092614
Chicago/Turabian StyleTsikrika, Konstantina, Des Walsh, Ashik Joseph, Catherine M. Burgess, and Dilip K. Rai. 2021. "High-Pressure Processing and Ultrasonication of Minimally Processed Potatoes: Effect on the Colour, Microbial Counts, and Bioactive Compounds" Molecules 26, no. 9: 2614. https://doi.org/10.3390/molecules26092614
APA StyleTsikrika, K., Walsh, D., Joseph, A., Burgess, C. M., & Rai, D. K. (2021). High-Pressure Processing and Ultrasonication of Minimally Processed Potatoes: Effect on the Colour, Microbial Counts, and Bioactive Compounds. Molecules, 26(9), 2614. https://doi.org/10.3390/molecules26092614