Quantum Dot Sensitized Solar Cell: Photoanodes, Counter Electrodes, and Electrolytes
Abstract
:1. Introduction
2. Quantum Dot Sensitized Solar Cells (QDSSCs) Based on Single Quantum Dots (QDs) Photoanode
2.1. A Review on QDSSCs Based on Single QDs
2.2. The Causes of Low QDSSCs’ PCE and Solutions
- a.
- Low fill factor
- b.
- Impaired electrolyte
- A dynamic balance is existed in the S2−/Sn2− aqueous electrolyte:
- Electron–hole pairs are generated after CdSe QDS are photoexcited by possibly the following equations:
- Reaction at the CdSe/electrolyte interface:
- The S2−/Sn2− strongly obstructs the hole movement from CdSe QDs into the electrolyte [27] as described in Equation (4) and S−* is in an excited ion.
- c.
- Strong recombination processes
- d.
- Shortage of binding agents between QDs and TiO2 membrane
3. QDSSCs Based on Photoanode Binding Agents
4. QDSSCs Based on a Photoanode with a Passive Surfactant
5. QDSSCs Based on a Photoanode with Multilayer QDs
6. QDSSCs Based on a Photoanode with Doped QDs
7. QDSSCs Based on Different Counter Electrodes
8. QDSSCs Based on Different Electrolytes
9. Opportunities and Challenges
- a.
- QDSSCs based on QDs possessing intermediate band (IB)
- b.
- Graphene thin film with QDs for photoanode fabrication
Author Contributions
Funding
Conflicts of Interest
References
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 1–8. [Google Scholar] [CrossRef]
- Richter, A.; Benick, J.; Feldmann, F.; Fell, A.; Hermle, M.; Glunz, S.W. n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater. Sol. Cells 2017, 173, 96–105. [Google Scholar] [CrossRef]
- Wang, T.; Ren, S.; Li, C.; Li, W.; Liu, C.; Zhang, J.; Wu, L.; Li, B. Exploring window buffer layer technology to enhance CdTe solar cell performance Back contact Window layer 40 nm. Sol. Energy 2018, 164, 180–186. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Yoshida, T.; Hama, T.; Sakai, H.; Harashima, K. Production technology for amorphous silicon-based # exible solar cells. Sol. Energy Mater. Sol. Cells 2001, 66, 107–115. [Google Scholar]
- Kato, T.; Handa, A.; Yagioka, T.; Matsuura, T.; Yamamoto, K.; Higashi, S. Enhanced Efficiency of Cd-Free Cu (In, Ga)(Se, S)2 Minimodule Via (Zn, Mg) O Second Buffer Layer and Alkali Metal Post-Treatment. IEEE J. Photovolt. 2017, 7, 1173–1180. [Google Scholar] [CrossRef]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Highperformance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef]
- Stolterfoht, M.; Grischek, M.; Caprioglio, P.; Wolff, C.M.; Gutierrez-Partida, E.; Peña-Camargo, F.; Rothhardt, D.; Zhang, S.; Raoufi, M.; Wolansky, J.; et al. How to Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%. Adv. Mater. 2020, 32, 2000080. [Google Scholar] [CrossRef]
- Nozik, A.J. Quantum Dot Solar Cells. Physica E 2002, 14, 115–120. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W. Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures. Prog. Photovolt. 2009, 17, 320–326. [Google Scholar] [CrossRef]
- Graetzel, M.; Janssen, R.A.J.; Mitzi, D.B.; Sargent, E.H. Materials interface engineering for solution processed photovoltaics. Nature 2012, 488, 304–312. [Google Scholar] [CrossRef]
- Kinoshita, T.; Dy, J.T.; Uchida, S.; Kubo, T.; Segawa, H. Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer. Nat. Photonics 2013, 7, 535–539. [Google Scholar] [CrossRef]
- Kim, J.Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E.H. Colloidal quantum dot materials and devices: A quarter-century of advances. Adv. Mater. 2015, 25, 4986–5010. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhang, Q.; Uchaker, E.; Gao, R.; Qu, X.; Zhang, S.; Cao, G. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Energy Environ. Sci. 2013, 6, 3542. [Google Scholar] [CrossRef]
- Phuc, D.H.; Tung, H.T. Quantum dot sensitized solar cell based on the different photoelectrodes for the enhanced performance. Sol. Energy Mater. Sol. Cells 2019, 196, 78–83. [Google Scholar]
- Tung, H.T.; Phuc, D.H.; Chung, N.T.K.; Thuy, N.T.N. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using Copper and Manganese doped cadmium sulfide quantum dots. Environ. Prog. Sustain. Energy 2021, e13650. [Google Scholar] [CrossRef]
- Thanh, T.H.; Vinh, L.Q.; Dat, H.T. The Dynamic Resistance of CdS/CdSe/ZnS Co-Sensitized TiO2 Solar Cells. Braz. J. Phys. 2014, 44, 746–752. [Google Scholar] [CrossRef]
- Phuc, D.H.; Tung, H.T. The effect of thickness on the performance of CdSe: Cu 2+—quantum dot-sensitized solar cells. Appl. Phys. 2018, 11, 1–9. [Google Scholar]
- Li, T.L.; Lee, Y.L.; Teng, H. High-performance quantum dot-sensitized solar cells based on sensitization withCuInS2 quantum dots/CdS heterostructure. Energy Environ. Sci. 2012, 5, 5315–5324. [Google Scholar] [CrossRef]
- Sugaya, T.; Numakami, O.; Oshima, R.; Furue, S.; Komaki, H.; Amano, T.; Matsubara, K.; Okano, Y.; Niki, S. Type II GaSb quantum ring solar cells under concentrated sunlight. Energy Environ. Sci. 2012, 5, 6233–6237. [Google Scholar] [CrossRef]
- Kamat, P.V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. J. Phys. Chem. C 2008, 112, 18737–18753. [Google Scholar] [CrossRef]
- Kamat, P.V. Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. J. Phys. Chem. Lett. 2013, 4, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Farahani, F.A.; Poro, A.; Rezaee, M.; Sameni, M. Enhancement in power conversion efficiency of CdS quantum dot sensitized solar cells through a decrease in light reflection. Opt. Mater. 2020, 108, 110248. [Google Scholar] [CrossRef]
- Tyagi, J.; Gupta, H.; Purohit, L.P. Cascade Structured ZnO/TiO2/CdS quantum dot sensitized solar cell. Solid State Sci. 2020, 102, 106176. [Google Scholar] [CrossRef]
- Tian, J.J.; Zhang, Q.F.; Zhang, L.L.; Gao, R.; Shen, L.F.; Zhang, S.G.; Qu, X.H.; Cao, G.Z. Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Nanoscale 2013, 5, 936–943. [Google Scholar] [CrossRef]
- Hossain, M.A.; Jennings, J.R.; Koh, Z.Y.; Wang, Q. CdSe-sensitized mesoscopic TiO2 solar cells exhibiting >5% efficiency: Redundancy of CdS buffer layer. ACS Nano 2011, 5, 3172–3181. [Google Scholar] [CrossRef]
- Ganguly, A.; Nath, S.S.; Srivastava, V.M. Enhanced efficiency in swift 100 mev ni ion irradiated zns quantum dot sensitized solar cell. Chalcogenide Lett. 2020, 17, 487–493. [Google Scholar]
- Marandi, M.; Abadi, S.H. Aqueous synthesis of colloidal CdSexTe1−x–CdS core–shell nanocrystals and effect of shell formation parameters on the efficiency of corresponding quantum dot sensitized solar cells. Sol. Energy 2020, 209, 387–399. [Google Scholar] [CrossRef]
- Deng, J.; Li, L.; Gou, Y.; Fang, J.; Feng, R.; Lei, Y.; Song, X.; Yang, Z. CdS-derived CdS1−xSex nanocrystals within TiO2 films for quantum dot-sensitized solar cells prepared through hydrothermal anion exchange reaction. Electrochim. Acta 2020, 356, 136845. [Google Scholar] [CrossRef]
- Robel, I.; Kuno, M.; Kamat, P.V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137. [Google Scholar] [CrossRef]
- Yu, W.W.; Peng, X.G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. Int. Ed. 2002, 41, 2368–2371. [Google Scholar]
- Vogel, R.; Pohl, K.; Weller, H. Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS. Chem. Phys. Lett. 1990, 174, 241–246. [Google Scholar] [CrossRef]
- Lee, H.-J.; Kim, D.-Y.; Yoo, J.-S.; Bang, J.; Kim, S.; Park, S.-M. Anchoring cadmium chalcogenide quantum dots (QD) onto stable oxide semiconductor for QD sensitized solar cells. Bull. Kor. Chem. Soc. 2008, 28, 953–958. [Google Scholar]
- Lee, H.-J.; Yum, J.-H.; Leventis, H.C.; Zakeeruddin, S.M.; Haque, S.A.; Chen, P.; Seok, S.I.; Gratzel, M.; Nazeeruddin, M.-K. CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full sun intensity. J. Phys. Chem. C 2008, 112, 11600–11608. [Google Scholar] [CrossRef]
- Lee, W.J.; Kang, S.H.; Min, S.-K.; Sung, Y.-E.; Han, S.-H. Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum. Electrochem. Commun. 2008, 10, 1579–1582. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, K.; Coates, N.E.; Moses, D.; Nguyen, T.Q.; Dante, M.; Heeger, A.J. Efficient tandem polymer solar cells fabricated by all solution processing. Science 2007, 317, 222–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, P.R.; Zhu, K.; Norman, A.G.; Ferrere, S.; Frank, A.J.; Nozik, A.J. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B 2006, 50, 25451–25454. [Google Scholar]
- Giménez, S.; Iván, M.-S.; Lorena, M.; Nestor, G.; Teresa, L.-V.; Roberto, G.; Diguna, L.J.; Shen, Q.; Toyoda, T.; Bisquert, J. Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 2009, 29, 295204. [Google Scholar] [CrossRef]
- Diguna, L.J.; Shen, Q.; Kobayashi, J.; Toyoda, T. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 2007, 91, 023116. [Google Scholar]
- Tachibana, Y.; Umekita, K.; Otsuka, Y.; Kuwabata, S. Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer. J. Phys. D Appl. Phys. 2008, 41, 102002. [Google Scholar] [CrossRef]
- Cheng, S.; Fu, W.; Yang, H.; Zhang, L.; Ma, J.; Zhao, H.; Sun, M.; Yang, L. Photoelectrochemical performance ofmultiple semiconductors (CdS/CdSe/ZnS) cosensitized TiO2 photoelectrodes. J. Phys. Chem. C 2012, 116, 2615–2621. [Google Scholar] [CrossRef]
- Chen, L.C.; Ho, Y.C.; Yang, R.Y.; Chen, J.H.; Huang, C.M. Electrode posited AgInSe2 onto TiO2 films for semiconductor- sensitized solar cell application: The influence of electrode posited time. J. Appl. Surf. Sci. 2012, 58, 6558–6563. [Google Scholar] [CrossRef]
- Huazheng, L.; Lu, W.; Song, B.; Zhou, J.; Zhao, G.; Han, G. The design of Mn2+ & Co2+ co-doped CdTe quantum dot sensitized solar cells with much higher efficiency. RSC Adv. 2020, 10, 35701–35708. [Google Scholar]
- Dongho, L.; Choi, W.; Yang, J. Investigation of the Trap-Induced Power Conversion Limit for CdS/CdSe Cascade Quantum Dot Sensitized Solar Cells Fabricated by Using the Successive Ionic Layer Adsorption and Reaction Process. J. Korean Phys. Soc. 2020, 76, 1133–1143. [Google Scholar]
- Mahmoud, S.; Dehghani, M.; Parand, P.; Najafi, M.N.; Parvazian, E. Photovoltaic performance and electrochemical impedance spectroscopy analysis of CdS/CdSe-sensitized solar cell based on surfactant-modified ZnS treatment. Appl. Phys. A 2020, 126, 1–8. [Google Scholar]
- Huashang, R.; Zhou, M.; Pan, Z.; Zhong, X. Quantum dot materials engineering boosting the quantum dot sensitized solar cell efficiency over 13%. J. Mater. Chem. A 2020, 8, 10233–10241. [Google Scholar]
- Yunlong, D.; Lu, S.; Xu, Z.; Zhang, J.; Ma, F.; Peng, S. Enhanced performance of CdS/CdSe quantum dot-sensitized solar cells by long-persistence phosphors structural layer. Sci. China Mater. 2020, 63, 516–523. [Google Scholar]
- Nideep, T.K.; Ramya, M.; Kailasnath, M. An investigation on the photovoltaic performance of quantum dot solar cells sensitized by CdTe, CdSe and CdS having comparable size. Superlattices Microstruct. 2020, 141, 106477. [Google Scholar] [CrossRef]
- Elibol, E. Quantum dot sensitized solar cell design with surface passivized CdSeTe QDs. Sol. Energy 2020, 206, 741–750. [Google Scholar] [CrossRef]
- Chakrapani, V.; Baker, D.; Kamat, P.V. Understanding the Role of the Sulfide Redox Couple (S2−/Sn2−) in Quantum Dot-Sensitized Solar Cells. J. Am. Chem. Soc. 2011, 133, 9607–9615. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Nath, S.S. Mn-doped CdS quantum dots as sensitizers in solar cells. Mater. Sci. Eng. B 2020, 255, 114532. [Google Scholar] [CrossRef]
- Vadim, F.L. Impedance Spectroscopy Applications to Electrochemical and Dielectric Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Archana, T.; Vijayakumar, K.; Subashini, G.; Grace, A.N.; Arivanandhan, M.; Jayavel, R. Facile synthesis of CdS Quantum dots for QDSSC with high photo current density. Mater. Res. Express 2020, 7, 015528. [Google Scholar] [CrossRef]
- Beaulac, R.; Archer, P.I.; Ochsenbein, S.T.; Gamelin, D.R. Mn2+-Doped CdSe Quantum Dots: New Inorganic Materials for Spin-Electronics and Spin-Photonics. Adv. Funct. Mater. 2008, 18, 3873–3891. [Google Scholar] [CrossRef]
- Karan, N.S.; Sarma, D.D.; Kadam, R.M.; Pradhan, N. Doping transition metal (Mn or Cu) ions in semiconductor nanocrystals. J. Phys. Chem. Lett. 2010, 1, 2863–2866. [Google Scholar] [CrossRef]
- Victoria, G.P.; Sima, C.; Marzari, G.; Boix, P.P.; Giménez, S.; Shen, Q.; Dittrich, T.; Mora-Seró, I. High performance PbS Quantum Dot Sensitized Solar Cells exceeding 4% efficiency: The role of metal precursors in the electron injection and charge separation. Phys. Chem. Chem. Phys. 2013, 15, 13835–13843. [Google Scholar]
- Santra, P.K.; Kamat, P.V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 2508–2511. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Pan, L.; Xu, T.; Sun, Z. CdS/CdSe-Cosensitized TiO2 Photoanode for Quantum-Dot-Sensitized Solar Cells by a Microwave-Assisted Chemical Bath Deposition Method. ACS Appl. Mater. Interfaces 2011, 3, 3146–3151. [Google Scholar] [CrossRef]
- Lee, Y.H.; Im, S.H.; Chang, J.A.; Lee, J.H.; Seok, S.I. CdSe-sensitized inorganic-organic heterojunction solar cells: The effect of molecular dipole interface modification and surface passivation. Org. Electron. 2012, 13, 975–979. [Google Scholar] [CrossRef]
- Maryam, O.; Dehghani, H. Improving the photovoltaic performance of CdSe0.2S0.8 alloyed quantum dot sensitized solar cells using CdMnSe outer quantum dot. Sol. Energy 2020, 199, 901–910. [Google Scholar]
- Pan, Z.; Zhao, K.; Wang, J.; Zhang, H.; Feng, Y.; Zhong, X. Near infrared absorption of CdSexTe1-x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS Nano 2013, 7, 5215–5222. [Google Scholar] [CrossRef]
- Radich, J.G.; Peeples, N.R.; Santra, P.K.; Kamat, P.V. Charge transfer mediation through CuxS. The hole story of CdSe in polysulfide. J. Phys. Chem. C 2014, 118, 16463–16471. [Google Scholar] [CrossRef]
- Wang, J.S.; Shen, Q.; Mora-Sero, I.; Wang, J.; Pan, Z.X.; Zhao, K.; Kuga, Y.; Zhong, X.H.; Bisquert, J. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS Nano 2015, 9, 908–915. [Google Scholar]
- Liu, D.; Kamat, P.V. Photoelectrochemical behaviour of thin CdSe and coupled TiO2/CdSe semiconductor films. J. Phys. Chem. 1993, 97, 10769–10773. [Google Scholar] [CrossRef]
- Fang, J.; Wu, J.; Lu, X.; Shen, Y.; Lu, Z. Sensitization of nanocrystalline TiO2 electrode with quantum sized CdSe and ZnTcPc molecules. Chem. Phys. Lett. 1997, 270, 145–151. [Google Scholar]
- Peter, L.M.; Riley, D.J.; Tull, E.Z.; Wijayantha, K.G.U. Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Chem. Commun. 2002, 10, 1030–1031. [Google Scholar] [CrossRef]
- Lee, W.; Kwak, W.-C.; Min, S.K.; Lee, J.-C.; Chae, W.-S.; Sung, Y.-M.; Han, S.-H. Spectral broadening in quantum dots-sensitized photoelectrochemical solar cells based on CdSe and Mg-doped CdSe nanocrystals. Electrochem. Commun. 2008, 10, 1699–1702. [Google Scholar]
- Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P.V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 2008, 130, 4007–4015. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Luke, T.; Wolcott, A.; Xu, L.-P.; Chen, S.; Wen, Z.; Li, J.; Rosa, E.D.L.; Zhang, J.Z. Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystalline TiO2 films for solar energy conversion applications. J. Phys. Chem. C 2008, 112, 1282–1292. [Google Scholar] [CrossRef] [Green Version]
- Mora-Sero, I.; Gimenez, S.; Moehl, T.; Fabregat-Santiago, F.; Lana-Villareal, T.; Gomez, R.; Bisquert, J. Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: The role of the linker molecule and of the counter electrode. Nanotechnology 2008, 19, 424007. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.-J.; Lee, Y.-L. Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell application. Nanotechnology 2008, 19, 045602. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, D.W.; Song, J.L.; Sun, X.W.; Deng, W.Q.; Liu, X.W.; Lei, W. Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells. Electrochem. Commun. 2009, 11, 2265–2267. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Lei, B.-X.; Kuang, D.-B.; Su, C.-Y. High performance and reduced charge recombination of CdSe/CdS quantum dot-sensitized solar cells. J. Mater. Chem. 2012, 22, 12058–12063. [Google Scholar] [CrossRef]
- Jung, S.W.; Park, J.-H.; Lee, W.; Kim, J.-H.; Kim, H.; Choi, C.-J.; Ahn., K.-S. Enhanced electron lifetime in CdS quantum dot-sensitized solar cells with nanoporous-layer-covered TiO2 nanotube arrays. J. Appl. Phys. 2011, 110, 054301. [Google Scholar] [CrossRef]
- Jiao, J.; Zhou, Z.; Zhou, W.; Wu, S. CdS and PbS quantum dots co sensitized TiO2 nanorod arrays with improved performance for solar cells. Appl. Mater. Sci. Semicond Process 2013, 16, 435–440. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Q.; Huang, X.; Li, D.; Luo, Y.; Meng, Q. Aqueous colloidal CuInS2 for quantum dot sensitized solar cells. J. Mater. Chem. 2011, 21, 15903. [Google Scholar] [CrossRef]
- Veerathangam, K.; Pandian, M.S.; Ramasamy, P. Photovoltaic performance of Pb-doped CdS quantum dots for solar cell application. Mater. Lett. 2018, 220, 74–77. [Google Scholar] [CrossRef]
- Nikolaos, B.; Vassilios, D.; Kyriakos, B.; Panagiotis, L. Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim. Acta 2013, 91, 246–252. [Google Scholar]
- Hodes, G.; Manassen, J.; Cahen, D. Electrocatalytic electrodes for the polysulfide redox system. J. Electrochem. Soc. 1980, 127, 544. [Google Scholar] [CrossRef]
- Mora-Seró, I.; Bisquert, J. Breakthroughs in the development of semiconductor-sensitized solar cells. J. Phys. Chem. Lett. 2010, 1, 3046–3052. [Google Scholar] [CrossRef]
- Senthamilselvi, V.; Saravanakumar, K.; Begum, N.J.; Anandhi, R.; Ravichandran, A.T.; Sakthivel, B. Photovoltaic properties of nanocrystalline CdS films deposited by SILAR and CBD techniques—A comparative study. J. Mater. Sci. Mater. Electron. 2012, 23, 302–308. [Google Scholar] [CrossRef]
- Vasiliev, R.B.; Dorofeev, S.G.; Dirin, D.N.; Belov, D.A.; Kuznetsova, T.A. Synthesis and optical properties of PbSe and CdSe colloidal quantum dots capped with oleic acid. Mendeleev Commun. 2004, 14, 169–171. [Google Scholar] [CrossRef]
- Chen, M.X.; Bai, Y.Q.; Guan, X.N.; Chen, J.W.; Zeng, J.H. Phosphating passivation layer for quantum dot sensitized solar cells. Thin Solid Films. 2021, 138678. [Google Scholar] [CrossRef]
- Guijarro, N.; Lana-Villarreal, T.; Mora-Sero, I.; Bisquert, J.; Gόmez, R. CdSe quantum dot-sensitized TiO2 electrodes: Effect of quantum dot coverage and mode of attachment. J. Phys. Chem. C 2009, 113, 4208–4214. [Google Scholar] [CrossRef]
- István, R.; Subramanian, V.; Kuno, M.; Kamat, P.V. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385–2393. [Google Scholar]
- Yang, S.M.; Huang, C.H.; Zhai, J.; Wang, Z.S.; Jiang, L. High photostability and quantum yield of nanoporous TiO2 thin film electrodes Co-sensitized with capped sulfides. J. Mater. Chem. 2002, 12, 1459–1464. [Google Scholar] [CrossRef]
- Vaishanav, S.K.; Jyoti, K.; Nagwanshi, R.; Karbhal, I.; Dewangan, L.; Ghosh, K.K.; Satnami, M.L. Interaction of Folic Acid with Mn2+ Doped CdTe/ZnS Quantum Dots: In Situ Detection of Folic Acid. J. Fluoresc. 2021, 1–10. [Google Scholar] [CrossRef]
- Shen, Q.; Kobayashi, J.; Diguna, L.J.; Toyoda, T. Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 2008, 103, 084304. [Google Scholar] [CrossRef]
- Tachan, Z.; Hod, I.; Shalom, M.; Grinis, L.; Zaban, A. The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 3841–3845. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Miyauchi, M.; Uemura, Y.; Cui, Y.; Hara, K.; Zhao, Z.; Sunahara, K.; Furube, A. Enhancing the performance of quantum dots sensitized solar cell by SiO2 surface coating. Appl. Phys. Lett. 2010, 96, 233107. [Google Scholar] [CrossRef]
- Brennan, T.P.; Trejo, O.; Roelofs, K.E.; Xu, J.; Prinz, F.B.; Bent, S.F. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer. J. Mater. Chem. A 2013, 1, 7566–7571. [Google Scholar] [CrossRef]
- Grätzel, M. Mesoscopic Solar Cells for Electricity and Hydrogen Production from Sunlight. Chem. Lett. 2005, 34, 8–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, X.; Huang, X.; Huang, S.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 2011, 13, 4659–4667. [Google Scholar] [CrossRef]
- Zhao, K.; Pan, Z.; Mora-Seró, I.; Cánovas, E.; Wang, H.; Song, Y.; Gong, X.; Wang, J.; Bonn, M.; Bisquert, J.; et al. Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Control. J. Am. Chem. Soc. 2015, 137, 5602–5609. [Google Scholar] [CrossRef]
- Simi, N.J.; Bernadsha, S.B.; Thomas, A.; Ison, V.V. Quantum Dot Sensitized Solar Cells using Type-II CdSe-Cu2Se Core-Shell QDs. Results Opt. 2021, 100088. [Google Scholar] [CrossRef]
- Jiao, S.; Wang, J.; Shen, Q.; Li, Y.; Zhong, X. Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%. J. Mater. Chem. A 2016, 4, 7214–7221. [Google Scholar] [CrossRef]
- Wang, J.; Mora-Seró, I.; Pan, Z.; Zhao, K.; Zhang, H.; Feng, Y.; Yang, G.; Zhong, X.; Bisquert, J. Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells. J. Am. Chem. Soc. 2013, 135, 15913–15922. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, B.D.; Lin, C.; Shawon, S.M.Z.; Soliz-Martinez, A.J.; Huq, H.; Uddin, M.J. A photoanode with hierarchical nanoforest TiO2 structure and silver plasmonic nanoparticles for flexible dye sensitized solar cell. Sci. Rep. 2011, 11, 1–11. [Google Scholar]
- Thanh, T.H.; Quang, V.L.; Thanh, D.H. Determination of the dynamic resistance of the quantum dots solar cells by one I–V curve and electrochemical impedance spectra. Sol. Energy Mater. Sol. Cells 2015, 143, 269–274. [Google Scholar] [CrossRef]
- Thu, T.N.; Phuong, H.N.; Tung, H.T.; Phat, N.T.; Dat, H.T.; Vinh, L.Q. The enhanced current density of the quantum dots solar cells based on CdSe: Mn2+ crystalline. Opt. Mater. 2018, 84, 199–204. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Ha, T.T.; Nguyen, T.T.; Ho, N.P.; Huynh, T.D.; Lam, Q.V. Effect of Cu2+ ions doped on the photovoltaic features of CdSe quantum dot sensitized solar cells. Electrochim. Acta 2018, 282, 16–23. [Google Scholar] [CrossRef]
- Tung, H.T.; Thao, N.T.; Vinh, L.Q. The Reduced Recombination and the Enhanced Lifetime of Excited Electron in QDSSCs Based on Different ZnS and SiO2 Passivation. Int. J. Photoenergy 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.W.; Wang, Z.Q.; Wang, R.Q.; Pan, Z.X.; Gong, X.Q.; Zhong, X.H. Effects of metal oxyhydroxide coatings on photoanode in quantum dot sensitized solar cells. Chem. Mater. 2016, 28, 2323–2330. [Google Scholar] [CrossRef]
- Ning, Z.; Tian, H.; Yuan, C.; Fu, Y.; Qin, H.; Sun, L.; Ågren, H. Solar cells sensitized with type-II ZnSe-CdS core/shell colloidal quantum dots. Chem. Commun. 2011, 47, 1536–1538. [Google Scholar] [CrossRef]
- Roelofs, K.E.; Brennan, T.P.; Dominguez, J.C.; Bailie, C.D.; Margulis, G.Y.; Hoke, E.T.; McGehee, M.D.; Bent, S.F. Effect of Al2O3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells. J. Phys. Chem. C 2013, 117, 5584–5592. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, J.; Pan, Z.; Zhao, K.; Zhang, H.; Li, Y.; Zhao, Y.; Mora-Sero, I.; Bisquert, J.; Zhong, X. Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%. Chem. Mater. 2015, 27, 8398–8405. [Google Scholar] [CrossRef]
- Chuang, C.-H.M.; Brown, P.R.; Bulović, V.; Bawendi, M.G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 2016, 1, 16035. [Google Scholar] [CrossRef]
- Azmi, R.; Oh, S.-H.; Jang, S.-Y. High-Efficiency Colloidal Quantum Dot Photovoltaic Devices Using Chemically Modified Heterojunctions. ACS Energy Lett. 2016, 1, 100–106. [Google Scholar] [CrossRef]
- Kim, G.-H.; De Arquer, F.P.G.; Yoon, Y.J.; Lan, X.; Liu, M.; Voznyy, O.; Jagadamma, L.K.; Abbas, A.S.; Yang, Z.; Fan, F.; et al. Correction to High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Nano Lett. 2015, 16, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Franceschetti, A.; Lusk, M.T. Size Dependence of the Multiple Exciton Generation Rate in CdSe Quantum Dots. ACS Nano 2011, 5, 2503–2511. [Google Scholar] [CrossRef] [Green Version]
- Thanh, T.H.; Lam, Q.V.; Nguyen, T.H.; Huynh, T.D. Performance of CdS/CdSe/ZnS quantum dot-sensitized TiO2 mesopores for solar cells. Chin. Opt. Lett. 2013, 11, 72501–72504. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Liu, P.; Min, X. Bio-templated CdSe quantum dots green synthesis in the functional protein, lysozyme, and biological activity investigation. Mater. Chem. Phys. 2012, 137, 580–585. [Google Scholar] [CrossRef]
- Cordova, R.; Gómez, H.; Schrebler, R.; Cury, P.; Orellana, M.; Grez, P.; Leinen, D.; Ramos-Barrado, J.R.; Del Río, R. Electrosynthesis and Electrochemical Characterization of a Thin Phase of CuxS (x→2) on ITO Electrode. Langmuir 2002, 18, 8647–8654. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C: Photochem. Rev. 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Tung, H.T.; Van Thuan, D.; Kiat, J.H.; Phuc, D.H. Ag+ ion doped on the CdSe quantum dots for quantum-dot-sensitized solar cells’ application. Appl. Phys. A 2019, 125, 505. [Google Scholar] [CrossRef]
- Lee, J.W.; Son, D.Y.; Ahn, T.K.; Shin, H.W.; Kim, I.Y.; Hwang, S.J.; Ko, M.J.; Sul, S.; Han, H.; Park, N.G. Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci. Rep. 2013, 3, 1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, S.-Q.; Cao, R.-J.; Xi, Y.-X.; Gao, M.; Wang, M.-D.; Kima, D.-H. CdSe quantum dots as cosensitizers of organic dyes in solar cells for red-shifted light harvesting. Optoelectron. Adv. Mater. Rapid. Commun. 2009, 10, 1027–1033. [Google Scholar]
- Lee, Y.-L.; Huang, B.-M.; Chien, H.-T. Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 2008, 20, 6903–6905. [Google Scholar] [CrossRef]
- Dezhkam, M.; Zakery, A.; Keshavarz, A. Intersubband, interband transitions, and optical properties of two vertically coupled hemispherical quantum dots with wetting layers. Chin. Opt. Lett. 2016, 14, 121904. [Google Scholar] [CrossRef]
- Jung, S.W.; Kim, J.H.; Kim, H.; Choi, C.J.; Ahn, K.S. ZnS over layer on in situ chemical bath deposited CdS quantum dot assembled TiO2 films for quantum dot-sensitized solar cells. J. Curr. Appl. Phys. 2012, 12, 1459–1464. [Google Scholar] [CrossRef]
- Zewdu, T.; Clifford, J.N.; Hernández, J.P.; Palomares, E. Photo-induced charge transfer dynamics in efficient TiO2/CdS/CdSe sensitized solar cells. Energy Environ. Sci. 2011, 4, 4633. [Google Scholar] [CrossRef]
- Ha, T.T.; Chi, C.H.; Vy, N.T.; Thoa, N.T.P.; Huynh, T.D.; Lam, Q.V. Improving the performance of QDSSCs based on TiO2/CdS (Silar)/CdSe(Colloid)/Zns(Silar) photoanodes. Environ. Prog. Sustain. Energy 2015, 34, 1774–1779. [Google Scholar] [CrossRef]
- Hodes, G.; Manassen, J.; Cahen, D. Photo-electrochemical energy conversion: Electrocatalytic sulphur electrodes. J. Appl. Electrochem. 1977, 7, 181–182. [Google Scholar] [CrossRef]
- Basit, M.A.; Abbas, M.A.; Naeem, H.M.; Ali, I.; Jang, E.; Bang, J.H.; Park, T.J. Ultrathin TiO2-coated SiO2 nanoparticles as light scattering centers for quantum dot-sensitized solar cells. Mater. Res. Bull. 2020, 127, 110858. [Google Scholar] [CrossRef]
- Yu, Z.R.; Du, J.H.; Guo, S.H.; Zhang, H.Y.; Matsumoto, Y. CoS thin films prepared with modified chemical bath deposition. Thin Solid Films 2002, 415, 173–176. [Google Scholar] [CrossRef]
- Que, M.; Guo, W.; Zhang, X.; Li, X.; Hua, Q.; Dong, L.; Pan, C. Flexible quantum dot-sensitized solar cells employing CoS nanorod arrays/graphite paper as effective counter electrodes. J. Mater. Chem. A 2014, 2, 13661. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Teng, C.Y.; Li, T.L.; Lee, Y.L.; Teng, H. Photoactive p-type PbS as a counter electrode for quantum dot-sensitized solar cells. J. Mater. Chem. A 2013, 1, 1155–1162. [Google Scholar] [CrossRef]
- Thanh, H.T.; Thanh, D.H.; Lam, V.Q. The CdS/CdSe/ZnS Photoanode Co-sensitized Solar Cells Based on Pt, CuS, Cu2S, and PbS Counter Electrodes. Adv. Optoelectron. 2014, 2014, 397681. [Google Scholar] [CrossRef]
- Wu, Z.-S.; Feng, X.L.; Müllen, K. Graphene-metal oxide hybrids for lithium ion batteries and electrochemical capacitors. In Nanocarbon-Inorganic Hybrids; De Gruyter: Berlin, Germany, 2014; pp. 319–340. [Google Scholar]
- Zhang, W.D.; Dong, F.; Xiong, T.; Zhang, Q. Synthesis of BiOBr–graphene and BiOBr–graphene oxide nanocomposites with enhanced visible light photocatalytic performance. Ceram. Int. 2014, 40, 9003–9008. [Google Scholar] [CrossRef]
- Cai, D.Y.; Jin, J.; Yusoh, K.; Rafiq, R.; Song, M. High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos. Sci. Technol. 2012, 72, 702–707. [Google Scholar] [CrossRef]
- Tachan, Z.; Shalom, M.; Hod, I.; Ruhle, S.; Tirosh, S.; Zaban, A. PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. J. Phys. Chem. C 2011, 115, 6162–6166. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C. Plasmonic Cu2−xS Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. J. Am. Chem. Soc. 2009, 131, 4253–4261. [Google Scholar] [CrossRef]
- Lee, H.; Yoon, S.W.; Kim, E.J.; Park, J. In situ growth of coppersulfide nanocrystals on multi walled carbon Nano tubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett. 2007, 7, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.L.; Lo, Y.S. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 2009, 19, 604–609. [Google Scholar] [CrossRef]
- Huang, P.; Xu, S.J.; Zhang, M.; Zhong, W.; Xiao, Z.X.; Luo, Y.P. Modulation doping of absorbent cotton derived carbon dots for quantum dot-sensitized solar cells. Phys. Chem. Chem. Phys. 2019, 21, 26133–26145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, C.; Peng, W.X.; Yang, C.; Zhong, X.H. Quantum dot sensitized solar cells with efficiency up to 8.7% based on heavily copper-deficient copper selenide counter electrode. Nano Energy 2016, 23, 60–69. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, B.B.; Liu, J.; Li, Z.H.; Sun, J.K.; Zhong, X.H.; Hu, J.-S.; Song, W.G.; Wan, L.-J. Boosting the open circuit voltage and fill factor of QDSSCs using hierarchically assembled ITO@ Cu2S nanowire array counter electrodes. Nano Lett. 2015, 15, 3088–3095. [Google Scholar] [CrossRef] [PubMed]
- Faber, M.S.; Park, K.; Cabán-Acevedo, M.; Santra, P.K.; Jin, S. Earth-abundant cobalt pyrite (CoS2) thin film on glass as a robust, high-performance counter electrode for quantum dot-sensitized solar cells. J. Phys. Chem. Lett. 2013, 4, 1843–1849. [Google Scholar] [CrossRef] [PubMed]
- Radich, J.G.; Dwyer, R.; Kamat, P.V. Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2–/Sn2–at the counter electrode. J. Phys. Chem. Lett. 2011, 2, 2453–2460. [Google Scholar] [CrossRef]
- Han, Q.; Zheng, H.; Wu, M. Designing Metal-Sulfide-Sphere Counter-Electrode Catalysts for ZnO-Nanorod-Array-Based Quantum-Dot-Sensitized Solar Cells. Eur. J. Inorg. Chem. 2017, 32, 3787–3793. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, L.; Sun, H.; Huang, X.; Luo, Y.; Li, D.; Meng, Q. Composite counter electrode based on nanoparticulate PbS and carbon black: Towards quantum dot-sensitized solar cells with both high efficiency and stability. ACS Appl. Mater. Interfaces 2012, 4, 6162–6168. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, H.; Tang, Q.; He, B.; Yu, L. Recent advances in critical materials for quantum dot-sensitized solar cells: A review. J. Mater. Chem. A 2015, 3, 17497–17510. [Google Scholar] [CrossRef]
- Shen, Q.; Ayuzawa, Y.; Katayama, K.; Sawada, T.; Toyoda, T. Separation of ultrafast photoexcited electron and hole dynamics in CdSe quantum dots adsorbed onto nanostructured TiO2 films. Appl. Phys. Lett. 2010, 97, 263113. [Google Scholar] [CrossRef]
- Herzog, C.; Belaidi, A.; Ogacho, A.; Dittrich, T. Inorganic solid state solar cell with ultra-thin nanocomposite absorber based on nanoporous TiO2 and In2S3. Energy Environ. Sci. 2009, 2, 962–964. [Google Scholar] [CrossRef]
- Kim, H.; Hwang, I.; Yong, K. Highly durable and efficient quantum dot-sensitized solar cells based on oligomer gel electrolytes. ACS Appl. Mater. Interfaces 2014, 6, 11245. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Meng, X.; Zhao, K.; Li, Y.; Zhong, X. Performance enhancement of quantum dot sensitized solar cells by adding electrolyte additives. J. Mater. Chem. A 2015, 3, 17091–17097. [Google Scholar] [CrossRef]
- Chou, C.Y.; Lee, C.P.; Vittal, R.; Ho, K.C. Efficient quantum dot-sensitized solar cell with polystyrene-modified TiO2 photoanode and with guanidine thiocyanate in its polysulfide electrolyte. J. Power Sources 2011, 196, 6595–6602. [Google Scholar] [CrossRef]
- Jenks, S.; Gilmore, R. Quantum dot solar cell: Materials that produce two intermediate bands. J. Renew. Sustain. Energy 2010, 2, 13111. [Google Scholar] [CrossRef]
- Wu, Z.-S.; Zhou, G.; Yin, L.-C.; Ren, W.; Li, F.; Cheng, H.-M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131. [Google Scholar] [CrossRef]
- Zhang, X.; Chang, X.; Gondal, M.A.; Zhang, B.; Liu, Y.; Ji, G. Synthesis and photocatalytic activity of graphene/BiOBr composites under visible light. Appl. Surf. Sci. 2012, 258, 7826–7832. [Google Scholar] [CrossRef]
- Yadav, S.K.; Cho, J.W. Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl. Surf. Sci. 2013, 266, 360–367. [Google Scholar] [CrossRef]
- Dutta, M.; Sarkar, S.; Ghosh, T.; Basak, D. ZnO/Graphene Quantum Dot Solid-State Solar Cell. J. Phys. Chem. C 2012, 116, 20127–20131. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, H.; Pan, D.; Wang, L.; Zhong, X. Graphene quantum dots assisted photovoltage and efficiency enhancement in CdSe quantum dot sensitized solar cells. J. Energy Chem. 2015, 24, 722–728. [Google Scholar] [CrossRef]
- Chen, Z.; Berciaud, S.; Nuckolls, C.; Heinz, T.F.; Brus, L.E. Energy Transfer from Individual Semiconductor Nanocrystals to Graphene. ACS Nano 2010, 4, 2964–2968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaniyankandy, S.; Rawalekar, S.; Ghosh, H.N. Ultrafast Charge Transfer Dynamics in Photoexcited CdTe Quantum Dot Decorated on Graphene. J. Phys. Chem. C 2012, 116, 16271–16275. [Google Scholar] [CrossRef]
Metal Oxide Layer | QDs | Counter Electrode | Electrolyte | Synthesis Method | FF (%) | PCE (%) | Ref |
---|---|---|---|---|---|---|---|
TiO2 | CdS | Pt | KCl+Na2S | SILAR | - | - | [61] |
TiO2 | CdSe | Pt | [Fe(CN)6]3−/4− | CBD | - | - | [62] |
TiO2 | CdSe | Pt | Na2S+Na2SO4 | CBD | - | - | [63] |
TiO2 | CdS | Pt | Na2SO3 | CBD | - | - | [64] |
TiO2 | CdSe | Pt | Polysulfide | CBD | 59 | 1.03 | [65] |
TiO2 | CdSe | Pt | Na2S | CBD | 40 | 0.7 | [66] |
TiO2 | CdSe | Pt | Na2S | CBD | 27.7 | 0.84 | [67] |
TiO2 | CdSe | Pt | Na2S+S+NaOH | CBD | 43 | 0.4 | [68] |
TiO2 | CdS | Pt | LiI+I2+DMPII+TPB | CBD | 70 | 0.3 | [69] |
TiO2 | CdSe | Pt | LiI+I2+HMII+TPB | CBD, Linker | 56.3 | 1.19 | [70] |
TiO2 | CdS/CdSe | Pt | Na2S+S | CBD | 41.5 | 1.42 | [71] |
TiO2 | CdS | Pt | KCl+Na2S | SILAR | - | - | [72] |
TiO2 | CdS/CdSe | Pt | Na2S+S+KCl | SILAR | 36 | 1.14 | [73] |
TiO2 | CdS/ZnSe | Pt | Thiourea | CBD, Linker | 58 | 0.86 | [74] |
TiO2 | CdS/CdSe | Pt | Na2S+S+KCl | CBD | 37 | 1.33 | [75] |
TiO2 | CdS/CdSe/ZnS | CuS, CoS | Polysulfide | SILAR | 35 | 2.7 | [76] |
TiO2 | CdS/ZnS | Pt | Sulfide | SILAR | 46 | 1.72 | [77] |
TiO2/ZnS | CdS/CdSe | Cu2S | Na2S+S | SILAR | 66 | 4.21 | [78] |
TiO2 | CdS/CuInS2 | Carbon | Na2S+S | Colloid | 37 | 1.47 | [79] |
TiO2 | CdS/JK24 | Pt | Na2S+S | Colloid | 38.2 | 1.18 | [80] |
Graphene-TiO2 | CdS | Pt | Na2S+S | Colloid | 41 | 1.31 | [81] |
TiO2 | CdS/CdSe | Pt | Na2S+S+KCl | SILAR | 36 | 1.14 | [73] |
TiO2 | CdS/ZnSe | Pt | Thiourea | CBD, Linker | 58 | 0.86 | [74] |
QDSSCs | RD (Ω) | Rd (Ω) | RS (Ω) | RSH (Ω) | PCE η (%) |
---|---|---|---|---|---|
1-h soaked TiO2/CdSe | 1230.0 | 498.0 | 732.0 | 239.0 | 0.020 |
10-h soaked TiO2/CdSe | 538.2 | 382.0 | 156.2 | 588.1 | 0.046 |
18-h soaked TiO2/CdSe | 157.3 | 83.1 | 74.2 | 2027.0 | 0.184 |
20-h soaked TiO2/CdSe | 60.8 | 33.2 | 27.4 | 5396.0 | 0.575 |
24-h soaked TiO2/CdSe | 136.5 | 80.0 | 56.5 | 2130.0 | 0.150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, N.T.K.; Nguyen, P.T.; Tung, H.T.; Phuc, D.H. Quantum Dot Sensitized Solar Cell: Photoanodes, Counter Electrodes, and Electrolytes. Molecules 2021, 26, 2638. https://doi.org/10.3390/molecules26092638
Chung NTK, Nguyen PT, Tung HT, Phuc DH. Quantum Dot Sensitized Solar Cell: Photoanodes, Counter Electrodes, and Electrolytes. Molecules. 2021; 26(9):2638. https://doi.org/10.3390/molecules26092638
Chicago/Turabian StyleChung, Nguyen Thi Kim, Phat Tan Nguyen, Ha Thanh Tung, and Dang Huu Phuc. 2021. "Quantum Dot Sensitized Solar Cell: Photoanodes, Counter Electrodes, and Electrolytes" Molecules 26, no. 9: 2638. https://doi.org/10.3390/molecules26092638