Evaluation of Innovative Dried Purée from Jerusalem Artichoke—In Vitro Studies of Its Physicochemical and Health-Promoting Properties
Abstract
:1. Introduction
2. Results
2.1. Chemical Parameters
2.1.1. Basic Chemical Parameters
2.1.2. Determination of Sugar Changes
2.1.3. Determination of Polyphenolic Compounds
2.2. Physical Parameters
Color Parameters and Water Activity
2.3. Pro-Healthy Properties
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
- (a)
- Peeling: samples were peeled for 3 min at room temperature with the addition of 0.5% sodium metabisulfate dissolved in water (1:1) on a modified vegetable peeler (YATO YG-03087 firmy (TOYA S.A Wrocław Poland).
- (b)
- Preparation of two variants of material for drying, i.e., from fresh and cooked raw material: (i) in the first variant, 1 kg of peeled fresh material was ground in a Thermomix Varoma with the addition of 0.5% sodium metabisulphate (5 min/20 °C); whereas (ii) in the second variant, 1 kg of peeled Jerusalem artichoke was cooked in a basket of the Thermomix in water with the addition of 0.5% sodium metabisulphate (30 min/98 °C); afterward, the water was drained and the cooked sample was ground (5 min/20 °C).
- (c)
- Drying: both cooked and raw samples were dried using three methods: (i) freeze drying (FD)—carried out in a freeze dryer—(Christ Alpha 1–4 LSC; Osterode am Harz, Germany) for 24 h, (ii) sublimation drying (SD)—carried out in a (KC 100/200 Wytwórnia Aparatury Elektronicznej i Medycznej Warszawa) for 8 h at 80 °C, (iii) vacuum drying (VD)—carried out in a VACUCELL 111 ECO LINE vacuum dryer (MMM Medcenter Einrichtungen GmbH, Planegg, Germany) for 8 h at 80 °C.
3.3. Chemical Parameters
3.3.1. Basic Parameters
3.3.2. Determination of Sugar by HPLC
3.3.3. Polyphenolic Compounds by UPLC
3.4. Physical Parameters
3.4.1. Color Parameters by CIE Lab System
3.4.2. Water Activity
3.5. Pro-Helathy Properties
3.5.1. The Antioxidants Activity
3.5.2. Activity of α-Amylase, α-Glucosidase, Pancreatic Lipase Inhibitors
3.6. Statistics Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Amarowicz, R.; Cwalina-Ambroziak, B.; Janiak, M.A.; Bogucka, B. Effect of N Fertilization on the Content of Phenolic Compounds in Jerusalem artichoke (Helianthus tuberosus L.) Tubers and Their Antioxidant Capacity. Agronomy 2020, 10, 1215. [Google Scholar] [CrossRef]
- Antal, T.; Tarek, M.; Tarek-Tilistyák, J.; Kerekes, B. Comparative effects of three different drying methods on drying kinetics and quality of J.A. (Helianthus tuberosus L.). J. Food Process. Preserv. 2017, 41, e12971. [Google Scholar] [CrossRef]
- Yang, L.; He, Q.S.; Corscadden, K.; Udenigwe, C.C. The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnol. Rep. 2015, 5, 77–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieslik, E.; Gebusia, A. Jerusalem artichoke (Helianthus tuberosus L.)—Tuber with pro-healthily nutritive properties. Postępy Nauk. Rol. 2010, 62, 91. [Google Scholar]
- Koroleva, O.; Torkova, A.; Nikolaev, I.; Khrameeva, E.; Fedorova, T.; Tsentalovich, M.; Amarowicz, R. Evaluation of the antiradical properties of phenolic acids. Int. J. Mol. Sci. 2014, 15, 16351–16380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotschki, B.; Jurgonski, A.; Fotschki, J.; Majewski, M.; Ognik, K.; Juskiewicz, J. Dietary chicory inulin-rich meal exerts greater healing effects than fructooligosaccharide preparation in rats with trinitrobenzenesulfonic acid-induced necrotic colitis. Pol. J. Food Nutr. Sci. 2019, 69, 147–155. [Google Scholar] [CrossRef]
- Kalyani Nair, K.; Kharb, S.; Thompkinson, D.K. Inulin dietary fiber with functional and health attributes—A review. Food Rev. Int. 2010, 26, 189–203. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, M.G.; Yu, S.Y.; Yoon, W.B.; Lee, O.H. Changes in physicochemical characteristics and antioxidant activities of Jerusalem artichoke tea infusions resulting from different production processes. Food Sci. Biotechnol. 2014, 23, 1885–1892. [Google Scholar] [CrossRef]
- Rubel, I.A.; Iraporda, C.; Novosad, R.; Cabrera, F.A.; Genovese, D.B.; Manrique, G.D. Inulin rich carbohydrates extraction from Jerusalem artichoke (Helianthus tuberosus L.) tubers and application of different drying methods. Food Res. Int. 2018, 103, 226–233. [Google Scholar] [CrossRef]
- Tchoné, M.; Barwald, G.; Annemuller, G.; Fleischer, L. Separation and identification of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.). Sci. Aliment. 2006, 26, 394. [Google Scholar] [CrossRef]
- Kim, M.J.; An, D.J.; Moon, K.B.; Cho, H.S.; Min, S.R.; Sohn, J.H.; Kim, H.S. Highly efficient plant regeneration and Agrobacterium-mediated transformation of Helianthus tuberosus L. Ind. Crop. Prod. 2016, 83, 670–679. [Google Scholar] [CrossRef]
- De Santis, D.; Frangipane, M.T. Evaluation of chemical composition and sensory profile in Jerusalem artichoke (Helianthus tuberosus L.) tubers: The effect of clones and cooking conditions. Int. J. Gastron. Food Sci. 2018, 11, 25–30. [Google Scholar] [CrossRef]
- Figiel, A. Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. J. Food Eng. 2010, 98, 461–470. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.P.; Figiel, A. Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chem. 2016, 207, 223–232. [Google Scholar] [CrossRef]
- Komolka, P.; Górecka, D. Wpływ obróbki cieplnej na strukturę wybranych warzyw i owoców®. Postępy Tech. Przetwórstwa Spożywczego 2017, 2, 67–73. [Google Scholar]
- Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef]
- Michalska-Ciechanowska, A.; Wojdyło, A.; Bogucka, B.; Dubis, B. Moderation of inulin and polyphenolics contents in three cultivars of Helianthus tuberosus L. by potassium fertilization. Agronomy 2019, 9, 884. [Google Scholar] [CrossRef] [Green Version]
- Cieslik, E.; Florkiewicz, A.; Filipiak-Florkiewicz, A. Wplyw terminu zbioru na zawartosc weglowodanow w bulwach topinamburu (Helianthus tuberosus L.). Zyw. Człowieka Metab. 2003, 3, 1076–1080. [Google Scholar]
- Chekroun, M.B.; Amzile, J.; Yachioui, M.E.; Haloui, N.E.; Prevost, J. Qualitative and quantitative development of carbohydrate reserves during the biological cycle of Jerusalem artichoke (Helianthus tuberosus L.) tubers. N. Z. J. Crop. Hortic. Sci. 1994, 22, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Böhm, A.; Kaiser, I.; Trebstein, A.; Henle, T. Heat-induced degradation of inulin. Eur. Food Res. Technol. 2005, 220, 466–471. [Google Scholar] [CrossRef]
- Kapusta, I.; Krok, E.S.; Jamro, D.B.; Cebulak, T.; Kaszuba, J.; Salach, R.T. Identification and quantification of phenolic compounds from Jerusalem artichoke (Helianthus tuberosus L.) tubers. J. Food Agric. Environ. 2013, 11, 601–606. [Google Scholar]
- Laib, I.; Barkat, M. Optimization of conditions for extraction of polyphenols and the determination of the impact of cooking on total polyphenolic, antioxidant, and anticholinesterase activities of potato. Foods 2018, 7, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, C.V.A.; da Silva, M.G.; Cabrita, M.J. Impact of SO2 and bentonite addition during fermentation on volatile profile of two varietal white wines. LWT Food Sci. Technol. 2020, 133, 109893. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Medina-Remón, A.; Pérez-Jiménez, J.; Neveu, V.; Knaze, V.; Slimani, N.; Scalbert, A. Effects of food processing on polyphenol contents: A systematic analysis using Phenol-Explorer data. Mol. Nutr. Food Res. 2015, 59, 160–170. [Google Scholar] [CrossRef]
- Lachowicz, S.; Michalska, A.; Lech, K.; Majerska, J.; Oszmiański, J.; Figiel, A. Comparison of the effect of four drying methods on polyphenols in saskatoon berry. LWT Food Sci. Technol. 2019, 111, 727–736. [Google Scholar] [CrossRef]
- Sergent, T.; Vanderstraeten, J.; Winand, J.; Beguin, P.; Schneider, Y.J. Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chem. 2012, 135, 68–73. [Google Scholar] [CrossRef]
- Wang, Y.C.; Hu, H.F.; Ma, J.W.; Yan, Q.J.; Liu, H.J.; Jiang, Z.Q. A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry. Food Chem. 2020, 305, 125447. [Google Scholar] [CrossRef]
- Boath, A.S.; Stewart, D.; MSDougall, G.J. Berry components inhibit α-glucosidase in vitro: Synergies between acarbose and polyphenols from black currant and rowanberry. Food Chem. 2012, 135, 929–936. [Google Scholar] [CrossRef]
- Gao, L.; Chi, Z.; Sheng, J.; Wang, L.; Li, J.; Gong, F. Inulinase-producing marine yeasts: Evaluation of their diversity and inulin hydrolysis by their crude enzymes. Microb. Ecol. 2007, 54, 722–729. [Google Scholar] [CrossRef]
- Simsek, S.; Sánchez-Rivera, L.; El, S.N.; Karakaya, S.; Recio, I. Characterisation of in vitro gastrointestinal digests from low fat caprine kefir enriched with inulin. Int. Dairy J. 2017, 75, 68–74. [Google Scholar] [CrossRef]
- Pijanowski, J.; New, R. Comparison of Various Methods for Computing the Axially Backscattered Field of a Prolate Spheroid. J. Acoust. Soc. Am. 1973, 53, 374. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidant activity of bioactive compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A.; Teleszko, M.; Samoticha, J. Sensory attributes and changes of physicochemical properties during storage of smoothies prepared from selected fruit. LWT Food Sci. Technol. 2016, 71, 102–109. [Google Scholar] [CrossRef]
- Lachowicz, S.; Świeca, M.; Pejcz, E. Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chem. 2021, 338, 128026. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A.; Samoticha, J. Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits. J. Funct. Foods 2016, 25, 397–407. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Podsedek, A.; Majewska, I.; Redzynia, M.; Sosnowska, D.; Koziołkiewicz, M. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J. Agric. Food Chem. 2014, 62, 4610–4617. [Google Scholar] [CrossRef]
Type of Analysis | FDC | FDR | SDC | SDR | VDC | VDR |
---|---|---|---|---|---|---|
Dry matter (g/100 g) | 98.88 ± 0.20 aa | 98.88 ± 0.20 a | 97.14 ± 0.19 b | 92.66 ± 0.19 e | 95.90 ± 0.19 c | 95.60 ± 0.19 d |
Water activity (aw) | 0.01 ± 0.00 c | 0.02 ± 0.00 c | 0.15 ± 0.00 c | 0.36 ± 0.00 a | 0.19 ± 0.00 ab | 0.11 ± 0.00 c |
Ash (g/100 g) | 4.28 ± 0.01 a | 4.18 ± 0.01 a | 4.10 ± 0.01 b | 3.74 ± 0.01 c | 3.88 ± 0.01 c | 4.16 ± 0.01 b |
pH | 5.86 ± 0.01 ab | 5.83 ± 0.01 ab | 5.77 ± 0.01 ab | 5.68 ± 0.01 b | 5.80 ± 0.01 ab | 5.90 ± 0.01 a |
Total acidity (g/100 g) | 1.08 ± 0.00 a | 1.09 ± 0.00 a | 1.07 ± 0.00 a | 1.06 ± 0.00 a | 1.09 ± 0.00 a | 1.04 ± 0.00 a |
Pectins (g/100 g) | 3.10 ± 0.01 d | 4.33 ± 0.01 a | 1.44 ± 0.00 f | 2.46 ± 0.01 e | 3.60 ± 0.01 c | 4.09 ± 0.01 b |
Inulin (g/100 g) | 40.08 ± 0.08 e | 43.32 ± 0.09 a | 43.06 ± 0.09 b | 41.22 ± 0.08 c | 40.94 ± 0.08 d | 38.94 ± 0.08 f |
Fructose (g/100 g) | 0.10 ± 0.00 b | 0.14 ± 0.00 b | 0.12 ± 0.00 b | 0.40 ± 0.00 a | 0.09 ± 0.00 b | 0.40 ± 0.00 a |
Sucrose (g/100 g) | 1.33 ± 0.00 d | 1.84 ± 0.00 b | 1.23 ± 0.00 d | 1.61 ± 0.00 c | 1.55 ± 0.00 c | 2.06 ± 0.00 a |
Compounds | MS/MS | R.t. (min) | FDC | FDR | SDC | SDR | VDC | VDR |
---|---|---|---|---|---|---|---|---|
Hydroxyferulic acid hexoside a | 371/353/209 | 3.01 | 2.07 ± 0.00 a e | 1.76 ± 0.00 b | 1.36 ± 0.01 c | 1.47 ± 0.01 c | 1.85 ± 0.00 b | 1.68 ± 0.01 b |
Caffeoylquinic acid b (isomer of chlorogenic acid) | 353/191/179/135 | 3.31 | 33.25 ± 0.07 a | 20.90 ± 0.04 c | 20.46 ± 0.04 d | 1.85 ± 0.00 f | 28.39 ± 0.06 b | 16.27 ± 0.03 e |
Hydroxyferulic acid hexoside(isommer) a | 371/353/209 | 3.50 | 2.75 ± 0.01 b | 2.28 ± 0.00 c | 2.31 ± 0.01 c | 5.69 ± 0.01 a | 2.74 ± 0.01 b | 5.61 ± 0.01 a |
Hydroxyferulic acid hexoside(isommer) a | 371/353/209 | 3.66 | 0.40 ± 0.00 b | 0.40 ± 0.00 b | 0.27 ± 0.00 b | 0.87 ± 0.00 a | 0.35 ± 0.00 b | 0.84 ± 0.00 a |
Caffeoylquinic acid-quinon sulfite b | 415/387/258//191/179/161 | 3.83 | nd | 87.36 ± 0.17 c | nd | 99.81 ± 0.20 a | nd | 98.14 ± 0.20 b |
Caffeoylquinic acid b | 353/191/179/135 | 3.87 | 2.52 ± 0.01 f | 76.77 ± 0.15 c | 3.47 ± 0.01 d | 87.71 ± 0.18 a | 2.85 ± 0.01 e | 86.24 ± 0.17 b |
caffeoyl-gucoside c | 341/179/135 | 4.25 | 7.71 ± 0.02 f | 8.63 ± 0.02 e | 10.98 ± 0.02 b | 10.19 ± 0.02 c | 8.87 ± 0.02 d | 11.37 ± 0.02 a |
3-O-Caffeoylquinic acid d | 353/191/135 | 4.36 | 83.20 ± 0.17 d | 150.46 ± 0.30 a | 51.46 ± 0.10 f | 111.94 ± 0.22 c | 72.38 ± 0.14 e | 119.73 ± 0.24 b |
Caffeoylquinic acid b | 353/191/179/173/135 | 4.51 | 38.54 ± 0.08 a | 11.73 ± 0.02 f | 26.95 ± 0.05 c | 14.21 ± 0.03 d | 33.02 ± 0.07 b | 13.34 ± 0.03 e |
Caffeoylquinic acid b | 353/191/179/173/135 | 4.79 | 14.19 ± 0.03 c | 6.19 ± 0.01 d | 14.26 ± 0.03 c | 20.25 ± 0.04 b | 14.31 ± 0.03 c | 37.94 ± 0.08 a |
Caffeoylquinic acid b | 353/191/179/173/135 | 5.13 | 27.31 ± 0.05 e | 91.61 ± 0.18 a | 23.44 ± 0.05 f | 71.29 ± 0.14 c | 27.63 ± 0.06 d | 75.10 ± 0.15 b |
Caffeoyl glucopyranose c | 341/179/135 | 5.33 | 4.42 ± 0.01 d | 8.88 ± 0.02 c | 3.02 ± 0.01 f | 12.74 ± 0.03 a | 3.50 ± 0.01 e | 10.47 ± 0.02 b |
Dicaffeoylquinic acid b | 515/353/191/179/173/161 | 5.58 | 13.96 ± 0.03 b | 53.89 ± 0.11 a | 10.12 ± 0.02 e | 11.38 ± 0.02 d | 12.52 ± 0.03 c | 7.90 ± 0.02 f |
Dicaffeoylquinic acids- quinon sulfite b | 577/415/387/258//191/179 | 5.75 | nd | 99.58 ± 0.20 a | nd | 77.63 ± 0.16 c | nd | 83.43 ± 0.17 b |
Caffeoylquinic acid b | 353/191/179/173/161/135 | 6.14 | 9.36 ± 0.02 d | 17.15 ± 0.03 c | 4.86 ± 0.01 f | 21.25 ± 0.04 a | 7.33 ± 0.01 e | 17.84 ± 0.04 b |
Caffeoylquinic acid-quinon sulfite b | 415/387/258//191/179/161 | 6.25 | nd | 12.89 ± 0.03 a | nd | 7.78 ± 0.02 b | Nd | 6.04 ± 0.01 c |
Hydroxyferulic acid hexoside (isomer 3) a | 371/353/209 | 6.33 | 2.05 ± 0.01 d | 4.47 ± 0.01 b | 1.44 ± 0.01 f | 4.88 ± 0.01 a | 1.77 ± 0.01 e | 3.36 ± 0.01 c |
Hydroxyferulic acid hexoside (isomer 3) a | 371/353/209 | 6.57 | 4.02 ± 0.01 b | 4.70 ± 0.01 a | 2.38 ± 0.01 e | 2.84 ± 0.01 d | 3.34 ± 0.01 c | 1.80 ± 0.01 f |
Hydroxyferulic acid hexoside (isomer 3) a | 371/353/209 | 6.96 | 1.37 ± 0.00 d | 26.36 ± 0.05 a | 0.95 ± 0.00 e | 24.90 ± 0.05 b | 1.11 ± 0.00 e | 19.28 ± 0.04 c |
Dicaffeoylquinic acids- quinon sulfite b | 577/415/387/258//191/179 | 7.04 | nd | 75.95 ± 0.15 a | nd | 71.74 ± 0.14 b | Nd | 55.55 ± 0.11 c |
3,4-Di-O-caffeoylquinic acid b | 515/353/191 | 7.51 | 36.42 ± 0.07 a | 24.15 ± 0.05 c | 20.28 ± 0.04 d | 19.23 ± 0.04 e | 31.14 ± 0.06 b | 12.88 ± 0.03 f |
3,5-Di-O-caffeoylquinic acid) b | 515/353/191 | 7.77 | 34.89 ± 0.07 d | 118.37 ± 0.24 a | 17.69 ± 0.04 f | 68.39 ± 0.14 c | 28.66 ± 0.06 e | 77.14 ± 0.15 b |
Hydroxyferulic acid hexoside (isomer 3) a | 371/353/209 | 7.94 | 1.38 ± 0.00 d | 2.64 ± 0.01 a | 0.77 ± 0.00 e | 1.75 ± 0.00 c | 0.90 ± 0.00 e | 1.97 ± 0.00 b |
1,5-Di-O-caffeoylquinic acid b | 515/353/191 | 8.21 | 32.40 ± 0.06 a | 14.80 ± 0.03 d | 17.26 ± 0.03 c | 11.24 ± 0.02 e | 27.39 ± 0.05 b | 9.37 ± 0.02 g |
Hydroxyferulic acid hexoside (isomer 3) a | 371/353/209 | 8.48 | 0.83 ± 0.00 d | 1.58 ± 0.01 a | 0.40 ± 0.00 f | 1.14 ± 0.00 b | 0.63 ± 0.00 e | 0.99 ± 0.00 bc |
Sum of phenolic acids | 353.05 ± 19.87 d | 923.53 ± 43.70 a | 234.13 ± 12.35 f | 762.16 ± 35.70 b | 310.68 ± 17.23 e | 774.28 ± 36.67 c |
Type of Sample | L * | a * | b * |
---|---|---|---|
FDR | 92.51 ± 0.19 a a | –1.22 ± 0.01 e | 12.11 ± 0.02 c |
FDC | 90.22 ± 0.18 b | –1.45 ± 0.01 f | 10.88 ± 0.02 e |
SDR | 88.32 ± 0.18 c | –0.40 ± 0.00 b | 14.10 ± 0.03 b |
SDC | 85.76 ± 0.17 e | –0.94 ± 0.00 d | 11.67 ± 0.02 d |
VDR | 84.63 ± 0.17 f | –0.79 ± 0.00 c | 14.05 ± 0.03 b |
VDC | 86.99 ± 0.17 d | –0.26 ± 0.00 a | 14.59 ± 0.03 a |
Type of Sample | α-Glucosidase | α-Amylase | Pancreatic Lipase | ABTS | FRAP |
---|---|---|---|---|---|
IC50 (mL/mL) | IC50 (ug/mL) | IC50 (mL/mL) | (mmol TE/100 g dm) | (mmol TE/100 g dm) | |
FDR | 166.70 ± 0.33 e a | 177.98 ± 0.36 c | 43.75 ± 0.09 c | 3.73 ± 0.01 d | 1.69 ± 0.01 e |
FDC | 193.29 ± 0.39 f | 297.90 ± 0.60 f | 45.86 ± 0.09 e | 7.65 ± 0.02 a | 2.67 ± 0.01 a |
SDR | 123.60 ± 0.25 b | 136.98 ± 0.27 b | 31.48 ± 0.06 a | 2.78 ± 0.01 f | 1.46 ± 0.00 f |
SDC | 135.52 ± 0.27 c | 185.87 ± 0.37 d | 58.34 ± 0.12 f | 6.91 ± 0.01 c | 2.60 ± 0.01 b |
VDR | 150.94 ± 0.30 d | 221.19 ± 0.44 e | 45.06 ± 0.09 d | 2.85 ± 0.01 e | 1.97 ± 0.01 d |
VDC | 120.31 ± 0.24 a | 129.97 ± 0.26 a | 33.08 ± 0.07 b | 7.09 ± 0.01 b | 2.14 ± 0.01 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oszmiański, J.; Lachowicz, S.; Nowicka, P.; Rubiński, P.; Cebulak, T. Evaluation of Innovative Dried Purée from Jerusalem Artichoke—In Vitro Studies of Its Physicochemical and Health-Promoting Properties. Molecules 2021, 26, 2644. https://doi.org/10.3390/molecules26092644
Oszmiański J, Lachowicz S, Nowicka P, Rubiński P, Cebulak T. Evaluation of Innovative Dried Purée from Jerusalem Artichoke—In Vitro Studies of Its Physicochemical and Health-Promoting Properties. Molecules. 2021; 26(9):2644. https://doi.org/10.3390/molecules26092644
Chicago/Turabian StyleOszmiański, Jan, Sabina Lachowicz, Paulina Nowicka, Paweł Rubiński, and Tomasz Cebulak. 2021. "Evaluation of Innovative Dried Purée from Jerusalem Artichoke—In Vitro Studies of Its Physicochemical and Health-Promoting Properties" Molecules 26, no. 9: 2644. https://doi.org/10.3390/molecules26092644
APA StyleOszmiański, J., Lachowicz, S., Nowicka, P., Rubiński, P., & Cebulak, T. (2021). Evaluation of Innovative Dried Purée from Jerusalem Artichoke—In Vitro Studies of Its Physicochemical and Health-Promoting Properties. Molecules, 26(9), 2644. https://doi.org/10.3390/molecules26092644