Antibacterial Effects of Essential Oils of Seven Medicinal-Aromatic Plants Against the Fish Pathogen Aeromonas veronii bv. sobria: To Blend or Not to Blend?
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of the Tested Essential Oils
2.2. Antibacterial and Bactericidal Activity of Blended Essential Oils
2.3. Assessment of Synergistic Antimicrobial Action of Essential Oils in Blends
3. Discussion
3.1. Inhibitory Activity: Single-Note Essential Oils and Their Combinations
3.2. Bactericidal Properties
4. Material and Methods
4.1. Plant Material and Extraction of Essential Oils
4.2. Gas Chromatography-Mass Spectrometry Analysis
4.3. Evaluation of Antibacterial and Bactericidal Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dong, H.T.; Techatanakitarnan, C.; Jindakittikul, P.; Thaiprayoon, A.; Taengphu, S.; Charoensapsri, W.; Khunrae, P.; Rattanarojpong, T.; Senapin, S. Aeromonas jandaei and Aeromonas veronii caused disease and mortality in Nile tilapia, Oreochromis niloticus (L.). J. Fish Dis. 2017, 40, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Colque-Navarro, P.; Kühn, I.; Huys, G.; Swings, J.; Möllby, R. Identification and characterization of pathogenic Aeromonas veronii bv. sobria associated with epizootic ulcerative syndrome in fish in Bangladesh. Appl. Environ. Microbiol. 2002, 68, 650–655. [Google Scholar] [PubMed] [Green Version]
- Cai, S.H.; Wu, Z.H.; Jian, J.C.; Lu, Y.S.; Tang, J.F. Characterization of pathogenic Aeromonas veronii bv. veronii associated with ulcerative syndrome from Chinese longsnout catfish (Leiocassis longirostris Günther). Braz. J. Microbiol. 2012, 43, 382–388. [Google Scholar]
- Zhu, M.; Wang, X.R.; Li, J.; Li, G.Y.; Liu, Z.P.; Mo, Z.L. Identification and virulence properties of Aeromonas veronii bv. sobria isolates causing an ulcerative syndrome of loach Misgurnus anguillicaudatus. J. Fish Dis. 2015, 39, 777–781. [Google Scholar]
- Smyrli, M.; Prapas, A.; Rigos, G.; Kokkari, C.; Pavlidis, M.; Katharios, P. Aeromonas veronii infection associated with high morbidity and mortality in farmed European seabass Dicentrarchus labrax in the Aegean Sea, Greece. Fish Pathol. 2017, 52, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Hayatgheib, N.; Moreau, E.; Calvez, S.; Lepelletier, D.; Pouliquen, H. A review of functional feeds and the control of Aeromonas infections in freshwater fish. Aquac. Int. 2020, 28, 1083–1123. [Google Scholar] [CrossRef]
- Villumsen, K.R.; Raida, M.K. Long-lasting protection induced by bath vaccination against Aeromonas salmonicida subsp. salmonicida in rainbow trout. Fish Shellfish Immunol. 2013, 35, 1649–1653. [Google Scholar] [CrossRef] [PubMed]
- Erdal, J.I.; Reitan, L.J. Immune response and protective immunity after vaccination of Atlantic salmon (Salmo salar L.) against furunculosis. Fish Shellfish Immunol. 1992, 2, 99–108. [Google Scholar] [CrossRef]
- Da Cunha, J.A.; Heinzmann, B.M.; Baldisserotto, B. The effects of essential oils and their major compounds on fish bacterial pathogens—A review. J. Appl. Microbiol. 2018, 125, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Çoban, Ö.E. Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends Food Sci. Technol. 2017, 68, 26–36. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.-S. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture 2011, 317, 1–15. [Google Scholar] [CrossRef]
- Reverter, M.; Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 2014, 433, 50–61. [Google Scholar] [CrossRef]
- Awad, E.; Awaad, A. Role of medicinal plants on growth performance and immune status in fish. Fish Shellfish Immunol. 2017, 67, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Misharina, T.A.; Terenina, M.B.; Krikunova, N.I. Antioxidant properties of essential oils. Appl. Biochem. Microbiol. 2009, 45, 642–647. [Google Scholar] [CrossRef]
- Elabd, H.; Wang, H.P.; Shaheen, A.; Yao, H.; Abbass, A. Anti-oxidative effects of some dietary supplements on Yellow perch (Perca flavescens) exposed to different physical stressors. Aquac. Rep. 2017, 8, 21–30. [Google Scholar] [CrossRef]
- Vázquez-Sánchez, D.; Cabo, M.L.; Rodríguez-Herrera, J.J. Antimicrobial activity of essential oils against Staphylococcus aureus biofilms. Food Sci. Technol. Int. 2015, 21, 559–570. [Google Scholar] [CrossRef]
- Shintre, M.S.; Gaonkar, T.A.; Modak, S.M. Efficacy of an alcohol-based healthcare hand rub containing synergistic combination of farnesol and benzethonium chloride. Int. J. Hyg. Environ. Health 2006, 209, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [Green Version]
- Vieira-Brock, P.L.; Vaughan, B.M.; Vollmer, D.L. Comparison of antimicrobial activities of natural essential oils and synthetic fragrances against selected environmental pathogens. Biochim. Open 2017, 5, 8–13. [Google Scholar] [CrossRef]
- Anastasiou, I.T.; Mandalakis, M.; Krigas, N.; Vézignol, T.; Lazari, D.; Katharios, P.; Dailianis, T.; Antonopoulou, E. Comparative evaluation of essential oils from medicinal-aromatic plants of Greece: Chemical composition, antioxidant capacity and antimicrobial activity against bacterial fish pathogens. Molecules 2020, 25, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutili, F.J.; Gatlin, D.M.I.; Heinzmann, B.M.; Baldisserotto, B. Plant essential oils as fish diet additives: Benefits on fish health and stability in feed. Rev. Aquac. 2017, 10, 716–726. [Google Scholar] [CrossRef]
- Souza, C.F.; Baldissera, M.D.; Baldisserotto, B.; Heinzmann, B.M.; Martos-Sitcha, J.A.; Mancera, J.M. Essential oils as stress-reducing agents for fish aquaculture: A review. Front. Physiol. 2019, 10, 785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 2010, 15, 7825–7839. [Google Scholar] [CrossRef] [PubMed]
- Tadtong, S.; Suppawat, S.; Tintawee, A.; Saramas, P.; Jareonvong, S.; Hongratanaworakit, T. Antimicrobial activity of blended essential oil preparation. Nat. Prod. Commun. 2012, 7, 1401–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, S.D.; Mann, C.M.; Markham, J.L. Interactions between components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol. 2001, 91, 492–497. [Google Scholar] [CrossRef]
- Goñi, P.; López, P.; Sánchez, C.; Gómez-Lus, R.; Becerril, R.; Nerín, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989. [Google Scholar] [CrossRef]
- Brochot, A.; Guilbot, A.; Haddioui, L.; Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen 2017, 6, e00459. [Google Scholar] [CrossRef] [PubMed]
- Fratini, F.; Casella, S.; Leonardi, M.; Pisseri, F.; Ebani, V.V.; Pistelli, L.; Pistelli, L. Antibacterial activity of essential oils, their blends and mixtures of their main constituents against some strains supporting livestock mastitis. Fitoterapia 2014, 96, 1–7. [Google Scholar] [CrossRef]
- Kovačević, Z.; Radinović, M.; Čabarkapa, I.; Kladar, N.; Božin, B. Natural agents against bovine mastitis pathogens. Antibiotics 2021, 10, 205. [Google Scholar] [CrossRef]
- Fratini, F.; Forzan, M.; Turchi, B.; Mancini, S.; Alcamo, G.; Pedonese, F.; Pistelli, L.; Najar, B.; Mazzei, M. In vitro antibacterial activity of Manuka (Leptospermum scoparium JR et G. Forst) and winter Savory (Satureja montana L.) essential oils and their blends against pathogenic E. coli isolates from pigs. Animals 2020, 10, 2202. [Google Scholar] [CrossRef] [PubMed]
- Khater, H.F.; Ali, A.M.; Abouelella, G.A.; Marawan, M.A.; Govindarajan, M.; Murugan, K.; Abbas, R.Z.; Vaz, N.P.; Benelli, G. Toxicity and growth inhibition potential of vetiver, cinnamon, and lavender essential oils and their blends against larvae of the sheep blowfly, Lucilia sericata. Int. J. Dermatol. 2018, 57, 449–457. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Rahimnejad, S.; Wang, L.; Song, K.; Lu, K.; Zhang, C. Effects of organic acids and essential oils blend on growth, gut microbiota, immune response and disease resistance of Pacific white shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish Shellfish Immunol. 2017, 70, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.G.; Bao, L.; Luciani, A.; Panighi, J.; Desjobert, J.M.; Costa, J.; Casanova, J.; Bolla, J.M.; Berti, L. (E)-methylisoeugenol and elemicin: Antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J. Agric. Food Chem. 2007, 55, 7332–7336. [Google Scholar] [CrossRef]
- Staniszewska, M.; Kula, J.; Wieczorkiewicz, M.; Kusewicz, D. Essential oils of wild and cultivated carrots—the chemical composition and antimicrobial activity. J. Essent. Oil Res. 2005, 17, 579–583. [Google Scholar] [CrossRef]
- Luc, D.; Jean Michel, B.; Vanina, L.; Alain, M.; Liliane, B.; Jean Michel, B. Antibacterial mode of action of the Daucus carota essential oil active compounds against Campylobacter jejuni and efflux-mediated drug resistance in Gram-negative bacteria. Molecules 2020, 25, 5448. [Google Scholar] [CrossRef]
- Sikkema, J.; De Bont, J.A.M.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2002, 65, 1545–1560. [Google Scholar] [CrossRef]
- Ultee, A.; Gorris, L.G.M.; Smid, E.J. Bactericidal activity of carvacrol towards the food-borne pathogen Bacillus cereus. J. Appl. Microbiol. 1998, 85, 211–218. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Massada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Robert, P.; Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mandalakis, M.; Gavriilidou, A.; Polymenakou, P.N.; Christakis, C.A.; Nomikou, P.; Medvecký, M.; Kilias, S.P.; Kentouri, M.; Kotoulas, G.; Magoulas, A. Microbial strains isolated from CO2-venting Kolumbo submarine volcano show enhanced co-tolerance to acidity and antibiotics. Mar. Environ. Res. 2019, 144, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI Standard M07-A11: Wayne, PA, USA, 2018. [Google Scholar]
Bipartite Blends | Tripartite Blends | |||||||
---|---|---|---|---|---|---|---|---|
No. | Compound a | #8 | #10 | #11 | #16 | #31 | #35 | #38 |
1 | α-Pinene | 5.59 | 18.44 | 7.44 | 8.40 | 13.14 | ||
2 | α-Thujene | 2.23 | 0.67 | 3.91 | 2.82 | 2.50 | 1.48 | |
3 | Camphene | 0.33 | 0.89 | 0.21 | 0.32 | 0.28 | 2.34 | 0.74 |
4 | β-Pinene | 0.32 | 0.97 | 0.13 | 0.29 | 0.24 | 4.21 | 0.75 |
8 | β-Myrcene | 1.33 | 2.91 | 1.34 | 1.24 | 1.27 | 1.58 | 2.67 |
9 | α-Terpinene | 1.34 | 0.86 | 1.16 | 1.25 | 1.22 | 1.03 | 1.22 |
10 | D-Limonene | 0.26 | 3.28 | 0.21 | 0.20 | 1.24 | 2.32 | |
12 | Eucalyptol | 20.15 | ||||||
13 | γ-Terpinene | 10.53 | 4.20 | 5.39 | 9.25 | 8.05 | 4.59 | 5.46 |
14 | p-Cymene | 9.71 | 8.07 | 8.53 | 7.10 | 8.30 | 7.74 | 8.78 |
15 | α-Longipinene | 1.80 | 1.27 | |||||
16 | Camphor | 3.18 | ||||||
17 | Linalool | 0.92 | 0.28 | 0.54 | 1.29 | 0.99 | 0.59 | |
18 | β-Caryophyllene | 4.34 | 0.91 | 2.87 | 5.60 | 4.54 | 2.22 | 2.10 |
19 | 1-Terpinen-4-ol | 1.00 | 0.90 | 0.96 | 0.85 | 1.78 | 1.00 | 1.16 |
20 | Thymol methyl ether | 1.17 | 0.32 | 0.35 | 0.85 | 0.09 | ||
21 | β-Himachalene | 1.11 | 0.73 | |||||
22 | Borneol | 0.70 | 0.50 | 0.99 | 0.98 | 1.02 | 2.21 | 0.73 |
23 | Palustrol | 5.83 | 3.83 | |||||
24 | Thymol | 1.05 | 0.02 | 1.50 | 0.44 | 1.01 | 0.66 | 0.04 |
25 | Isoeugenol methyl ether | 4.26 | 2.80 | |||||
26 | Carvacrol | 56.36 | 34.13 | 73.77 | 56.78 | 65.78 | 33.15 | 43.29 |
EOs, Blends | #2 | #10 | #38 | #31 | #5 | #8 | #11 | #1 | #16 | #35 |
---|---|---|---|---|---|---|---|---|---|---|
#2 | 1.00 | |||||||||
#10 | 0.03 | 1.00 | ||||||||
#38 | 0.01 | 0.03 | 1.00 | |||||||
#31 | 0.01 | 0.01 | 0.46 | 1.00 | ||||||
#5 | 0.01 | 0.03 | 0.51 | 0.84 | 1.00 | |||||
#8 | 0.01 | 0.01 | 0.23 | 0.56 | 0.91 | 1.00 | ||||
#11 | 0.00 | 0.00 | 0.02 | 0.03 | 0.11 | 0.03 | 1.00 | |||
#1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.09 | 1.00 | ||
#16 | 0.00 | 0.01 | 0.02 | 0.03 | 0.06 | 0.04 | 0.28 | 0.91 | 1.00 | |
#35 | 0.00 | 0.01 | 0.02 | 0.02 | 0.04 | 0.03 | 0.13 | 0.36 | 0.49 | 1.00 |
EOs, Blends | #2 | #10 | #38 | #31 | #5 | #8 | #11 | #1 | #16 | #35 |
---|---|---|---|---|---|---|---|---|---|---|
#2 | 1.000 | |||||||||
#10 | 0.108 | 1.000 | ||||||||
#38 | 0.044 | 0.151 | 1.000 | |||||||
#31 | 0.006 | <0.001 | <0.001 | 1.000 | ||||||
#5 | 0.022 | <0.001 | <0.001 | 0.051 | 1.000 | |||||
#8 | 0.005 | <0.001 | <0.001 | 0.863 | 0.046 | 1.000 | ||||
#11 | 0.359 | 0.137 | 0.022 | <0.001 | <0.001 | <0.001 | 1.000 | |||
#1 | 0.135 | 0.548 | 0.043 | <0.001 | <0.001 | <0.001 | 0.208 | 1.000 | ||
#16 | 0.013 | 0.017 | 0.103 | <0.001 | <0.001 | <0.001 | 0.005 | 0.008 | 1.000 | |
#35 | 0.008 | 0.005 | 0.035 | <0.001 | <0.001 | <0.001 | 0.002 | 0.002 | 0.702 | 1.000 |
Common Name | Scientific Name (Family) | Cultivation Area |
---|---|---|
Pennyroyal | 1Mentha pulegium | Ikaria, SE GR |
Greek oregano | 1Origanum vulgare subsp. hirtum | Ptolemaida, N GR |
Rosemary | 1Rosmarinum officinalis | Ptolemaida, N GR |
Spanish oregano | 1Thymbra capitata | Ptolemaida, N GR |
Savoury | 1Satureja thymbra | Ikaria, SE GR |
Lemon balm | 1Melissa officinalis | Ptolemaida, N GR |
Wild carrot | 2Daucus carota | * Ikaria, SE GR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandalakis, M.; Anastasiou, T.I.; Martou, N.; Keisaris, S.; Greveniotis, V.; Katharios, P.; Lazari, D.; Krigas, N.; Antonopoulou, E. Antibacterial Effects of Essential Oils of Seven Medicinal-Aromatic Plants Against the Fish Pathogen Aeromonas veronii bv. sobria: To Blend or Not to Blend? Molecules 2021, 26, 2731. https://doi.org/10.3390/molecules26092731
Mandalakis M, Anastasiou TI, Martou N, Keisaris S, Greveniotis V, Katharios P, Lazari D, Krigas N, Antonopoulou E. Antibacterial Effects of Essential Oils of Seven Medicinal-Aromatic Plants Against the Fish Pathogen Aeromonas veronii bv. sobria: To Blend or Not to Blend? Molecules. 2021; 26(9):2731. https://doi.org/10.3390/molecules26092731
Chicago/Turabian StyleMandalakis, Manolis, Thekla I. Anastasiou, Natalia Martou, Sofoklis Keisaris, Vasileios Greveniotis, Pantelis Katharios, Diamanto Lazari, Nikos Krigas, and Efthimia Antonopoulou. 2021. "Antibacterial Effects of Essential Oils of Seven Medicinal-Aromatic Plants Against the Fish Pathogen Aeromonas veronii bv. sobria: To Blend or Not to Blend?" Molecules 26, no. 9: 2731. https://doi.org/10.3390/molecules26092731
APA StyleMandalakis, M., Anastasiou, T. I., Martou, N., Keisaris, S., Greveniotis, V., Katharios, P., Lazari, D., Krigas, N., & Antonopoulou, E. (2021). Antibacterial Effects of Essential Oils of Seven Medicinal-Aromatic Plants Against the Fish Pathogen Aeromonas veronii bv. sobria: To Blend or Not to Blend? Molecules, 26(9), 2731. https://doi.org/10.3390/molecules26092731