Recent Studies on Berry Bioactives and Their Health-Promoting Roles
Abstract
:1. Introduction
2. Nutritional and Bioactive Values of Berries
3. Health Effects of Berries
3.1. Gastrointestinal System
3.2. Metabolism-Related Diseases
3.2.1. Diabetes
3.2.2. Obesity
3.3. Cardiovascular System
3.3.1. Cholesterol
3.3.2. Hypertension
3.4. Immune System
3.5. Cancer
3.6. Nervous System
3.6.1. Alzheimer’s Disease
3.6.2. Parkinson’s Disease
3.6.3. Huntington’s Disease
3.6.4. Other Nervous System-Related Symptoms
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Magrone, T.; de Heredia, F.P.; Jirillo, E.; Morabito, G.; Marcos, A.; Serafini, M. Functional foods and nutraceuticals as thera-peutic tools for the treatment of diet-related diseases. Can. J. Physiol. Pharmacol. 2013, 91, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y. (Ed.) Berry Fruit: Value-Added Products for Health Promotion, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Vendrame, S.; Del Bo’, C.; Ciappellano, S.; Riso, P.; Klimis-Zacas, D. Berry fruit consumption and metabolic syndrome. Antioxidants 2016, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, T. Recent Progress in Anti-Obesity and Anti-Diabetes Effect of Berries. Antioxidants 2016, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoner, G.D.; Wang, L.-S.; Zikri, N.; Chen, T.; Hecht, S.S.; Huang, C.; Sardo, C.; Lechner, J.F. Cancer prevention with freeze-dried berries and berry components. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 17, pp. 403–410. [Google Scholar]
- Forbes-Hernández, T.Y. Berries polyphenols: Nano-delivery systems to improve their potential in cancer therapy. J. Berry Res. 2020, 10, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.V.; Edirisinghe, I.; Burton-Freeman, B.M. Berries: Anti-inflammatory Effects in Humans. J. Agric. Food Chem. 2014, 62, 3886–3903. [Google Scholar] [CrossRef] [PubMed]
- Anonym Berry Health Benefits Symposium. Berry Health Benefits Sym-Posium Offers a Unique Opportunity to Achieve Their Communication Goals. Available online: http://berryhealth.org/#:~:text=The (accessed on 26 May 2021).
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 897484. [Google Scholar] [CrossRef] [Green Version]
- Cianciosi, D.; Simal-Gándara, J.; Forbes-Hernández, T.Y. The importance of berries in the human diet. Med. J. Nutr. Metab. 2019, 12, 335–340. [Google Scholar] [CrossRef]
- Okatan, V. Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A compara-tive study. Folia Hortic. 2020, 32, 79–85. [Google Scholar] [CrossRef]
- Zafra-Rojas, Q.; Cruz-Cansino, N.; Delgadillo-Ramírez, A.; Alanís-García, E.; Añorve-Morga, J.; Lira, A.Q.; Castañeda-Ovando, A.; Ramírez-Moreno, E. Organic Acids, Antioxidants, and Dietary Fiber of Mexican Blackberry (Rubus fruticosus) Residues cv. Tupy. J. Food Qual. 2018, 2018, 5950761. [Google Scholar] [CrossRef] [Green Version]
- Kafkas, E.; Koşar, M.; Türemiş, N.; Başer, K.H.C. Analysis of sugars, organic acids and vitamin C contents of blackberry gen-otypes from Turkey. Food Chem. 2006, 97, 732–736. [Google Scholar] [CrossRef]
- Oszmiański, J.; Nowicka, P.; Teleszko, M.; Wojdyło, A.; Cebulak, T.; Oklejewicz, K. Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits. Int. J. Mol. Sci. 2015, 16, 14540–14553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugasi, A.; Hóvári, J.; Kádár, G.; Denes, F. Phenolics in raspberry, blackberry and currant cultivars grown in Hungary. Acta Aliment. 2011, 40, 52–64. [Google Scholar] [CrossRef]
- Kasım, R.; Şanlıbaba, P.; Kasım, M.U. The Antioxidant Effects of Berry Fruits. In International Congress on Medicinal and Aromatic Plants; Necmettin Erbakan University: Konya, Turkey, 2017; pp. 354–365. ISBN 9786054988266. [Google Scholar]
- Carvalho, M.J.; Gouveia, C.S.; Vieira, A.C.; Pereira, A.C.; Carvalho, M.; Marques, J.C. Nutritional and phytochemical com-position of Vaccinium padifolium sm wild berries and radical scavenging activity. J. Food Sci. 2017, 82, 2554–2561. [Google Scholar] [CrossRef] [PubMed]
- Gavrilova, V.; Kajdžanoska, M.; Gjamovski, V.; Stefova, M. Separation, Characterization and Quantification of Phenolic Compounds in Blueberries and Red and Black Currants by HPLC−DAD−ESI-MSn. J. Agric. Food Chem. 2011, 59, 4009–4018. [Google Scholar] [CrossRef]
- Kim, J.G.; Kim, H.L.; Kim, S.J.; Park, K.-S. Fruit quality, anthocyanin and total phenolic contents, and antioxidant activities of 45 blueberry cultivars grown in Suwon, Korea. J. Zhejiang Univ. Sci. B 2013, 14, 793–799. [Google Scholar] [CrossRef]
- Suh, D.H.; Jung, E.S.; Lee, G.M.; Lee, C.H. Distinguishing six edible berries based on metabolic pathway and bioactivity cor-relations by non-targeted metabolite profiling. Front. Plant Sci. 2018, 9, 1462. [Google Scholar] [CrossRef] [Green Version]
- Sidor, A.; Gramza-michałowska, A. Black Chokeberry Aronia Melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapci, B.; Neradová, E.; Čížková, H.; Voldřich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant potential of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Choi, I.S. Comparison of the phenolic composition and antioxidant activity of Korean black raspberry, Bokbunja, (Rubus coreanusMiquel) with those of six other berries. CyTA-J. Food 2016, 15, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Mullen, W.; Marks, S.C.; Crozier, A. Evaluation of Phenolic Compounds in Commercial Fruit Juices and Fruit Drinks. J. Agric. Food Chem. 2007, 55, 3148–3157. [Google Scholar] [CrossRef] [PubMed]
- José Jara-Palacios, M.; Hernanz, D.; Escudero-Gilete, M.L.; Heredia, F.J. Antioxidant potential of white grape pomaces: Phe-nolic composition and antioxidant capacity measured by spectrophotometric and cyclic voltammetry methods. Food Res. Int. 2014, 66, 150–157. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera white grape cultivars. J. Food Compos. Anal. 2010, 23, 699–705. [Google Scholar] [CrossRef]
- Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef] [PubMed]
- Duymuş, H.G.; Göger, F.; Başer, K.H.C. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 2014, 155, 112–119. [Google Scholar] [CrossRef]
- Zhou, G.; Chen, L.; Sun, Q.; Mo, Q.-G.; Sun, W.-C.; Wang, Y.-W. Maqui berry exhibited therapeutic effects against DSS-induced ulcerative colitis in C57BL/6 mice. Food Funct. 2019, 10, 6655–6665. [Google Scholar] [CrossRef]
- Genskowsky, E.; Puente, L.A.; Pérez-Álvarez, J.A.; Fernández-López, J.; Muñoz, L.A.; Viuda-Martos, M. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric. 2016, 96, 4235–4242. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Venskutonis, P.R. Valorization of Fruit Processing By-Products, 1st ed.; Galanakis, C., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128171066. [Google Scholar]
- Zorzi, M.; Gai, F.; Medana, C.; Aigotti, R.; Morello, S.; Peiretti, P.G. Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods 2020, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Kelly, E.; Vyas, P.; Weber, J.T. Biochemical Properties and Neuroprotective Effects of Compounds in Various Species of Berries. Molecules 2017, 23, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzoni, L.; Perez-Lopez, P.; Giampieri, F.; Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Quiles, J.L.; Mezzetti, B.; Battino, M. The genetic aspects of berries: From field to health. J. Sci. Food Agric. 2016, 96, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Govers, C.; Kasikci, M.B.; Van Der Sluis, A.A.; Mes, J.J. Review of the health effects of berries and their phytochemicals on the digestive and immune systems. Nutr. Rev. 2018, 76, 29–46. [Google Scholar] [CrossRef]
- Foito, A.; McDougall, G.J.; Stewart, D. Evidence for Health Benefits of Berries. Annu. Plant Rev. Online 2018, 1, 105–148. [Google Scholar]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gas-trointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef] [Green Version]
- Sangiovanni, E.; Fumagalli, M.; Dell’Agli, M. Berries: Gastrointestinal Protection against Oxidative Stress and Inflammation; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128093009. [Google Scholar]
- Philip, N.; Walsh, L.J. Cranberry Polyphenols: Natural Weapons against Dental Caries. Dent. J. 2019, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Pärnänen, P.; Nikula-Ijäs, P.; Sorsa, T. Antimicrobial and anti-inflammatory lingonberry mouthwash—A clinical pilot study in the oral cavity. Microorganisms 2019, 7, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Lagha, A.; Howell, A.; Grenier, D. Highbush blueberry proanthocyanidins alleviate Porphyromonas gingivalis-induced deleterious effects on oral mucosal cells. Anaerobe 2020, 65, 102266. [Google Scholar] [CrossRef] [PubMed]
- Kranz, S.; Guellmar, A.; Olschowsky, P.; Tonndorf-Martini, S.; Heyder, M.; Pfister, W.; Reise, M.; Sigusch, B. Antimicrobial Effect of Natural Berry Juices on Common Oral Pathogenic Bacteria. Antibiotics 2020, 9, 533. [Google Scholar] [CrossRef]
- Medda, R.; Lyros, O.; Schmidt, J.L.; Jovanovic, N.; Nie, L.; Link, B.J.; Otterson, M.F.; Stoner, G.D.; Shaker, R.; Rafiee, P. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endo-thelial cells. Microvasc. Res. 2015, 97, 167–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabri, M.-A.; Tounsi, H.; Rtibi, K.; Marzouki, L.; Sakly, M.; Sebai, H. Ameliorative and antioxidant effects of myrtle berry seed (Myrtus communis) extract during reflux-induced esophagitis in rats. Pharm. Biol. 2016, 54, 1575–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabri, M.-A.; Marzouki, L.; Sebai, H. Ethnobotanical, phytochemical and therapeutic effects of Myrtus communis L. berries seeds on gastrointestinal tract diseases: A review. Arch. Physiol. Biochem. 2018, 124, 390–396. [Google Scholar] [CrossRef]
- Jabri, M.-A.; Rtibi, K.; Tounsi, H.; Hosni, K.; Marzouki, L.; Sakly, M.; Sebai, H. Fatty acid composition and mechanisms of the protective effects of myrtle berry seed aqueous extract in alcohol-induced peptic ulcer in rat. Can. J. Physiol. Pharmacol. 2017, 95, 510–521. [Google Scholar] [CrossRef]
- Giampieri, F.; Cianciosi, D.; Forbes-Hernández, T.Y. Myrtle (Myrtus communis L.) berries, seeds, leaves, and essential oils: New undiscovered sources of natural compounds with promising health benefits. Food Front. 2020, 1, 276–295. [Google Scholar] [CrossRef]
- Sangiovanni, E.; Vrhovsek, U.; Rossoni, G.; Colombo, E.; Brunelli, C.; Brembati, L.; Trivulzio, S.; Gasperotti, M.; Mattivi, F.; Bosisio, E.; et al. Ellagitannins from Rubus Berries for the Control of Gastric Inflammation: In Vitro and In Vivo Studies. PLoS ONE 2013, 8, e71762. [Google Scholar] [CrossRef] [Green Version]
- Si, W.Z.; Hu, X.X.; Shen, C.; Luo, M.X.; Xuan, Y.H.; Fu, H.J.; Xing, G.; Zhang, H.F.; Zhang, J.; Liu, Z. Protective Effect of Schisandra chinensis extract against ethanol-induced gastric ulcers in mice by promoting anti-inflammatory and mucosal defense mechanisms. Rev. Bras. Farmacogn. 2020, 30, 780–788. [Google Scholar] [CrossRef]
- Jabri, M.-A.; Rtibi, K.; Sakly, M.; Marzouki, L.; Sebai, H. Role of gastrointestinal motility inhibition and antioxidant properties of myrtle berries (Myrtus communis L.) juice in diarrhea treatment. Biomed. Pharmacother. 2016, 84, 1937–1944. [Google Scholar] [CrossRef]
- Nesello, L.A.N.; Beleza, M.L.M.L.; Mariot, M.; Mariano, L.N.B.; de Souza, P.; Campos, A.; Cechinel-Filho, V.; Andrade, S.F.; Da Silva, L.M. Gastroprotective Value of Berries: Evidences from Methanolic Extracts of Morus nigra and Rubus niveus Fruits. Gastroenterol. Res. Pract. 2017, 2017, 7089697. [Google Scholar] [CrossRef] [Green Version]
- Cury, B.J.; Boeing, T.; Somensi, L.B.; Mariano, L.N.B.; de Andrade, S.F.; Breviglieri, E.; Klein-Junior, L.C.; de Souza, P.; da Silva, L.M. Açaí berries (Euterpe oleracea Mart.) dried extract improves ethanol-induced ulcer in rats. J. Pharm. Pharmacol. 2020, 72, 1239–1244. [Google Scholar] [CrossRef]
- Paulrayer, A.; Adithan, A.; Lee, J.H.; Moon, K.H.; Kim, D.G.; Im, S.Y.; Kang, C.-W.; Kim, N.S.; Kim, J.-H. Aronia melanocarpa (Black Chokeberry) Reduces Ethanol-Induced Gastric Damage via Regulation of HSP-70, NF-κB, and MCP-1 Signaling. Int. J. Mol. Sci. 2017, 18, 1195. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Hra, H.; Chiji, H.; Kasai, T. Gastroprotective effect of red pigments in black chokeberry fruit (Aroniamelano-carpa Elliot) on acute gastric hemorrhagic lesions in rats. J. Agric. Food Chem. 2004, 52, 2226–2229. [Google Scholar] [CrossRef] [PubMed]
- Valcheva-Kuzmanova, S.; Denev, P.; Eftimov, M.; Georgieva, A.; Kuzmanova, V.; Kuzmanov, A.; Kuzmanov, K.; Tzaneva, M. Protective effects of Aronia melanocarpa juices either alone or combined with extracts from Rosa canina or Alchemilla vul-garis in a rat model of indomethacin-induced gastric ulcers. Food Chem. Toxicol. 2019, 132, 110739. [Google Scholar] [CrossRef] [PubMed]
- Valcheva-Kuzmanova, S.; Kuzmanov, A.; Kuzmanova, V.; Tzaneva, M. Aronia melanocarpa fruit juice ameliorates the symptoms of inflammatory bowel disease in TNBS-induced colitis in rats. Food Chem. Toxicol. 2018, 113, 33–39. [Google Scholar] [CrossRef]
- Hsieh, S.Y.; Lian, Y.Z.; Lin, I.H.; Yang, Y.C.; Tinkov, A.A.; Skalny, A.V.; Chao, J.C.J. Combined Lycium babarum polysac-charides and C-phycocyanin increase gastric Bifidobacterium relative abundance and protect against gastric ulcer caused by aspirin in rats. Nutr. Metab. 2021, 18, 4. [Google Scholar] [CrossRef]
- Agulló, V.; González-Trujano, M.E.; Hernandez-Leon, A.; Estrada-Camarena, E.; Pellicer, F.; García-Viguera, C. Antino-ciceptive effects of maqui-berry (Aristotelia chilensis (Mol.) Stuntz). Int. J. Food Sci. Nutr. 2021, 72, 947–955. [Google Scholar] [CrossRef]
- Lavefve, L.; Howard, L.R.; Carbonero, F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct. 2020, 11, 45–65. [Google Scholar] [CrossRef]
- Skenderidis, P.; Mitsagga, C.; Lampakis, D.; Petrotos, K.; Giavasis, I. The Effect of Encapsulated Powder of Goji Berry (Lycium barbarum) on Growth and Survival of Probiotic Bacteria. Microorganisms 2019, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Nagamani, S.; Sahoo, R.; Muneeswaran, G.; Narahari Sastry, G. Data Science Driven Drug Repurposing for Metabolic Dis-orders. In In Silico Drug Design; Elsevier: Amsterdam, The Netherlands, 2019; pp. 191–227. [Google Scholar]
- Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016.
- Krentz, A.J.; Patel, M.B.; Bailey, C.J. New drugs for type 2 diabetes mellitus: What is their place in therapy? Drugs 2008, 68, 2131–2162. [Google Scholar] [CrossRef]
- Sénéchal, M.; Slaght, J.; Bharti, N.; Bouchard, D.R. Independent and combined effect of diet and exercise in adults with pre-diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2014, 7, 521–529. [Google Scholar]
- Ullah, H.; De Filippis, A.; Santarcangelo, C.; Daglia, M. Epigenetic regulation by polyphenols in diabetes and related compli-cations. Med. J. Nutr. Metab. 2020, 13, 289–310. [Google Scholar] [CrossRef]
- Edirisinghe, I.; Burton-Freeman, B. Anti-diabetic actions of Berry polyphenols—Review on proposed mechanisms of action. J. Berry Res. 2016, 6, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Jeon, Y.-D.; Kang, S.-H.; Moon, K.-H.; Lee, J.-H.; Kim, D.-G.; Kim, W.; Kim, J.-S.; Ahn, B.-Y.; Jin, J.-S. The Effect of Aronia Berry on Type 1 Diabetes In Vivo and In Vitro. J. Med. Food 2018, 21, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Kinasih, L.S.; Djamiatun, K.; Al-Baarri, A.N. Golden berry (Physalis peruviana) juice for reduction of blood glucose and ame-lioration of insulin resistance in diabetic rats. J. Gizi Dan Pangan 2020, 15, 37–44. [Google Scholar] [CrossRef]
- Sharma, A.; Kim, J.W.; Ku, S.-K.; Choi, J.-S.; Lee, H.-J. Anti-diabetic effects of blue honeyberry on high-fed-diet-induced type II diabetic mouse. Nutr. Res. Pr. 2019, 13, 367–376. [Google Scholar] [CrossRef]
- Martineau, L.C.; Couture, A.; Spoor, D.; Benhaddou-Andaloussi, A.; Harris, C.; Meddah, B.; Leduc, C.; Burt, A.; Vuong, T.; Le, P.M.; et al. Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 2006, 13, 612–623. [Google Scholar] [CrossRef]
- Whyte, A.R.; Rahman, S.; Bell, L.; Edirisinghe, I.; Krikorian, R.; Williams, C.M.; Burton-Freeman, B. Improved metabolic function and cognitive performance in middle-aged adults following a single dose of wild blueberry. Eur. J. Nutr. 2020, 60, 1521–1536. [Google Scholar] [CrossRef]
- Smith, T.J.; Karl, J.P.; Wilson, M.A.; Whitney, C.C.; Barrett, A.; Farhadi, N.F.; Chen, C.-Y.O.; Montain, S.J. Glycaemic regulation, appetite and ex vivo oxidative stress in young adults following consumption of high-carbohydrate cereal bars fortified with polyphenol-rich berries. Br. J. Nutr. 2019, 121, 1026–1038. [Google Scholar] [CrossRef]
- Paquette, M.; Larqué, A.S.M.; Weisnagel, S.J.; Desjardins, Y.; Marois, J.; Pilon, G.; Dudonné, S.; Marette, A.; Jacques, H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: A parallel, double-blind, controlled and randomised clinical trial. Br. J. Nutr. 2017, 117, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Liu, D.; Jin, Y.; Zhao, J.; Zhao, J.; Li, H.; Li, L.; Zhang, H.; Wang, H. In vitro and in vivo inhibitory effect of anthocya-nin-rich bilberry extract on α-glucosidase and α-amylase. LWT 2021, 145, 111484. [Google Scholar] [CrossRef]
- Boath, A.S.; Stewart, D.; McDougall, G.J. Berry components inhibit α-glucosidase in vitro: Synergies between acarbose and polyphenols from black currant and rowanberry. Food Chem. 2012, 135, 929–936. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.; Guo, S.; Fang, H.; Chang, X. Inhibition of pancreatic α-amylase by Lonicera caerulea berry polyphenols in vitro and their potential as hyperglycemic agents. LWT 2020, 126, 109288. [Google Scholar] [CrossRef]
- Muceniece, R.; Klavins, L.; Kviesis, J.; Jekabsons, K.; Rembergs, R.; Saleniece, K.; Dzirkale, Z.; Saulite, L.; Riekstina, U.; Klavins, M. Antioxidative, hypoglycaemic and hepatoprotective properties of five Vaccinium spp. berry pomace extracts. J. Berry Res. 2019, 9, 267–282. [Google Scholar] [CrossRef]
- Porras-Mija, I.; Chirinos, R.; García-Ríos, D.; Aguilar-Galvez, A.; Huaman-Alvino, C.; Pedreschi, R.; Campos, D. Physico-chemical characterization, metabolomic profile and in vitro antioxidant, antihypertensive, antiobesity and antidiabetic properties of Andean elderberry (Sambucus nigra subsp. peruviana). J. Berry Res. 2020, 10, 193–208. [Google Scholar] [CrossRef]
- Wright, S.M.; Aronne, L.J. Causes of obesity Abdominal Imaging. Imaging 2012, 37, 730–732. [Google Scholar]
- McDougall, G.J.; Stewart, D. The inhibitory effects of berry polyphenols on digestive enzymes. BioFactors 2005, 23, 189–195. [Google Scholar] [CrossRef]
- Peng, C.-H.; Liu, L.-K.; Chuang, C.-M.; Chyau, C.-C.; Wang, C.-J. Mulberry Water Extracts Possess an Anti-obesity Effect and Ability To Inhibit Hepatic Lipogenesis and Promote Lipolysis. J. Agric. Food Chem. 2011, 59, 2663–2671. [Google Scholar] [CrossRef]
- Saponaro, C.; Gaggini, M.; Carli, F.; Gastaldelli, A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 2015, 7, 9453–9474. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Tang, Q.; Gao, Z.; Yu, Z.; Song, H.; Zheng, X.; Chen, W. Blueberry and Mulberry Juice Prevent Obesity Development in C57BL/6 Mice. PLoS ONE 2013, 8, e77585. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Gao, Y.; Guo, X.; Zhang, M.; Gong, L. Blackberry and Blueberry Anthocyanin Supplementation Counteract High-Fat-Diet-Induced Obesity by Alleviating Oxidative Stress and Inflammation and Accelerating Energy Expenditure. Oxidative Med. Cell. Longev. 2018, 2018, 4051232. [Google Scholar] [CrossRef]
- Aranaz, P.; Romo-Hualde, A.; Zabala, M.; Navarro-Herrera, D.; de Galarreta, M.R.; Gil, A.G.; Martinez, J.A.; Milagro, F.I.; González-Navarro, C.J. Freeze-dried strawberry and blueberry attenuates diet-induced obesity and insulin resistance in rats by inhibiting adipogenesis and lipogenesis. Food Funct. 2017, 8, 3999–4013. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hao, W.; He, Z.; Kwek, E.; Zhu, H.; Ma, N.; Ma, K.Y.; Chen, Z.Y. Blueberry and cranberry anthocyanin extracts re-duce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet. Eur. J. Nutr. 2021, 60, 2735–2746. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, K.; Olejnik, A.; Rychlik, J.; Grajek, W. Cranberries (Oxycoccus quadripetalus) inhibit adipogenesis and lipogenesis in 3T3-L1 cells. Food Chem. 2014, 148, 246–252. [Google Scholar] [CrossRef]
- Kowalska, K.; Olejnik, A.; Rychlik, J.; Grajek, W. Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes. Food Chem. 2015, 185, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.S.; You, B.H.; Choi, J.; Chin, Y.W.; Kim, H.; Choi, H.S.; Choi, Y.H. Ginseng berry extract enhances metformin efficacy against obesity and hepatic steatosis in mice fed high-fat diet through increase of metformin uptake in liver. J. Funct. Foods 2019, 62, 103551. [Google Scholar] [CrossRef]
- WHO. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 16 May 2021).
- Prevention of Cardiovascular Disease Guidelines for Assessment and Management of Cardiovascular Risk; World Health Organization: Geneva, Switzerland, 2007.
- Hawkins, J.; Hires, C.; Baker, C.; Keenan, L.; Bush, M. Daily supplementation with aronia melanocarpa (chokeberry) reduces blood pressure and cholesterol: A meta analysis of controlled clinical trials. J. Diet. Suppl. 2021, 18, 517–530. [Google Scholar] [CrossRef]
- Blood Cholesterol|NHLBI, NIH. Available online: https://www.nhlbi.nih.gov/health-topics/blood-cholesterol (accessed on 27 May 2021).
- Liu, S.; Wu, Z.; Guo, S.; Meng, X.; Chang, X. Polyphenol-rich extract from wild Lonicera caerulea berry reduces cholesterol accumulation by mediating the expression of hepatic miR-33 and miR-122, HMGCR, and CYP7A1 in rats. J. Funct. Foods 2018, 40, 648–658. [Google Scholar] [CrossRef]
- Liu, S.; You, L.; Zhao, Y.; Chang, X. Wild Lonicera caerulea berry polyphenol extract reduces cholesterol accumulation and enhances antioxidant capacity in vitro and in vivo. Food Res. Int. 2018, 107, 73–83. [Google Scholar] [CrossRef]
- Kim, B.; Ku, C.S.; Pham, T.X.; Park, Y.; Martin, D.A.; Xie, L.; Taheri, R.; Lee, J.; Bolling, B.W. Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein E knockout mice. Nutr. Res. 2013, 33, 406–413. [Google Scholar] [CrossRef]
- Furlan, C.P.B.; Valle, S.C.; Maróstica, M.R.; Östman, E.; Björck, I.; Tovar, J. Effect of bilberries, lingonberries and cinnamon on cardiometabolic risk-associated markers following a hypercaloric-hyperlipidic breakfast. J. Funct. Foods 2019, 60, 103443. [Google Scholar] [CrossRef]
- Nilsson, A.; Salo, I.; Plaza, M.; Björck, I. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized cross-over study in healthy older adults. PLoS ONE 2017, 12, e0188173. [Google Scholar] [CrossRef]
- Xie, L.; Vance, T.; Kim, B.; Gil Lee, S.; Caceres, C.; Wang, Y.; Hubert, P.A.; Lee, J.-Y.; Chun, O.K.; Bolling, B.W. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutr. Res. 2017, 37, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Naruszewicz, M.; Łaniewska, I.; Millo, B.; Dłużniewski, M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 2007, 194, e179–e184. [Google Scholar] [CrossRef] [PubMed]
- Loo, B.M.; Erlund, I.; Koli, R.; Puukka, P.; Hellström, J.; Wähälä, K.; Mattila, P.; Jula, A. Consumption of chokeberry (Aronia mitschurinii) products modestly lowered blood pressure and reduced low-grade inflammation in patients with mildly elevated blood pressure. Nutr. Res. 2016, 36, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- A Global Brief on Hypertension|A Global Brief on Hyper Tension; World Health Organization: Geneva, Switzerland, 2013.
- Hellström, J.K.; Shikov, A.N.; Makarova, M.N.; Pihlanto, A.M.; Pozharitskaya, O.N.; Ryhänen, E.-L.; Kivijärvi, P.; Makarov, V.G.; Mattila, P.H. Blood pressure-lowering properties of chokeberry (Aronia mitchurinii, var. Viking). J. Funct. Foods 2010, 2, 163–169. [Google Scholar] [CrossRef]
- Sikora, J.; Broncel, M.; Mikiciuk-Olasik, E. Aronia melanocarpa elliot reduces the activity of angiotensin I-converting enzyme-In vitro and EX vivo studies. Oxid. Med. Cell. Longev. 2014, 2014, 739721. [Google Scholar] [CrossRef] [Green Version]
- Yamane, T.; Kozuka, M.; Imai, M.; Yamamoto, Y.; Ohkubo, I.; Sakamoto, T.; Nakagaki, T.; Nakano, Y. Reduction of blood pressure by aronia berries through inhibition of angiotensin-converting enzyme activity in the spontaneously hypertensive rat kidney. Funct. Foods Heal. Dis. 2017, 7, 280. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, W.; Egan, J.M.; Slemmer, J.E.; Shaughnessy, K.S.; Ballem, K.; Gottschall-Pass, K.T.; Sweeney, M.I. Feeding blueberry diets inhibits angiotensin ii-converting enzyme (ACE) activity in spontaneously hypertensive stroke-prone rats. Can. J. Physiol. Pharmacol. 2011, 89, 67–71. [Google Scholar] [CrossRef]
- Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily Blueberry Consumption Improves Blood Pressure and Arterial Stiffness in Postmenopausal Women with Pre- and Stage 1-Hypertension: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Acad. Nutr. Diet. 2015, 115, 369–377. [Google Scholar] [CrossRef]
- Bell, L.; Williams, C.M. A pilot dose–response study of the acute effects of haskap berry extract (Lonicera caerulea L.) on cogni-tion, mood, and blood pressure in older adults. Eur. J. Nutr. 2019, 58, 3325–3334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novotny, J.A.; Baer, D.J.; Khoo, C.; Gebauer, S.K.; Charron, C.S. Cranberry juice consumption lowers markers of cardiomet-abolic risk, including blood pressure and circulating c-reactive protein, triglyceride, and glucose concentrations in adults. J. Nutr. 2015, 145, 1185–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feresin, R.G.; Johnson, S.A.; Pourafshar, S.; Campbell, J.C.; Jaime, S.J.; Navaei, N.; Elam, M.L.; Akhavan, N.S.; Alvarez-Alvarado, S.; Tenenbaum, G.; et al. Impact of daily strawberry consumption on blood pressure and arterial stiffness in pre- and stage 1-hypertensive postmenopausal women: A randomized controlled trial. Food Funct. 2017, 8, 4139–4149. [Google Scholar] [CrossRef] [PubMed]
- Delves, P.J.; Roitt, I.M. The Immune System. N. Engl. J. Med. 2000, 343, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The Adaptive Immune System. In Molecular Biology of the Cell, 4th ed.; Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., Eds.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Gramza-Michałowska, A.; Sidor, A.; Kulczyński, B. Berries as a potential anti-influenza factor—A review. J. Funct. Foods 2017, 37, 116–137. [Google Scholar] [CrossRef]
- Vidal, K.; Bucheli, P.; Gao, Q.; Moulin, J.; Shen, L.-S.; Wang, J.; Blum, S.; Benyacoub, J. Immunomodulatory Effects of Dietary Supplementation with a Milk-Based Wolfberry Formulation in Healthy Elderly: A Randomized, Double-Blind, Placebo-Controlled Trial. Rejuvenation Res. 2012, 15, 89–97. [Google Scholar] [CrossRef]
- Nantz, M.P.; Rowe, C.A.; Muller, C.; Creasy, R.; Colee, J.; Khoo, C.; Percival, S.S. Consumption of cranberry polyphenols enhances human γδ-T cell proliferation and reduces the number of symptoms associated with colds and influenza: A randomized, placebo-controlled intervention study. Nutr. J. 2013, 12, 161. [Google Scholar] [CrossRef] [Green Version]
- Rowe, C.A.; Nantz, M.P.; Nieves, C.; West, R.L.; Percival, S.S. Regular Consumption of Concord Grape Juice Benefits Human Immunity. J. Med. Food 2011, 14, 69–78. [Google Scholar] [CrossRef]
- Gajić, D.; Saksida, T.; Koprivica, I.; Vujicic, M.; Despotovic, S.; Savikin, K.; Jankovic, T.; Stojanovic, I. Chokeberry (Aronia melanocarpa) fruit extract modulates immune response in vivo and in vitro. J. Funct. Foods 2020, 66, 103836. [Google Scholar] [CrossRef]
- Vroman, H.; van den Blink, B.; Kool, M. Mode of dendritic cell activation: The decisive hand in Th2/Th17 cell differentiation. Implications in asthma severity? Immunobiology 2015, 220, 254–261. [Google Scholar] [CrossRef]
- Zhang, W.; Cho, S.-Y.; Xiang, G.; Min, K.-J.; Yu, Q.; Jin, J.-O. Ginseng Berry Extract Promotes Maturation of Mouse Dendritic Cells. PLoS ONE 2015, 10, e0130926. [Google Scholar] [CrossRef] [Green Version]
- Schirbel, A.; Reichert, A.; Roll, S.; Baumgart, D.C.; Büning, C.; Wittig, B.; Wiedenmann, B.; Dignass, A.; Sturm, A. Impact of pain on health-related quality of life in patients with inflammatory bowel disease. World J. Gastroenterol. 2010, 16, 3168–3177. [Google Scholar] [CrossRef]
- Vezza, T.; Rodríguez-Nogales, A.; Algieri, F.; Utrilla, M.P.; Rodriguez-Cabezas, M.E.; Galvez, J. Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients 2016, 8, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgart, D.C.; Carding, S. Inflammatory bowel disease: Cause and immunobiology. Lancet 2007, 369, 1627–1640. [Google Scholar] [CrossRef]
- Pérez-Cano, F.J.; Castell, M. Flavonoids, Inflammation and Immune System. Nutrients 2016, 8, 659. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Xue, Y.; Du, M.; Zhu, M.-J. Preventive effects of Goji berry on dextran-sulfate-sodium-induced colitis in mice. J. Nutr. Biochem. 2017, 40, 70–76. [Google Scholar] [CrossRef]
- Farzaei, M.H.; Elsenduny, F.; Momtaz, S.; Parvizi, F.; Iranpanah, A.; Tewari, D.; Naseri, R.; Abdolghaffari, A.H.; Rezaei, N. An update on dietary consideration in inflammatory bowel disease: Anthocyanins and more. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 1007–1024. [Google Scholar] [CrossRef]
- Kinoshita, E.; Hayashi, K.; Katayama, H.; Hayashi, T.; Obata, A. Anti-influenza virus effects of elderberry juice and its fractions. Biosci. Biotechnol. Biochem. 2012, 76, 1633–1638. [Google Scholar] [CrossRef]
- Yuan, J.; Lu, L.; Zhang, Z.; Zhang, S. Dietary Intake of Resveratrol Enhances the Adaptive Immunity of Aged Rats. Rejuvenation Res. 2012, 15, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Bishayee, A.; Haskell, Y.; Do, C.; Siveen, K.S.; Mohandas, N.; Sethi, G.; Stoner, G.D. Potential Benefits of Edible Berries in the Management of Aerodigestive and Gastrointestinal Tract Cancers: Preclinical and Clinical Evidence. Crit. Rev. Food Sci. Nutr. 2015, 56, 1753–1775. [Google Scholar] [CrossRef]
- De Cedrón, M.G.; Wagner, S.; Reguero, M.; Menéndez-Rey, A.; De Molina, A.R. Miracle Berry as a Potential Supplement in the Control of Metabolic Risk Factors in Cancer. Antioxidants 2020, 9, 1282. [Google Scholar] [CrossRef]
- Qamar, M.; Akhtar, S.; Ismail, T.; Sestili, P.; Tawab, A.; Ahmed, N. Anticancer and anti-inflammatory perspectives of Paki-stan’s indigenous berry Grewia asiatica Linn (Phalsa). J. Berry Res. 2020, 10, 115–131. [Google Scholar] [CrossRef] [Green Version]
- Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Mazzoni, L.; Capocasa, F.; Sabbadini, S.; Alvarez-Suarez, J.M.; Afrin, S.; Rosati, C.; Pandolfini, T.; et al. Overexpression of the Anthocyanidin Synthase Gene in Strawberry Enhances Antioxidant Capacity and Cytotoxic Effects on Human Hepatic Cancer Cells. J. Agric. Food Chem. 2018, 66, 581–592. [Google Scholar] [CrossRef]
- Izquierdo-Vega, J.A.; Morales-González, J.A.; Sánchez-Gutiérrez, M.; Betanzos-Cabrera, G.; Sosa-Delgado, S.M.; Sumaya-Martínez, M.T.; Morales-González, Á.; Paniagua-Pérez, R.; Madrigal-Bujaidar, E.; Madrigal-Santillán, E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 1: Fruits and Polysaccharides. Nutrients 2017, 9, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristo, A.; Klimis-Zacas, D.; Sikalidis, A. Protective Role of Dietary Berries in Cancer. Antioxidants 2016, 5, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessandra-Perini, J.; Rodrigues-Baptista, K.C.; Machado, D.E.; Nasciutti, L.E.; Perini, J.A. Anticancer potential, molecular mechanisms and toxicity of Euterpe oleracea extract (açaí): A systematic review. PLoS ONE 2018, 13, e0200101. [Google Scholar] [CrossRef]
- Calderón-Reyes, C.; Pezoa, R.S.; Leal, P.; Ribera-Fonseca, A.; Cáceres, C.; Riquelme, I.; Zambrano, T.; Peña, D.; Alberdi, M.; Reyes-Díaz, M. Anthocyanin-Rich Extracts of Calafate (Berberis microphylla G. Forst.) Fruits Decrease In Vitro Viability and Migration of Human Gastric and Gallbladder Cancer Cell Lines. J. Soil Sci. Plant Nutr. 2020, 20, 1891–1903. [Google Scholar] [CrossRef]
- Ribera-Fonseca, A.; Jiménez, D.; Leal, P.; Riquelme, I.; Roa, J.C.; Alberdi, M.; Peek, R.M.; Reyes-Díaz, M. The anti-proliferative and anti-invasive effect of leaf extracts of blueberry plants treated with methyl jasmonate on human gastric cancer in vitro is related to their antioxidant properties. Antioxidants 2020, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.; Latimer, C.; Allsopp, P.; Ternan, N.; McMullan, G.; McDougall, G.J.; Stewart, D.; Crozier, A.; Rowland, I.; Gill, C.I.R. In Vitro and in Vivo Models of Colorectal Cancer: Antigenotoxic Activity of Berries. J. Agric. Food Chem. 2014, 62, 3852–3866. [Google Scholar] [CrossRef]
- Flis, S.; Jastrzebski, Z.; Namiesnik, J.; Arancibia-Avila, P.; Toledo, F.; Leontowicz, H.; Leontowicz, M.; Suhaj, M.; Trakhtenberg, S.; Gorinstein, S. Evaluation of inhibition of cancer cell proliferation in vitro with different berries and correlation with their antioxidant levels by advanced analytical methods. J. Pharm. Biomed. Anal. 2012, 62, 68–78. [Google Scholar] [CrossRef]
- Olejnik, A.; Olkowicz, M.; Kowalska, K.; Rychlik, J.; Dembczyński, R.; Myszka, K.; Juzwa, W.; Białas, W.; Moyer, M.P. Gas-trointestinal digested Sambucus nigra L. fruit extract protects in vitro cultured human colon cells against oxidative stress. Food Chem. 2016, 197, 648–657. [Google Scholar] [CrossRef]
- Céspedes-Acuña, C.L.; Xiao, J.; Wei, Z.-J.; Chen, L.; Bastias, J.M.; Avila, J.G.; Alarcon-Enos, J.; Werner-Navarrete, E.; Kubo, I. Antioxidant and anti-inflammatory effects of extracts from Maqui berry Aristotelia chilensis in human colon cancer cells. J. Berry Res. 2018, 8, 275–296. [Google Scholar] [CrossRef]
- Hsieh, K.-Y.; Tsai, J.-Y.; Lin, Y.-H.; Chang, F.-R.; Wang, H.-C.; Wu, C.-C. Golden berry 4β-hydroxywithanolide E prevents tumor necrosis factor α-induced procoagulant activity with enhanced cytotoxicity against human lung cancer cells. Sci. Rep. 2021, 11, 4610. [Google Scholar] [CrossRef] [PubMed]
- Pace, E.; Jiang, Y.; Clemens, A.; Crossman, T.; Rupasinghe, H.V. Impact of Thermal Degradation of Cyanidin-3-O-Glucoside of Haskap Berry on Cytotoxicity of Hepatocellular Carcinoma HepG2 and Breast Cancer MDA-MB-231 Cells. Antioxidants 2018, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mena, J.; Elgueta, E.; Espinola-Gonzales, F.; Cardenas, H.; Orihuela, P.A. Hydroethanolic Extracts of the Aristotelia Chilensis (Maqui) Berry Reduces Cellular Viability and Invasiveness in the Endometrial Cancer Cell Line Ishikawa. Integr. Cancer Ther. 2021, 20, 15347354211007560. [Google Scholar] [CrossRef] [PubMed]
- Aqil, F.; Jeyabalan, J.; Agrawal, A.K.; Kyakulaga, A.-H.; Munagala, R.; Parker, L.; Gupta, R.C. Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food Funct. 2017, 8, 4100–4107. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J.M.; Hagan, C.E.; Bolon, B.; Keene, C.D. Nervous System. In Comparative Anatomy and Histology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 403–444. [Google Scholar]
- Salim, S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [Google Scholar] [CrossRef]
- Umeno, A.; Biju, V.; Yoshida, Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer’s disease, Parkinson’s disease, and diabetes. Free. Radic. Res. 2017, 51, 413–427. [Google Scholar] [CrossRef]
- Lyketsos, C.G.; Carrillo, M.C.; Ryan, J.M.; Khachaturian, A.S.; Trzepacz, P.; Amatniek, J.; Cedarbaum, J.; Brashear, R.; Miller, D.S. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 532–539. [Google Scholar] [CrossRef] [Green Version]
- Cera, M.L.; Ortiz, K.Z.; Bertolucci, P.H.F.; Minett, T.S.C. Speech and orofacial apraxias in Alzheimer’s disease. Int. Psychogeriatr. 2013, 25, 1679–1685. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.A. What causes Alzheimer’s disease? Folia Neuropathol. 2013, 51, 169–188. [Google Scholar] [CrossRef]
- Fish, P.V.; Steadman, D.; Bayle, E.D.; Whiting, P. New approaches for the treatment of Alzheimer’s disease. Bioorganic Med. Chem. Lett. 2019, 29, 125–133. [Google Scholar] [CrossRef]
- Vepsäläinen, S.; Koivisto, H.; Pekkarinen, E.; Mäkinen, P.; Dobson, G.; McDougall, G.J.; Stewart, D.; Haapasalo, A.; Karjalainen, R.O.; Tanila, H.; et al. Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J. Nutr. Biochem. 2013, 24, 360–370. [Google Scholar] [CrossRef]
- Guo, H.; Dong, Y.-Q.; Ye, B.-P. Cranberry extract supplementation exerts preventive effects through alleviating Aβ toxicity in Caenorhabditis elegans model of Alzheimer’s disease. Chin. J. Nat. Med. 2016, 14, 427–433. [Google Scholar] [CrossRef]
- Tan, L.; Yang, H.; Pang, W.; Li, H.; Liu, W.; Sun, S.; Song, N.; Zhang, W.; Jiang, Y. Investigation on the Role of BDNF in the Benefits of Blueberry Extracts for the Improvement of Learning and Memory in Alzheimer’s Disease Mouse Model. J. Alzheimer’s Dis. 2017, 56, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Dal-Pan, A.; Dudonné, S.; Bourassa, P.; Bourdoulous, M.; Tremblay, C.; Desjardins, Y.; Calon, F. Cognitive-Enhancing Effects of a Polyphenols-Rich Extract from Fruits without Changes in Neuropathology in an Animal Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 55, 115–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Politis, M.; Wu, K.; Molloy, S.; Bain, P.G.; Chaudhuri, K.R.; Piccini, P. Parkinson’s disease symptoms: The patient’s perspective. Mov. Disord. 2010, 25, 1646–1651. [Google Scholar] [CrossRef]
- Beitz, J.M. Parkinson’s disease: A review. Front. Biosci. 2014, 6, 65–74. [Google Scholar] [CrossRef]
- Emamzadeh, F.N.; Surguchov, A. Parkinson’s Disease: Biomarkers, Treatment, and Risk Factors. Front. Neurosci. 2018, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Strafella, A.P. Dopaminergic neurotransmission in the human brain: New lessons from perturbation and imaging. Neuroscientist 2012, 18, 149–168. [Google Scholar] [CrossRef] [Green Version]
- Smith, Y.; Wichmann, T.; Factor, S.A.; DeLong, M.R. Parkinson’s Disease Therapeutics: New Developments and Challenges Since the Introduction of Levodopa. Neuropsychopharmacol. 2011, 37, 213–246. [Google Scholar] [CrossRef]
- Gao, X.; Cassidy, A.; Schwarzschild, M.A.; Rimm, E.B.; Ascherio, A. Habitual intake of dietary flavonoids and risk of Par-kinson disease. Neurology 2012, 78, 1138–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.G.; Ju, M.S.; Shim, J.S.; Kim, M.C.; Lee, S.H.; Huh, Y.; Kim, S.Y.; Oh, M.S. Mulberry fruit protects dopaminergic neu-rons in toxin-induced Parkinson’s disease models. Br. J. Nutr. 2010, 104, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, P. Protective effects of fisetin and other berry flavonoids in Parkinson’s disease. Food Funct. 2017, 8, 3033–3042. [Google Scholar] [CrossRef]
- Farbood, Y.; Sarkaki, A.; Dolatshahi, M.; Mansouri, S.M.T.; Khodadadi, A. Ellagic Acid Protects the Brain Against 6-Hydroxydopamine Induced Neuroinflammation in a Rat Model of Parkinson’s Disease. Basic Clin. Neurosci. J. 2015, 6, 83–89. [Google Scholar]
- Dayalu, P.; Albin, R.L. Huntington Disease: Pathogenesis and Treatment. Neurol. Clin. 2015, 33, 101–114. [Google Scholar] [CrossRef]
- Frank, S. Treatment of Huntington’s Disease. Neurotherapeutics 2014, 11, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallscheuer, N.; Menezes, R.; Foito, A.; Da Silva, M.H.; Braga, A.; Dekker, W.; Sevillano, D.M.; Rosado-Ramos, R.; Jardim, C.; Oliveira, J.; et al. Identification and microbial production of the raspberry phenol salidroside that is active against hun-tington’s disease. Plant Physiol. 2019, 179, 969–985. [Google Scholar] [CrossRef] [Green Version]
- Carey, A.N.; Gomes, S.M.; Shukitt-Hale, B. Blueberry Supplementation Improves Memory in Middle-Aged Mice Fed a High-Fat Diet. J. Agric. Food Chem. 2014, 62, 3972–3978. [Google Scholar] [CrossRef]
- Meireles, M.; Marques, C.; Norberto, S.; Fernandes, I.; Mateus, N.; Rendeiro, C.; Spencer, J.P.; Faria, A.; Calhau, C. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet. J. Nutr. Biochem. 2015, 26, 1166–1173. [Google Scholar] [CrossRef]
- Peixoto, H.; Roxo, M.; Krstin, S.; Wang, X.; Wink, M. Anthocyanin-rich extract of Acai (Euterpe precatoria Mart.) mediates neuroprotective activities in Caenorhabditis elegans. J. Funct. Foods 2016, 26, 385–393. [Google Scholar] [CrossRef]
- Touray, F.; Maulik, M.; Scerbak, C.; Vayndorf, E.; Ito, A.B.; Taylor, B. Alaskan berry treatments maintain C. elegans motility and sarcomere integrity with age. FASEB J. 2018, 31, 645.14. [Google Scholar]
- Fragua, V.; Lepoudère, A.; Leray, V.; Baron, C.; Araujo, J.A.; Nguyen, P.; Milgram, N.W. Effects of dietary supplementation with a mixed blueberry and grape extract on working memory in aged beagle dogs. J. Nutr. Sci. 2017, 6, e35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavares, L.; Figueira, I.; McDougall, G.J.; Vieira, H.L.A.; Stewart, D.; Alves, P.M.; Ferreira, R.B.; Santos, C.N. Neuroprotec-tive effects of digested polyphenols from wild blackberry species. Eur. J. Nutr. 2013, 52, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Schön, C.; Mödinger, Y.; Krüger, F.; Doebis, C.; Pischel, I.; Bonnländer, B. A new high-quality elderberry plant extract exerts antiviral and immunomodulatory effects in vitro and ex vivo. Food Agric. Immunol. 2021, 32, 650–662. [Google Scholar] [CrossRef]
- Mauramo, M.; Onali, T.; Wahbi, W.; Vasara, J.; Lampinen, A.; Mauramo, E.; Kivimäki, A.; Martens, S.; Häggman, H.; Sutinen, M.; et al. Bilberry (Vaccinium myrtillus L.) Powder Has Anticarcinogenic Effects on Oral Carcinoma In Vitro and In Vivo. Antioxidants 2021, 10, 1319. [Google Scholar] [CrossRef]
- da Silveira, L.M.; Pedra, N.S.; Bona, N.P.; Spohr, L.; da Silva dos Santos, F.; Saraiva, J.T.; Alvez, F.L.; Meine, B.D.M.; Spanevello, R.M.; Stefanello, F.M.; et al. Selective in vitro anticancer effect of blueberry extract (Vaccinium virgatum) against C6 rat glioma: Exploring their redox status. Metab. Brain Dis. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Żurek, N.; Karatsai, O.; Rędowicz, M.J.; Kapusta, I.T. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Ex-tracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021, 26, 2656. [Google Scholar] [CrossRef]
- Arango-Varela, S.S.; Luzardo-Ocampo, I.; Reyes-Dieck, C.; Yahia, E.M.; Maldonado-Celis, M.E. Antiproliferative potential of Andean Berry (Vaccinium meridionale Swartz) juice in combination with Aspirin in human SW480 colon adenocarcinoma cells. J. Food Biochem. 2021, 45, e13760. [Google Scholar] [CrossRef]
- Navarro-Hortal, M.D.; Romero-Márquez, J.M.; Esteban-Muñoz, A.; Sánchez-González, C.; Rivas-García, L.; Llopis, J.; Quiles, J.L. Strawberry (Fragaria× ananassa cv. Romina) methanolic extract attenuates Alzheimer’s beta amyloid production and oxidative stress by SKN-1/NRF and DAF-16/FOXO mediated mechanisms in C. elegans. Food Chem. 2022, 372, 131272. [Google Scholar] [CrossRef]
- Binosha Fernando, W.M.; Dong, K.; Durham, R.; Stockmann, R.; Jayasena, V. Effect of goji berry on the formation of extra-cellular senile plaques of Alzheimer’s disease. Nutr. Healthy Aging. 2021, 6, 105–116. [Google Scholar] [CrossRef]
- Li, H.; Zheng, T.; Lian, F.; Xu, T.; Yin, W.; Jiang, Y. Anthocyanin-rich blueberry extracts and anthocyanin metabolite proto-catechuic acid promote autophagy-lysosomal pathway and alleviate neurons damage in in vivo and in vitro models of Alz-heimer’s disease. Nutrition 2022, 93, 111473. [Google Scholar] [CrossRef] [PubMed]
- Živković, L.; Bajić, V.; Čabarkapa-Pirković, A.; Dekanski, D.; Forbes-Hernández, T.Y.; Zlatković-Švenda, M.; Spremo-Potparević, B. Strawberry (Fragaria ananassa duch.) Alba extract attenuates DNA damage in lymphocytes of patients with Alzheimer’s disease. J. Food Biochem. 2021, 45, e13637. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Arancibia, R.; Ordoñez, J.L.; Rivas, A.; Pihán, P.; Sagredo, A.; Ahumada, U.; Barriga, A.; Seguel, I.; Cárdenas, C.; Vidal, R.L.; et al. A phenolic-rich extract from Ugni molinae berries reduces abnormal protein aggregation in a cellular model of Huntington’s disease. PLoS ONE 2021, 16, e0254834. [Google Scholar] [CrossRef] [PubMed]
Berry Type | TPC | Expression/Unit | Commonly Found Phenolic Compounds | References |
---|---|---|---|---|
Blackberry | 4016.43 ± 13.44 | mg GAE/100 g DW | Cyanidin, ellagic acid, quercetin | [13,14,15,16,17] |
Raspberry | 735.03 | mg GAE/100 g FW | Ellagic acid, quercetin, kaempferol, cyanidin | [13,17,18] |
Blueberry | 170.9–523.8 | mg GAE/100 g FW | Chlorogenic acid, quercetin, myricetin, cyanidin | [18,19,20,21] |
Chokeberry | 1964–2782 mg | mg GAE/100 g DW | Quercetin, chlorogenic and neochlorogenic acids | [22,23,24,25] |
Korean black raspberry | 291.135 | mg GAE/100 g FW | kaempferol, quercetin, ellagic acid | [22,26] |
White grape | 455–3113 | mg GAE/100 g DW | Catechin, quercetin, kaempferol | [27,28,29] |
Jostaberry | 1593.92 | mg GAE/100 g FW | Ellagic acid, quercetin, myricetin, kaempferol | [13,18] |
Redcurrant | 8.45 | mg GAE/100 g FW | Quercetin, cyanidin, myricetin, kaempferol | [13,18,20] |
Elderberry | 3002 | mg GAE/100 g DW | Cyanidin, Rutin, quercetin, gallic acid, gentisic acid | [30,31] |
Maqui berry | 4974 ± 57 | mg GAE/100 g DW | Kaempferol, quercetin, myricetin, delphinidin, cyanidin | [32,33] |
Berry/Extract | Disease/Disorder/System | Subject | Significant Effects | Reference |
---|---|---|---|---|
Lingonberry | Gastrointestinal system/oral cavity | In vivo (humans) | ↓ viable counts, visible plaque index and probing bleeding | [44] |
Black raspberry extract | Gastrointestinal system/esophagus | In vitro (microvascular endothelial cells) | Anti-inflammatory effect | [47] |
Black chokeberry extract | Gastrointestinal system | In vivo (rats) | ↓ gastric injury formation | [57] |
Goji berry extract | Gastrointestinal system | In vitro | ↑ the growth of probiotic bacteria | [64] |
Golden berry | Metabolism/diabetes | In vivo (humans) | ↓ blood glucose and ↑ insulin resistance | [72] |
Mulberry extract | Metabolism/obesity | In vivo (hamsters) | ↑ body weight ↑ lipolysis factor ↑ lipogenesis factor | [85] |
Blueberry and mulberry | Metabolism/obesity | In vivo (mice) | ↑ lipid accumulation | [87] |
Lonicera caerulea berry | Cardiovascular system/cholesterol | In vivo (rats) | ↓ total and LDL and ↑ HDL cholesterol in serum and liver | [90] |
Aronia | Cardiovascular system/cholesterol | In vivo (humans) | ↓ total and LDL cholesterol | [103] |
Chokeberry | Cardiovascular system/hypertension | In vivo (rats) | ↓ systolic and diastolic blood pressure | [107] |
Blueberry | Cardiovascular system/hypertension | In vivo (rats) | ↓ the ACE activity | [110] |
Purple concord grape (Vitis labrusca) | Immune system | In vivo (humans) | ↑ of γδ-T cells and ↓ of inflammatory cytokine release | [120] |
Chokeberry | Immune system | In vivo (mice) | ↑ phagocytic cell and T cell activities | [121] |
Elderberry | Immune system | In vivo (mice) | ↓ influenza A virus activity | [130] |
Elderberry extract | Immune system | In vitro | ↓ TNF-α and IFN-γ secretion | [178] |
Calafat berry extract | Cancer | In vitro (gastric-AGC and gallbladder-G415 human cancer cell lines) | ↓ viability and migration capacity | [139] |
Maqui berry extract | Cancer | In vitro (human colon cancer cell lines (HT-29 and Caco-2)) | ↓ cell growth ratios | [144] |
Golden berry extract | Cancer | In vitro (non-small cell lung cancer cell lines) | ↓ tissue factor expression and procoagulant activity | [145] |
Anthos berry extract | Cancer | In vitro (ovarian cancer cells) | ↓ p-glycoprotein level | [148] |
Bilberry | Cancer | In vivo and in vitro (oral squamous cell carcinoma cells-HSC-3 and zebrafish) | ↓ viability, proliferation, migration and invasion of HSC-3 cells and tumor area in zebrafish | [179] |
Blueberry extract | Cancer | In vitro (C6 rat glioma cell line) | ↓ viability, proliferation, size of the colonies and cell migration | [180] |
Crataegus berry extract | Cancer | In vitro (highly aggressive human glioblastoma U87MG cell line) | ↓ proliferative and invasive potentials of glioblastoma cells | [181] |
Andean berry | Cancer | In vitro (human SW480 colon adenocarcinoma cells) | ↓ proliferative potential, ↑ late apoptosis stage | [182] |
Blackberry extract | Cancer | In vitro (human stomach-AGS, colon-SW620, liver-HepG2 and skin-SK-Mel-28 cell lines) | ↑ pro-apoptotic activity and early apoptosis stage | [183] |
Cranberry (Vaccinium macrocarpon) | Alzheimer’s Disease | In vivo (Caenorhabditis elegans) | ↔ | [157] |
Blueberry | Alzheimer’s Disease | In vivo (mice) | ↑ memory and learning advancements | [158] |
Goji berry powder | Alzheimer’s Disease | In vitro | ↑ Cell viability ↓ Aβ production | [184] |
Strawberry extract | Alzheimer’s Disease | In vivo (Caenorhabditis elegans) | ↓ Aβ and ROS production | [183] |
Blueberry extract | Alzheimer’s Disease | In vivo (mice) | ↓ Aβ induced cytotoxicity ↑ Autophagy | [185] |
Strawberry Alba extract | Alzheimer’s Disease | In vitro | ↓ Oxidative DNA damage | [186] |
Blueberry, Strawberry | Parkinson’s Disease | In vivo (human) | ↓ the risk of disease | [165] |
Mulberry | Parkinson’s Disease | In vivo (mice) | ↔ | [166] |
Raspberry extracts (Rubus idaeus and var Prestige) | Huntington’s Disease | In vivo (Saccharomyces cerevisiae) | ↔ | [171] |
Chilean berry (Ugni Molinae) extract | Huntington’s Disease | In vitro | ↓ Abnormal protein aggregation | [187] |
Blueberry (Vaccinium ashei) | Nervous System | In vivo (mice) | ↓ recognition memory deficits | [172] |
Blackberry | Nervous System | In vivo (Wistar rats) | ↓ brain inflammation | [173] |
Acai | Nervous System | In vivo (Caenorhabditis elegans) | ↔ for neural activities | [174] |
Blueberries (Vaccinium uliginosum) and lingonberries (Vaccinium vitis-idaea) | Nervous System | In vivo (Caenorhabditis elegans) | ↔ against aging and neurodegenerative disorders | [175] |
Grape and blueberry | Nervous System | In vivo (dogs) | ↑ memory | [176] |
Blackberry (Rubus brigantinus, Rubus vagabundus) | Nervous System | In vitro | ↔ for neural activities | [177] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahapoglu, B.; Erskine, E.; Gultekin Subasi, B.; Capanoglu, E. Recent Studies on Berry Bioactives and Their Health-Promoting Roles. Molecules 2022, 27, 108. https://doi.org/10.3390/molecules27010108
Vahapoglu B, Erskine E, Gultekin Subasi B, Capanoglu E. Recent Studies on Berry Bioactives and Their Health-Promoting Roles. Molecules. 2022; 27(1):108. https://doi.org/10.3390/molecules27010108
Chicago/Turabian StyleVahapoglu, Beyza, Ezgi Erskine, Busra Gultekin Subasi, and Esra Capanoglu. 2022. "Recent Studies on Berry Bioactives and Their Health-Promoting Roles" Molecules 27, no. 1: 108. https://doi.org/10.3390/molecules27010108
APA StyleVahapoglu, B., Erskine, E., Gultekin Subasi, B., & Capanoglu, E. (2022). Recent Studies on Berry Bioactives and Their Health-Promoting Roles. Molecules, 27(1), 108. https://doi.org/10.3390/molecules27010108