Screening of Plant Pollen Sources, Polyphenolic Compounds, Fatty Acids and Antioxidant/Antimicrobial Activity from Bee Pollen
Abstract
:1. Introduction
2. Results and Discussions
2.1. Botanical Origin of Bee Pollen Loads
2.2. Total Phenolic/Flavonoid Content and Antioxidant Capacity
2.3. Polyphenolic Profile
2.4. Fatty Acid Composition
2.5. In Vitro Antibacterial Activity
3. Materials and Methods
3.1. Bee Pollen Loads and Determination of Their Botanical Origin
3.2. Preparation of Bee Pollen Extract
3.3. Yield of Extraction
3.4. Total Phenolic Content (TPC)
3.5. Total Flavonoid Content (TFC)
3.6. Antioxidant Activity
3.6.1. Cupric ion Reducing Antioxidant Capacity (CUPRAC) Assay
3.6.2. Ce(IV)-Based Reducing Capacity (CERAC) Assay
3.7. Liquid Chromatography-Triple Quadrupole Mass Spectroscopy (LC-MS/MS) Analysis
3.8. Fatty Acid Methyl Ester Analysis
3.8.1. Lipid Extraction
3.8.2. Methylation Procedure
3.8.3. Gas Chromatography-Mass Spectroscopy (GC-MS) Conditions
3.9. Determination of Antibacterial Effect
3.9.1. In Vitro Antibacterial Activity of BCPE
3.9.2. Broth Micro-Dilution Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Abouda, Z.; Zerdani, I.; Kalalou, I.; Faid, M.; Ahami, M. The Antibacterial Activity of Moroccan Bee Bread and Bee-Pollen (Fresh and Dried) against Pathogenic Bacteria. Res. J. Microbiol. 2011, 6, 376–384. [Google Scholar]
- Coşkun, T. Fonksiyonel besinlerin sağlığımız üzerine etkileri. Çocuk Sağlığı ve Hastalıkları Dergisi 2005, 48, 61–84. [Google Scholar]
- Suleiman, J.B.; Bakar, A.B.A.; Mohamed, M. Review on Bee Products as Potential Protective and Therapeutic Agents in Male Reproductive Impairment. Molecules 2021, 26, 3421. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.G.R.; Bogdanov, S.; de Almeida-Muradian, L.B.; Szczesna, T.; Mancebo, Y.; Frigerio, C.; Ferreira, F. Pollen composition and standardisation of analytical methods. J. Apic. Res. 2008, 47, 154–161. [Google Scholar] [CrossRef]
- Saisavoey, T.; Sangtanoo, P.; Chanchao, C.; Reamtong, O.; Karnchanatat, A. Identification of novel anti-inflammatory peptides from bee pollen (Apis mellifera) hydrolysate in lipopolysaccharide-stimulated RAW264. 7 macrophages. J. Apic. Res. 2021, 60, 280–289. [Google Scholar] [CrossRef]
- Denisow, B.; Denisow-Pietrzyk, M. Biological and therapeutic properties of bee pollen: A review. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef]
- Duan, H.; Dong, Z.; Li, H.; Li, W.-R.; Shi, S.-X.; Wang, Q.; Cao, W.-G.; Fang, X.-M.; Fang, A.-D.; Zhai, K.-F. Quality evaluation of bee pollens by chromatographic fingerprint and simultaneous determination of its major bioactive components. Food Chem. Toxicol. 2019, 134, 110831. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.S.; Chambó, E.D.; Costa, M.A.P.D.C.; Da Silva, S.M.P.C.; De Carvalho, C.A.L.; Estevinho, L.M. Chemical Composition and Biological Activities of Mono- and Heterofloral Bee Pollen of Different Geographical Origins. Int. J. Mol. Sci. 2017, 18, 921. [Google Scholar] [CrossRef] [Green Version]
- Kostić, A. Ž; Pešić, M.; Trbović, D.; Petronijević, R.; Dramićanin, A.K.; Milojković-Opsenica, D.M.; Tešić, Ž.L. The fatty acid profile of Serbian bee-collected pollen—A chemotaxonomic and nutritional approach. J. Apic. Res. 2017, 56, 533–542. [Google Scholar] [CrossRef]
- Mayda, N.; Özkök, A.; Bayram, N.E.; Gerçek, Y.C.; Sorkun, K. Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 2020, 14, 1795–1809. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Angulo, I.; Paseiro-Losada, P.; Cruz, J.M. Phenolic profile and antioxidant properties of a crude extract obtained from a brewery waste stream. Food Res. Int. 2013, 51, 663–669. [Google Scholar] [CrossRef]
- Campos, M.G.R.; Frigerio, C.; Lopes, J.; Bogdanov, S. What is the future of Bee-Pollen? J. Api. Product Api. Med. Sci. 2010, 2, 131–144. [Google Scholar] [CrossRef]
- de Almeida-Muradian, L.B.; Pamplona, L.C.; Coimbra, S.; Barth, O.M. Chemical composition and botanical evaluation of dried bee pollen pellets. J. Food Compos. Anal. 2005, 18, 105–111. [Google Scholar] [CrossRef]
- Féas, X.; Vázquez-Tato, M.P.; Estevinho, L.; Seijas, J.A.; Iglesias, A. Organic Bee Pollen: Botanical Origin, Nutritional Value, Bioactive Compounds, Antioxidant Activity and Microbiological Quality. Molecules 2012, 17, 8359–8377. [Google Scholar] [CrossRef]
- Halbritter, H.; Ulrich, S.; Grímsson, F.; Weber, M.; Zetter, R.; Hesse, M.; Buchner, R.; Svojtka, M.; Frosch-Radivo, A. Illustrated Pollen Terminology; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Barth, O.M.; Freitas, A.S.; Oliveira, É.S.; Silva, R.A.; Maester, F.M.; Andrella, R.R.; Cardozo, G.M. Evaluation of the botanical origin of commercial dry bee pollen load batches using pollen analysis: A proposal for technical standardization. Acad. Bras. Ciências 2010, 82, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Sorkun, K. Türkiye’nin Nektarlı Bitkileri, Polenleri ve Balları; Palme Yayıncılık: Ankara, Turkey, 2008. [Google Scholar]
- Dufour, C.; Fournier, V.; Giovenazzo, P. Diversity and nutritional value of pollen harvested by honey bee (Hymenoptera: Apidae) colonies during lowbush blueberry and cranberry (Ericaceae) pollination. Can. Èntomol. 2020, 152, 622–645. [Google Scholar] [CrossRef]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2020, 12, 14–29. [Google Scholar] [CrossRef]
- Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef] [Green Version]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Ulusoy, E.; Kolayli, S. Phenolic Composition and Antioxidant Properties of Anzer Bee Pollen. J. Food Biochem. 2013, 38, 73–82. [Google Scholar] [CrossRef]
- Freire, K.R.L.; Lins, A.C.S.; Dórea, M.C.; Santos, F.A.R.; Camara, C.A.; Silva, T.M.S. Palynological Origin, Phenolic Content, and Antioxidant Properties of Honeybee-Collected Pollen from Bahia, Brazil. Molecules 2012, 17, 1652–1664. [Google Scholar] [CrossRef] [Green Version]
- Kalaycıoğlu, Z.; Kaygusuz, H.; Döker, S.; Kolaylı, S.; Erim, F. Characterization of Turkish honeybee pollens by principal component analysis based on their individual organic acids, sugars, minerals, and antioxidant activities. LWT 2017, 84, 402–408. [Google Scholar] [CrossRef]
- Domenici, V.; Gabriele, M.; Parri, E.; Felicioli, A.; Sagona, S.; Pozzo, L.; Biondi, C.; Pucci, L. Phytochemical composition and antioxidant activity of Tuscan bee pollen of different botanic origins. Ital. J. Food Sci. 2015, 27, 248–259. [Google Scholar]
- Mărghitaş, L.A.; Stanciu, O.G.; Dezmirean, D.S.; Bobis, O.; Popescu, O.; Bogdanov, S.; Campos, M.G. In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania. Food Chem. 2009, 115, 878–883. [Google Scholar] [CrossRef]
- Morais, M.; Moreira, L.F.; Feás, X.; Estevinho, L.M. Honeybee-collected pollen from five Portuguese Natural Parks: Palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food Chem. Toxicol. 2011, 49, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Bayram, N.E.; Kara, H.H.; Can, A.M.; Bozkurt, F.; Akman, P.K.; Vardar, S.U.; Çebi, N.; Yılmaz, M.T.; Sağdıç, O.; Dertli, E. Characterization of physicochemical and antioxidant properties of Bayburt honey from the North-east part of Turkey. J. Apic. Res. 2020, 60, 1–11. [Google Scholar] [CrossRef]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evid.-Based Complement. Altern. Med. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Okan, O.T.; Varlibaş, H.; Mehmet, Ö.Z.; Deniz, İ. Antioksidan analiz yöntemleri ve doğu Karadeniz bölgesinde anti-oksidan kaynağı olarak kullanılabilecek odun dışı bazı bitkisel ürünler. Kastamonu Üniversitesi Orman Fakültesi Dergisi 2013, 13, 48–59. [Google Scholar]
- Katalinić, V.; Milos, M.; Modun, D.; Musić, I.; Boban, M. Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem. 2004, 86, 593–600. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Y.; Laura, T.; Liang, X.; Ye, H.; Zeng, X. Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng. Food Chem. 2009, 112, 35–41. [Google Scholar] [CrossRef]
- Saxena, S.; Gautam, S.; Sharma, A. Physical, biochemical and antioxidant properties of some Indian honeys. Food Chem. 2010, 118, 391–397. [Google Scholar] [CrossRef]
- Altiner, D.D.; Altunatmaz, S.S.; Sabuncu, M.; Aksu, F.; Sahan, Y. In-vitro bioaccessibility of antioxidant properties of bee pollen in Turkey. Food Sci. Technol. 2021, 41, 133–141. [Google Scholar] [CrossRef]
- Mosić, M.; Trifković, J.; Vovk, I.; Gašić, U.; Tešić, Živoslav; Šikoparija, B.; Milojković-Opsenica, D. Phenolic Composition Influences the Health-Promoting Potential of Bee-Pollen. Biomolecules 2019, 9, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Arruda, V.A.S.; dos Santos, A.V.; Sampaio, D.F.; Araújo, E.D.S.; Peixoto, A.L.D.C.; Estevinho, L.M.; de Almeida-Muradian, L.B. Brazilian bee pollen: Phenolic content, antioxidant properties and antimicrobial activity. J. Apic. Res. 2021, 60, 775–783. [Google Scholar] [CrossRef]
- Bayram, N.E.; Gercek, Y.C.; Çelik, S.; Mayda, N.; Kostić, A.Ž.; Dramićanin, A.M.; Özkök, A. Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin—similarities and differences. Arab. J. Chem. 2021, 14, 103004. [Google Scholar] [CrossRef]
- Thakur, M.; Nanda, V. Screening of Indian bee pollen based on antioxidant properties and polyphenolic composition using UHPLC-DAD-MS/MS: A multivariate analysis and ANN based approach. Food Res. Int. 2021, 140, 110041. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Alimoglu, G.; Guzelmeric, E.; Yuksel, P.I.; Celik, C.; Deniz, I.; Yesilada, E. Monofloral and polyfloral bee pollens: Comparative evaluation of their phenolics and bioactivity profiles. LWT 2021, 142, 110973. [Google Scholar] [CrossRef]
- de Florio Almeida, J.; dos Reis, A.S.; Heldt, L.F.S.; Pereira, D.; Bianchin, M.; de Moura, C.; Plata-Oviedo, M.V.; Haminiuk, C.W.I.; Ribeiro, I.S.; da Luz, C.F.P.; et al. Lyophilized bee pollen extract: A natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT 2017, 76, 299–305. [Google Scholar] [CrossRef]
- Karkar, B.; Şahin, S.; Güneş, M.E. Evaluation of antioxidant properties and determination of phenolic and carotenoid profiles of chestnut bee pollen collected from Turkey. J. Apic. Res. 2021, 60, 765–774. [Google Scholar] [CrossRef]
- Laaroussi, H.; Bakour, M.; Ousaaid, D.; Aboulghazi, A.; Ferreira-Santos, P.; Genisheva, Z.; Teixeira, J.A.; Lyoussi, B. Effect of antioxidant-rich propolis and bee pollen extracts against D-glucose induced type 2 diabetes in rats. Food Res. Int. 2020, 138, 109802. [Google Scholar] [CrossRef]
- Bogdanov, S. The Bee Pollen Book; Bee Product Science: Muehlethurnen, Switzerland, 2011. [Google Scholar]
- Stanley, R.G.; Linskens, H.F. Pollen: Biology Biochemistry Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Çakmakçı, S.; Tahmas-Kahyaoğlu, D. Yağ Asitlerinin Sağlık ve Beslenme Üzerine Etkilerine Genel Bir Bakış. Acad. Food J. Akad. GIDA 2012, 10, 103–113. [Google Scholar]
- Sagona, S.; Pozzo, L.; Peiretti, P.G.; Biondi, C.; Giusti, M.; Gabriele, M.; Pucci, L.; Felicioli, A. Palynological origin, chemical composition, lipid peroxidation and fatty acid profile of organic Tuscanian bee-pollen. J. Apic. Res. 2017, 56, 136–143. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Mărghitaş, L.A.; Dezmirean, D.S.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Bobiş, O. Predominant and Secondary Pollen Botanical Origins Influence the Carotenoid and Fatty Acid Profile in Fresh Honeybee-Collected Pollen. J. Agric. Food Chem. 2014, 62, 6306–6316. [Google Scholar] [CrossRef]
- Karagözoğlu, Y.; Parlak, A.E.; Alayunt, N.Ö. Bingöl Yöresinden Toplanan Arı Polenlerinin Yağ Asidi Miktarlarının İncelenmesi. Selcuk J. Agric. Food Sci. 2012, 26, 36–41. [Google Scholar]
- Graikou, K.; Kapeta, S.; Aligiannis, N.; Sotiroudis, G.; Chondrogianni, N.; Gonos, E.; Chinou, I. Chemical analysis of Greek pollen—Antioxidant, antimicrobial and proteasome activation properties. Chem. Cent. J. 2011, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Mohdaly, A.A.; Mahmoud, A.A.; Roby, M.H.; Smetanska, I.; Ramadan, M.F. Phenolic Extract from Propolis and Bee Pollen: Composition, Antioxidant and Antibacterial Activities. J. Food Biochem. 2015, 39, 538–547. [Google Scholar] [CrossRef]
- Cabrera, C.; Montenegro, G. Pathogen control using a natural Chilean bee pollen extract of known botanical origin. Ciencia Investigación Agraria 2013, 40, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Just, T.; Wodehouse, R.P. Pollen Grains, Their Structure, Identification and Significance in Science and Medicine. Am. Midl. Nat. 1936, 17, 574. [Google Scholar] [CrossRef]
- Available online: https://www.paldat.org/ (accessed on 4 February 2020).
- Zhou, J.; Qi, Y.; Ritho, J.; Zhang, Y.; Zheng, X.; Wu, L.; Li, Y.; Sun, L. Flavonoid glycosides as floral origin markers to discriminate of unifloral bee pollen by LC–MS/MS. Food Control 2015, 57, 54–61. [Google Scholar] [CrossRef]
- Zhang, S.-Q.; Bi, H.-M.; Liu, C.-J. Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Sep. Purif. Technol. 2007, 57, 277–282. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Santos, F.; Segundo, M.A.; Reis, S.; Lima, J.L. Rapid microplate high-throughput methodology for assessment of Folin-Ciocalteu reducing capacity. Talanta 2010, 83, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [Green Version]
- Ozyurt, D.; Demirata, B.; Apak, R. Determination of total antioxidant capacity by a new spectrophotometric method based on Ce(IV) reducing capacity measurement. Talanta 2007, 71, 1155–1165. [Google Scholar] [CrossRef]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef]
- Iupac, C.P. Standard Methods for the Analysis of Oils, Fats and Derivatives. International Union of Pure and Applied Chemistry; Blackwell Scientific Publications: Oxford, UK, 1989; pp. 99–102. Available online: https://old.iupac.org/publications/books/ISBN0632033371_compress.pdf (accessed on 23 December 2021).
- Fatrcová-Šramková, K.; Nôžková, J.; Kačániová, M.; Máriássyová, M.; Rovná, K.; Stricik, M. Antioxidant and antimicrobial properties of monofloral bee pollen. J. Environ. Sci. Health Part B 2013, 48, 133–138. [Google Scholar] [CrossRef]
- Kačániová, M.; Vuković, N.; Chlebo, R.; Haščík, P.; Rovná, K.; Cubon, J.; Dżugan, M.; Pasternakiewicz, A. The antimicrobial activity of honey, bee pollen loads and beeswax from Slovakia. Arch. Biol. Sci. 2012, 64, 927–934. [Google Scholar] [CrossRef]
- Šimunović, K.; Abramovič, H.; Lilek, N.; Angelova, M.; Podržaj, L.; Možina, S.S. Microbiological Quality, Antioxidative And Antimicrobial Properties of Slovenian Bee Pollen. Agrofor 2019, 4, 4. [Google Scholar] [CrossRef]
TPC (mg GA/g) | TFC (mg QE/g) | CUPRAC (mg Trolox/g) | CERAC (mg Trolox/g) |
---|---|---|---|
173.52 ± 1.87 | 79.21 ± 5.89 | 85.59 ± 5.95 | 118.13 ± 19.90 |
Compounds | Retention Time (min) | RSD (%) | [M−H]− m/z | Ion Pair | R2 (Linearity) | Concentrations (µg/kg) |
---|---|---|---|---|---|---|
Gallic acid | 1.552 | 0.482 | 168.9 | 168.9/125; 168.9/78.8 | 0.9983 | 585.52 ± 31.84 |
Protocatechuic acid | 1.830 | 0.482 | 153.1 | 153.1/109.1; 153.1/90.8 | 0.9980 | 441.94 ± 21.13 |
2,5-Dihydroxybenzoic acid | 2.084 | 0.482 | 152.9 | 152.9/107.9; 152.9/53.1 | 0.9966 | 58.80 ± 3.95 |
Caffeic acid | 3.579 | 0.488 | 179 | 179/135.1; 179/117.3 | 0.9983 | 928.56 ± 74.33 |
Syringic acid | 3.603 | 0.489 | 196.9 | 196.9/182.1; 196.9/121.1 | 0.9967 | 284.24 ± 17.30 |
Salicyclic acid | 3.691 | 0.577 | 136.8 | 136.8/93.1; 136.8/65 | 0.9947 | 314.11 ± 4.39 |
Chlorogenic acid | 3.701 | 0.488 | 352.9 | 352.9/191; 352.9/82 | 0.9982 | Nd |
Catechin | 3.888 | 1.155 | 288.9 | 288.9/245; 288.9/205 | 0.9971 | 37.26 ± 1.78 |
Rutin | 3.911 | 0.494 | 609 | 609/299.9; 609/270.9 | 0.9975 | 115442.25 ± 7774.28 |
Sinapic acid | 3.924 | 0.417 | 222.9 | 222.9/208; 222.9/120.9 | 0.9946 | Nd |
p-Coumaric acid | 3.986 | 0.551 | 163.1 | 163.1/118.9; 163.1/93 | 0.9972 | 1508.98 ± 91.89 |
Naringin | 4.030 | 0.491 | 579.1 | 579.1/458.9; 579.1/271 | 0.9990 | Nd |
Trans ferulic acid | 4.045 | 0.442 | 193 | 193/177.9; 193/134.1 | 0.9982 | 151.84 ± 8.25 |
Ethyl gallate | 4.078 | 0.492 | 197 | 197/169; 197/124 | 0.9971 | 13.45 ± 0.64 |
Phlorizin | 4.081 | 0.540 | 434.1 | 434.8/272.9; 434.8/167 | 0.9977 | Nd |
Myricetin | 4.167 | 0.058 | 317 | 317/178.8; 317/150.9 | 0.9961 | 2220.70 ± 177.76 |
Propyl gallate | 4.171 | 0,539 | 211 | 211/124.1; 211/78 | 0.9963 | Nd |
2-Hydroxytranscinnamic acid | 4.173 | 0,477 | 162.9 | 162.9/119; 162.9/92.8 | 0.9972 | Nd |
Resveratrol | 4.314 | 0.491 | 226.9 | 226.9/184.9; 226.9/142.8 | 0.9983 | Nd |
Luteolin | 4.321 | 0.981 | 284.9 | 284.9/150.9; 284.9/133 | 0.9966 | 250.47 ± 11.97 |
Quercetin | 4.346 | 0.473 | 301 | 301/178.9; 301/150.9 | 0.9964 | 7849.8 ± 528.63 |
Kaempferol | 4.406 | 0.956 | 284.9 | 284.9/226.9; 284.9/93 | 0.9985 | 9870.72 ± 790.14 |
Isorhamnetin | 4.421 | 0.489 | 314.9 | 314.9/299.9; 314.9/151 | 0.9980 | 523.545 ± 31.88 |
Fatty Acids | Formula | Retention Time | % of Total |
---|---|---|---|
Caprylic acid | C8:0 | 5.022 | 0.52 ± 0.03 |
Capric acid | C10:0 | 6.118 | 2.89 ± 0.08 |
Lauric acid | C12:0 | 7.191 | 1.53 ± 0.01 |
Myristic acid | C14:0 | 8.531 | 0.74 ± 0.03 |
Palmitic acid | C16:0 | 10.382 | 5.5 ± 0.31 |
Stearic acid | C18:0 | 12.789 | 1.72 ± 0.05 |
Oleic acid | C18:1n9t | 13.121 | 3.95 ± 0.03 |
Linoleic acid | C18:2n6c | 13.793 | 3.1 ± 0.13 |
Alfa linolenic acid | C18:3n3 | 14.662 | 5.25 ± 0.30 |
Cis-11-Eicosenoic acid | C20:1n9 | 15.959 | 7.27 ± 0.21 |
Erucic acid | C22:1n9 | 18.936 | 5.54 ± 0.04 |
Nervonic acid | C24:1n9 | 21.728 | 2.21 ± 0.09 |
Cis-4,7,10,13,16,19 Docosahexanoic acid | C22:6n3 | 21.892 | 8.21 ± 0.46 |
Microorganisims | BCPE | NC | ||
---|---|---|---|---|
IZD | MIC | IZD | ||
Gram positive | Bacillus cereus ATCC 14579 | 15 | 2.5 | - |
Bacillus cereus BC 6830 | 16 | 2.5 | - | |
Staphylococus aureus ATCC 25923 | 18 | 2.5 | - | |
Staphylococus aureus BC 7231 | 17 | 2.5 | - | |
Staphylococus aureus NCTC 10788 | 18 | 5 | - | |
Gram negative | Escherichia coli ATCC BAA 25-23 | 9 | 10 | - |
Escherichia coli BC 1402 | 10 | 10 | - | |
Escherichia coli NCTC 9001 | 10 | 10 | - | |
Pseudomonas aeruginosa ATCC 9070 | 10 | 10 | - | |
Pseudomonas aeruginosa NCTC 12924 | 10 | 10 | - | |
Salmonella typhimurium RSSK 95091 | 12 | 5 | - | |
Yersinia enterocolitica ATCC 27729 | 11 | 10 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gercek, Y.C.; Celik, S.; Bayram, S. Screening of Plant Pollen Sources, Polyphenolic Compounds, Fatty Acids and Antioxidant/Antimicrobial Activity from Bee Pollen. Molecules 2022, 27, 117. https://doi.org/10.3390/molecules27010117
Gercek YC, Celik S, Bayram S. Screening of Plant Pollen Sources, Polyphenolic Compounds, Fatty Acids and Antioxidant/Antimicrobial Activity from Bee Pollen. Molecules. 2022; 27(1):117. https://doi.org/10.3390/molecules27010117
Chicago/Turabian StyleGercek, Yusuf Can, Saffet Celik, and Sinan Bayram. 2022. "Screening of Plant Pollen Sources, Polyphenolic Compounds, Fatty Acids and Antioxidant/Antimicrobial Activity from Bee Pollen" Molecules 27, no. 1: 117. https://doi.org/10.3390/molecules27010117
APA StyleGercek, Y. C., Celik, S., & Bayram, S. (2022). Screening of Plant Pollen Sources, Polyphenolic Compounds, Fatty Acids and Antioxidant/Antimicrobial Activity from Bee Pollen. Molecules, 27(1), 117. https://doi.org/10.3390/molecules27010117