Amphotericin B and Curcumin Co-Loaded Porous Microparticles as a Sustained Release System against Candida albicans
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microparticles Characteristics, Drug Loading Content (DLC), and Drug Loading Efficiency (DLE)
2.2. AMB and CM Release from the AMB/CM-PLGA MPs
2.3. In Vitro Hemolytic Assay
2.4. In Vivo Nephrotoxicity
2.5. Analysis of the Antifungal Activity In Vitro
2.6. Adhesion Assay and Biofilm Assay
2.7. Antimicrobial Activity In Vivo
3. Materials and Methods
3.1. Chemicals and Reagents and Strains
3.2. Preparation and Characterization of AMB/CM-PLGA MPs
3.3. Drug Loading Content (DLC) and Drug Loading Efficiency (DLE)
3.4. Determination of Drug Release
3.5. Hemolysis Determination
3.6. Nephrotoxicity Determination
3.7. Minimum Inhibitory Concentration (MIC) Assay
3.8. Growth Kinetics of C. albicans
3.9. Inhibition of Adhesion Assay
3.10. XTT/Menadione Reduction Assay
3.11. Dry Mass Measurement of C. albicans Biofilms
3.12. Morphological Observation of C. albicans Biofilms
3.13. In Vivo Antifungal Activities
3.14. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friedman, D.; Schwartz, I. Emerging Fungal Infections: New Patients, New Patterns, and New Pathogens. J. Fungi 2019, 5, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadar, M.; Tiwari, R.; Karthik, K.; Chakraborty, S.; Shahali, Y.; Dhama, K. Candida albicans–Biology, molecular characterization, pathogenicity, and advances in diagnosis and control—An update. Microb. Pathog. 2018, 117, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.; Diekema, D.; Turnidge, J.; Castanheira, M.; Jones, R. Twenty Years of the SENTRY antifungal surveillance program: Results for Candida species from 1997–2016. Open Forum Infect. Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.; Chakrabarti, A.; Li, R.; Patel, A.; Watcharananan, S.; Liu, Z.; Chindamporn, A.; Tan, A.; Sun, P.; Wu, U.; et al. Incidence and species distribution of candidaemia in Asia: A laboratory-based surveillance study. Clin. Microbiol. Infect. Dis. 2015, 21, 946–953. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liao, B.; Cheng, L.; Peng, X.; Xu, X.; Li, Y.; Hu, T.; Li, J.; Zhou, X.; Ren, B. The microbial coinfection in COVID-19. Appl. Microbiol. Biotechnol. 2020, 104, 7777–7785. [Google Scholar] [CrossRef]
- Gow, N.; van de Veerdonk, F.; Brown, A.; Netea, M. Candida albicans morphogenesis and host defence: Discriminating invasion from colonization. Nat. Rev. Microbiol. 2011, 10, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Bassi, R.; Boriollo, M. Amphotericin B, fluconazole, and nystatin as development inhibitors of Candida albicans biofilms on a dental prosthesis reline material: Analytical models in vitro. J. Prosthet. Dent. 2022, 127, 320–330. [Google Scholar] [CrossRef]
- Rebouças-Silva, J.; Tadini, M.; Devequi-Nunes, D.; Mansur, A.; Silveira-Mattos, S.; de Oliveira, C.; Formiga, F.; Berretta, A.; Marquele-Oliveira, F.; Borges, V. Evaluation of in vitro and in vivo Efficacy of a Novel Amphotericin B-Loaded Nanostructured Lipid Carrier in the Treatment of Leishmania braziliensis Infection. Int. J. Nanomed. 2020, 15, 8659–8672. [Google Scholar] [CrossRef]
- Alvarez, C.; Andes, D.; Kang, J.; Krug, C.; Kwon, G. Antifungal Efficacy of an Intravenous Formulation Containing Monomeric Amphotericin B, 5-Fluorocytosine, and Saline for Sodium Supplementation. Pharm. Res. 2017, 34, 1115–1124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hao, L.; Pan, J.; Gao, Q.; Zhang, J.; Kankala, R.; Wang, S.; Chen, A.; Zhang, H. Microfluidic fabrication of inhalable large porous microspheres loaded with HS-releasing aspirin derivative for pulmonary arterial hypertension therapy. J. Control Release Off. J. Control Release Soc. 2021, 329, 286–298. [Google Scholar] [CrossRef]
- Sousa-Batista, A.; Pacienza-Lima, W.; Ré, M.; Rossi-Bergmann, B. Novel and safe single-dose treatment of cutaneous leishmaniasis with implantable amphotericin B-loaded microparticles. Int. J. Parasitol. Drugs Drug Resist. 2019, 11, 148–155. [Google Scholar] [CrossRef]
- Zhao, F.; Dong, H.; Wang, Y.; Wang, T.; Yan, Z.; Yan, F.; Zhang, D.; Cao, Y.; Jin, Y. Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp. MedChemComm 2017, 8, 1093–1102. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, Y.; Xu, M.; Wang, C.; Huang, J.; Zhang, H.; Meng, S.; Xie, M.; Tao, A.; Li, X. Curcumin-Silk Fibroin Nanoparticles for Enhanced Anti-Candida albicans Activity in vitro and in vivo. J. Biomed. Nanotechnol. 2019, 15, 769–778. [Google Scholar] [CrossRef]
- Yang, C.; Xue, B.; Song, W.; Kan, B.; Zhang, D.; Yu, H.; Shen, N.; Li, X.; Tang, Z.; Chen, X. Reducing the toxicity of amphotericin B by encapsulation using methoxy poly (ethylene glycol)-b-poly (l-glutamic acid-co-l-phenylalanine). Biomater. Sci. 2018, 6, 2189–2196. [Google Scholar] [CrossRef]
- Kim, I.; Byeon, H.; Kim, T.; Lee, E.; Oh, K.; Shin, B.; Lee, K.; Youn, Y. Doxorubicin-loaded highly porous large PLGA microparticles as a sustained- release inhalation system for the treatment of metastatic lung cancer. Biomaterials 2012, 33, 5574–5583. [Google Scholar] [CrossRef]
- Kim, I.; Byeon, H.; Kim, T.; Lee, E.; Oh, K.; Shin, B.; Lee, K.; Youn, Y. Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials 2013, 34, 6444–6453. [Google Scholar] [CrossRef]
- Xu, M.; Li, G.; Zhang, H.; Chen, X.; Li, Y.; Yao, Q.; Xie, M. Sequential delivery of dual drugs with nanostructured lipid carriers for improving synergistic tumor treatment effect. Drug Deliv. 2020, 27, 983–995. [Google Scholar] [CrossRef]
- Ahmed, S.; Vepuri, S.; Kalhapure, R.; Govender, T. Interactions of dendrimers with biological drug targets: Reality or mystery—A gap in drug delivery and development research. Biomater. Sci. 2016, 4, 1032–1050. [Google Scholar] [CrossRef]
- Mao, H.; Jiang, C.; Xu, L.; Chen, D.; Liu, H.; Xu, Y.; Ma, K.; Wang, M. Ginsenoside protects against AKI via activation of HIF-1α and VEGF-A in the kidney-brain axis. Int. J. Mol. Med. 2020, 45, 939–946. [Google Scholar] [CrossRef]
- Kang, J.; Sun, Y.; Deng, Y.; Liu, Q.; Li, D.; Liu, Y.; Guan, X.; Tao, Z.; Wang, X. Autophagy-endoplasmic reticulum stress inhibition mechanism of superoxide dismutase in the formation of calcium oxalate kidney stones. Biomed. Pharmacother. 2020, 121, 109649. [Google Scholar] [CrossRef]
- De Oliveira, H.; Michaloski, J.; da Silva, J.; Scorzoni, L.; de Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; Yamazaki, D.S.; Fusco-Almeida, A.M.; Giordano, R.J.; et al. Peptides Derived from a Phage Display Library Inhibit Adhesion and Protect the Host against Infection by Paracoccidioides brasiliensis and Paracoccidioides lutzii. Front. Pharmacol. 2016, 7, 509. [Google Scholar] [CrossRef]
- Zhao, K.; Tseng, B.; Beckerman, B.; Jin, F.; Gibiansky, M.; Harrison, J.; Luijten, E.; Parsek, M.; Wong, G. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 2013, 497, 388–391. [Google Scholar] [CrossRef] [Green Version]
- Meletiadis, J.; Siopi, M.; Kanioura, L.; Jørgensen, K.; Perlin, D.; Mouton, J.; Arendrup, M. A multicentre study to optimize echinocandin susceptibility testing of Aspergillus species with the EUCAST methodology and a broth microdilution colorimetric method. J. Antimicrob. Chemother. 2020, 75, 1799–1806. [Google Scholar] [CrossRef]
- Xu, Z.; Liang, Y.; Lin, S.; Chen, D.; Li, B.; Li, L.; Deng, Y. Crystal Violet and XTT Assays on Staphylococcus aureus Biofilm Quantification. Curr. Microbiol. 2016, 73, 474–482. [Google Scholar] [CrossRef]
- Kamaly, N.; Xiao, Z.; Valencia, P. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012, 41, 2971–3010. [Google Scholar] [CrossRef]
- Haque, F.; Sajid, M.; Cameotra, S.; Battacharyya, M. Anti-biofilm activity of a sophorolipid-amphotericin B niosomal formulation against Candida albicans. Biofouling 2017, 33, 768–779. [Google Scholar] [CrossRef]
- Balabathula, P.; Whaley, S.; Janagam, D.; Mittal, N.; Mandal, B.; Thoma, L.; Rogers, P.; Wood, G. Lyophilized Iron Oxide Nanoparticles Encapsulated in Amphotericin B: A Novel Targeted Nano Drug Delivery System for the Treatment of Systemic Fungal Infections. Pharmaceutics 2020, 12, 247. [Google Scholar] [CrossRef] [Green Version]
- Abdelaziz, H.; Gaber, M.; Abd-Elwakil, M.; Mabrouk, M.; Elgohary, M. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Control. Release 2018, 269, 374–392. [Google Scholar] [CrossRef]
- Fang, M.; Jin, Y.; Bao, W.; Gao, H.; Xu, M.; Wang, D.; Wang, X.; Yao, P.; Liu, L. In vitro characterization and in vivo evaluation of nanostructured lipid curcumin carriers for intragastric administration. Int. J. Nanomed. 2012, 7, 5395–5404. [Google Scholar] [CrossRef] [Green Version]
- Ambreen, G.; Rehman, A.; Hussain, K.; Sohail, M.; Javed, S.; Shamim, S.; Ali, U.; Ahmad, K.; Rizvi, A. Neonatal fluid and electrolytes profile effect on amphotericin B associated nephrotoxicity in neonatal tertiary care unit of Karachi-Pakistan. Expert Opin. Drug Saf. 2020, 19, 1209–1217. [Google Scholar] [CrossRef]
- Xue, B.; He, D.; Gao, S.; Wang, D.; Yokoyama, K.; Wang, L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int. J. Nanomed. 2016, 11, 1899–1906. [Google Scholar] [CrossRef] [Green Version]
- Xue, B.; Huang, J.; Zhang, H.; Li, B.; Xu, M.; Zhang, Y.; Xie, M.; Li, X. Micronized curcumin fabricated by supercritical CO to improve antibacterial activity against Pseudomonas aeruginosa. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
Feeding Ratio (PLGA:AMB:CM) | AMB | CM | |||||
---|---|---|---|---|---|---|---|
Feeding AMB Content (wt%) | DLC (wt%) | DLE (%) | Feeding CM Content (wt%) | DLC (wt%) | DLE (%) | ||
A | 18:1:1 | 2 | 2.25 | 45.0 | 2 | 3.05 | 61.0 |
B | 16:1:3 | 2 | 2.41 | 48.2 | 6 | 10.3 | 68.7 |
C | 14:2:4 | 4 | 6.08 | 60.8 | 8 | 14.5 | 72.5 |
D | 12:2:6 | 4 | 6.12 | 61.2 | 12 | 19.2 | 64.0 |
Tested Strains | MIC (μg/mL) | ||
---|---|---|---|
AMB | CM | AMB/CM-PLGA MPs | |
C. albicans ATCC 90028 b | 0.5 | 128 | 8 (0.4864) c |
C. albicans ATCC 10231 b | 0.5 | 256 | 8 (0.4864) c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, B.; Yu, Y.; Peng, G.; Sun, M.; Lv, P.; Li, X. Amphotericin B and Curcumin Co-Loaded Porous Microparticles as a Sustained Release System against Candida albicans. Molecules 2022, 27, 3079. https://doi.org/10.3390/molecules27103079
Xue B, Yu Y, Peng G, Sun M, Lv P, Li X. Amphotericin B and Curcumin Co-Loaded Porous Microparticles as a Sustained Release System against Candida albicans. Molecules. 2022; 27(10):3079. https://doi.org/10.3390/molecules27103079
Chicago/Turabian StyleXue, Baiji, Yanhua Yu, Guoqiang Peng, Mengmeng Sun, Peng Lv, and Xuefeng Li. 2022. "Amphotericin B and Curcumin Co-Loaded Porous Microparticles as a Sustained Release System against Candida albicans" Molecules 27, no. 10: 3079. https://doi.org/10.3390/molecules27103079
APA StyleXue, B., Yu, Y., Peng, G., Sun, M., Lv, P., & Li, X. (2022). Amphotericin B and Curcumin Co-Loaded Porous Microparticles as a Sustained Release System against Candida albicans. Molecules, 27(10), 3079. https://doi.org/10.3390/molecules27103079