Exploitation of Marginal Hilly Land in Tuscany through the Cultivation of Lavandula angustifolia Mill.: Characterization of Its Essential Oil and Antibacterial Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analyses
2.2. Antibacterial Activities
3. Materials and Methods
3.1. Plant Material and Cultivation
3.2. Phytochemical Survey
3.2.1. Essential Oil Extraction
3.2.2. GC–MS Analyses
3.3. Antimicrobial Activity
3.4. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wells, R.; Truong, F.; Adal, A.M.; Sarker, L.S.; Mahmoud, S.S. Lavandula Essential Oils: A Current Review of Applications in Medicinal, Food, and Cosmetic Industries of Lavender. Nat. Prod. Commun. 2018, 10, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Giray, F.H. An Analysis of World Lavender Oil Markets and Lessons for Turkey. J. Essent. Oil-Bear. Plants 2018, 21, 1612–1623. [Google Scholar] [CrossRef]
- Pokajewicz, K.; Białoń, M.; Svydenko, L.; Fedin, R.; Hudz, N. Chemical Composition of the Essential Oil of the New Cultivars of Lavandula angustifolia Mill. Bred in Ukraine. Molecules 2021, 26, 5681. [Google Scholar] [CrossRef] [PubMed]
- Despinasse, Y.; Moja, S.; Soler, C.; Jullien, F.; Pasquier, B.; Bessière, J.M.; Noûs, C.; Baudino, S.; Nicolè, F. Structure of the Chemical and Genetic Diversity of the True Lavender over Its Natural Range. Plants 2020, 9, 1640. [Google Scholar] [CrossRef] [PubMed]
- Fichera, D.; Finizia, A.; Ievoli, C.; Primavera, A.; Lo Moriell, M.S.; Torelli, F.; Trovato, M. Piante Officinali in Italia: Un’istantanea della filiera e dei rapporti tra i diversi attori. Osservatorio economico del settore delle piante ofiicinali. 2013. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/6678 (accessed on 24 April 2022).
- Héral, B.; Stierlin, É.; Fernandez, X.; Michel, T. Phytochemicals from the Genus Lavandula: A Review. Phytochem. Rev. 2021, 20, 751–771. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D.; Zych, S. The Use of Lavender (Lavandula angustifolia) Essential Oil as an Additive to Drinking Water for Broiler Chickens and Its In Vitro Reaction with Enrofloxacin. Animals 2021, 11, 1535. [Google Scholar] [CrossRef] [PubMed]
- Miastkowska, M.; Kantyka, T.; Bielecka, E.; Kałucka, U.; Kamińska, M.; Kucharska, M.; Kilanowicz, A.; Cudzik, D.; Cudzik, K. Enhanced Biological Activity of a Novel Preparation of Lavandula angustifolia Essential Oil. Molecules 2021, 26, 2458. [Google Scholar] [CrossRef]
- Hassiotis, C.N.; Ntana, F.; Lazari, D.M.; Poulios, S.; Vlachonasios, K.E. Environmental and Developmental Factors Affect Essential Oil Production and Quality of Lavandula angustifolia during Flowering Period. Ind. Crop. Prod. 2014, 62, 359–366. [Google Scholar] [CrossRef]
- Najar, B.; Demasi, S.; Caser, M.; Gaino, W.; Cioni, P.L.; Pistelli, L.; Scariot, V. Cultivation Substrate Composition Influences Morphology, Volatilome and Essential Oil of Lavandula angustifolia Mill. Agronomy 2019, 9, 411. [Google Scholar] [CrossRef] [Green Version]
- Mavandi, P.; Abbaszadeh, B.; Emami Bistgani, Z.; Barker, A.V.; Hashemi, M. Biomass, Nutrient Concentration and the Essential Oil Composition of Lavender (Lavandula angustifolia Mill.) Grown with Organic Fertilizers. J. Plant Nutr. 2021, 44, 3061–3071. [Google Scholar] [CrossRef]
- Eldeghedy, H.I.; El-Gendy, A.E.-N.G.; Nassrallah, A.A.; Aboul-Enein, A.M.; Omer, E.A. Comparative Chemical Profiles of Lavandula Species Essential Oils Grown in Egypt and Others from France and Australia: Evidence from Chemometric Analysis. J. Essent. Oil-Bear. Plants 2022, 25, 52–63. [Google Scholar] [CrossRef]
- Pistelli, L.; Najar, B.; Giovanelli, S.; Lorenzini, L.; Tavarini, S.; Angelini, L.G. Agronomic and Phytochemical Evaluation of Lavandin and Lavender Cultivars Cultivated in the Tyrrhenian Area of Tuscany (Italy). Ind. Crop. Prod. 2017, 109, 37–44. [Google Scholar] [CrossRef]
- Détár, E.; Németh, É.Z.; Gosztola, B.; Demján, I.; Pluhár, Z. Effects of Variety and Growth Year on the Essential Oil Properties of Lavender (Lavandula angustifolia Mill.) and Lavandin (Lavandula × intermedia Emeric Ex Loisel.). Biochem. Syst. Ecol. 2020, 90, 104020. [Google Scholar] [CrossRef]
- Li, Y.; Tan, B.; Cen, Z.; Fu, Y.; Zhu, X.; He, H.; Kong, D.; Wu, H. The variation in essential oils composition, phenolic acids and flavonoids is correlated with changes in antioxidant activity during Cinnamomum loureirii bark growth. Arab. J. Chem. 2021, 14, 103249. [Google Scholar] [CrossRef]
- Shiferaw, Y.; Kassahun, A.; Tedla, A.; Feleke, G.; Abebe, A.A. Investigation of Essential Oil Composition Variation with Age of Eucalyptus globulus Growing in Ethiopia. Nat. Prod. Chem. Res. 2019, 7, 360. [Google Scholar] [CrossRef]
- Pereira Rocha, R.; De Castro Melo, E.; Almeida Barbosa, L.C.; Silva Do Santos, R.H.; Cecon, P.R.; Dallacort, R.; Santi, A. Influence of plant age on the content and composition of essential oil of Cymbopogon citratus (DC.) Stapf. J. Med. Plant Res. 2014, 8, 1121–1126. [Google Scholar]
- Blažeković, B.; Yang, W.; Wang, Y.; Li, C.; Kindl, M.; Pepeljnjak, S.; Vladimir-Knežević, S. Chemical composition, antimicrobial and antioxidant activities of essential oils of Lavandula × intermedia ‘Budrovka’ and L. angustifolia cultivated in Croatia. Ind. Corp. Prod. 2018, 123, 173–182. [Google Scholar] [CrossRef]
- Abou Baker, D.H.; Amorowicz, R.; Kandeil, A.; Ali, M.A.; Ibrahim, E.A. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. J. Agric. Food Res. 2021, 4, 100135. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 1995. [Google Scholar]
- National Institute of Standards and Technology (NIST). NIST/EPA/NIH Mass Spectral Library; The NIST Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2014. [Google Scholar]
- NIST Chemistry WebBook. Available online: https://webbook.nist.gov (accessed on 25 September 2021).
- Oroian, C.; Odagiu, A.; Racz, C.P.; Oroian, I.; Mureșan, I.C.; Duda, M.; Ilea, M.; Brașovean, I.; Iederan, C.; Marchiș, Z. Composition of Lavandula angustifolia L. Cultivated in Transylvania, Romania. Not. Bot. Horti Agrobot. 2019, 47, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Tardugno, R.; Serio, A.; Pellati, F.; D’Amato, S.; Chaves López, C.; Bellardi, M.G.; di Vito, M.; Savini, V.; Paparella, A.; Benvenuti, S. Lavandula × intermedia and Lavandula angustifolia Essential Oils: Phytochemical Composition and Antimicrobial Activity against Foodborne Pathogens. Nat. Prod. Res. 2019, 33, 3330–3335. [Google Scholar] [CrossRef]
- Boechelmann, A. Monoterpene production and regulation in Lavender (Lavandula angustifolia and Lavandula × intermedia). Master’s Thesis, British Columbia University, Okanagan, BC, Canada, 2008. [Google Scholar]
- Liao, Z.-N.; Huang, Q.; Cheng, Q.-M.; Yu, X.-Y.; Li, X.-P.; Liu, E.-X. Effect of Plant Age on Botanical Characteristics and Chemical Composition of Essential Oil from Lavandin. Plant Sci. J. 2014, 32, 517–521. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; de Martino, L.; Coppola, R.; de Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial Activity and Mechanism of Linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020, 141, 103980. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.; Tambor, K.; Herman, A. Linalool Affects the Antimicrobial Efficacy of Essential Oils. Curr. Microbiol. 2016, 72, 165–172. [Google Scholar] [CrossRef]
- Guo, F.; Chen, Q.; Liang, Q.; Zhang, M.; Chen, W.; Chen, H.; Yun, Y.; Zhong, Q.; Chen, W. Antimicrobial Activity and Proposed Action Mechanism of Linalool Against Pseudomonas fluorescens. Front. Microbiol. 2021, 12, 562094. [Google Scholar] [CrossRef]
- Huang, J.; Yang, L.; Luo, S.; Wang, X.; Liang, Y.; Du, Y.; Feng, R.; Wie, Q. Antibacterial activity and mechanism of three isomeric terpineols of Cinnamomum longepaniculatum leaf oil. Folia Microbiol. 2021, 66, 59–67. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Demasi, S.; Caser, M.; Lonati, M.; Cioni, P.L.; Pistelli, L.; Najar, B.; Scariot, V. Latitude and Altitude Influence Secondary Metabolite Production in Peripheral Alpine Populations of the Mediterranean Species Lavandula angustifolia Mill. Front. Plant Sci. 2018, 9, 983. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Cerri, D. A Novel Interpretation of the Fractional Inhibitory Concentration Index: The Case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst Essential Oils against Staphylococcus aureus Strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef] [PubMed]
Compounds | LRIexp | LRIlit | Class | 1st Year | 2nd Year | 3rd Year | 4th Year | Correlation Coefficient$ |
---|---|---|---|---|---|---|---|---|
Relative abundance (%) | ||||||||
α-thujene | 929 | 930 | mh | -c | 0.2 ± 0.02a | 0.1 ± 0.01b | 0.2 ± 0.01a | |
α-pinene | 937 | 939 | mh | 0.1 ± 0.08b | 0.4 ± 0.02a | 0.1 ± 0.00b | 0.3 ± 0.05a | |
camphene | 952 | 946 | mh | 0.1 ± 0.03a | 0.2 ± 0.01a | -b | 0.1 ± 0.02a | |
1-octen-3-ol | 979 | 978 | nt | - | - | - | 0.3 ± 0.00 | 0.8 |
3-octanone | 986 | 983 | nt | 0.5 ± 0.09b | 0.8 ± 0.04ab | 0.8 ± 0.07a | 0.9 ± 0.06a | 0.9 |
β-myrcene | 991 | 990 | mh | 0.4 ± 0.07b | 1.0 ± 0.03a | 0.9 ± 0.10a | 0.9 ± 0.06a | 0.7 |
3-octanol | 995 | 991 | nt | 0.2 ± 0.03a | -b | -b | -b | −0.7 |
butyl butanoate | 996 | 994 | nt | -c | 0.2 ± 0.01a | -c | 0.2 ± 0.01b | |
α-phellandrene | 1005 | 1002 | mh | -b | 0.1 ± 0.00a | -b | -b | |
n-hexyl acetate | 1012 | 1009 | nt | 0.2 ± 0.02b | 0.7 ± 0.04ab | 1.1 ± 0.18a | 0.3 ± 0.04b | |
α-terpinene | 1017 | 1017 | mh | -b | 0.1 ± 0.00a | -b | -b | |
o-cymene | 1022 | 1026 | mh | 0.2 ± 0.01a | 0.2 ± 0.00a | -b | 0.2 ± 0.05a | |
limonene | 1030 | 1029 | mh | 0.3 ± 0.03b | 0.7 ± 0.06a | 0.4 ± 0.05b | 0.6 ± 0.07a | |
δ-3-carene | 1031 | 1030 | mh | -b | -b | -b | 0.5 ± 0.20a | 0.8 |
eucalyptol | 1032 | 1031 | om | 1.0 ± 0.03b | 2.0 ± 0.01a | 0.5 ± 0.06c | 0.6 ± 0.02c | |
cis-β-ocimene | 1038 | 1037 | mh | 3.1 ± 0.04b | 4.2 ± 0.17a | 4.0 ± 0.52a | 3.9 ± 0.25a | |
trans-β-ocimene | 1049 | 1050 | mh | 2.7 ± 0.02c | 4.0 ± 0.18a | 3.6 ± 0.08ab | 3.3 ± 0.14b | |
γ-terpinene | 1060 | 1059 | mh | 0.1 ± 0.01c | 0.6 ± 0.01a | 0.2 ± 0.01c | 0.3 ± 0.02b | |
cis-sabinene hydrate | 1066 | 1070 | om | 0.2 ± 0.00b | 0.5 ± 0.02a | 0.2 ± 0.01b | 0.2 ± 0.04b | |
cis-linalool oxide (furanoid) | 1074 | 1072 | om | -c | 0.2 ± 0.01a | 0.1 ± 0.01b | 0.1 ± 0.02b | |
terpinolene | 1088 | 1088 | mh | 0.1 ± 0.01b | 0.4 ± 0.01b | 0.3 ± 0.04b | 0.3 ± 0.03b | |
linalool | 1099 | 1096 | om | 19.3 ± 0.54b | 23.1 ± 2.63b | 27.7 ± 1.80ab | 34.2 ± 1.70a | 0.9 |
1-octen-3-yl-acetate | 1111 | 1112 | nt | 0.6 ± 0.01b | 1.1 ± 0.21a | 0.9 ± 0.20a | 1.1 ± 0.22a | |
3-octanol acetate | 1125 | 1123 | nt | 0.1 ± 0.00a | -b | 0.1 ± 0.01a | 0.1 ± 0.03a | |
camphor | 1145 | 1146 | om | 0.5 ± 0.01a | 0.3 ± 0.01c | 0.1 ± 0.01d | 0.3 ± 0.00b | |
endo-borneol | 1167 | 1169 | om | 1.4 ± 0.15a | 1.6 ± 0.26a | 0.5 ± 0.10b | 0.9 ± 0.22ab | −0.7 |
(3E,5Z)-1,3,5-undecatriene | 1174 | 1173 | nt | -b | -b | 0.1 ± 0.01a | -b | |
lavandulol | 1177 | 1169 | om | 0.8 ± 0.06a | -b | 0.8 ± 0.13a | 0.6 ± 0.08a | |
terpinen-4-ol | 1177 | 1177 | om | 5.4 ± 0.20c | 15.3 ± 0.77a | 5.7 ± 0.73c | 9.3 ± 0.57b | |
p-cymen-8-ol | 1183 | 1182 | om | -b | 0.1 ± 0.00a | -b | -b | |
cryptone | 1184 | 1185 | om | 0.3 ± 0.02b | 0.5 ± 0.03a | 0.2 ± 0.03b | 0.3 ± 0.02b | |
α-terpineol | 1189 | 1188 | om | 1.4 ± 0.02b | 4.0 ± 0.54a | 5.6 ± 0.65a | 4.2 ± 0.41a | 0.7 |
n-hexyl butyrate | 1192 | 1192 | nt | 0.2 ± 0.05b | 0.4 ± 0.05a | -c | 0.3 ± 0.04a | |
nerol | 1228 | 1229 | om | 0.4 ± 0.01b | 0.7 ± 0.03ab | 0.8 ± 0.16a | 0.4 ± 0.08ab | |
cumin aldehyde | 1239 | 1241 | om | 0.2 ± 0.00a | 0.2 ± 0.00a | 0.1 ± 0.01c | -b | −0.8 |
geraniol | 1253 | 1254 | om | -b | -b | -b | 1.0 ± 0.15a | 0.7 |
linalool acetate | 1257 | 1254 | om | 26.3 ± 0.62a | 21.2 ± 1.22ab | 26.0 ± 1.98a | 19.4 ± 1.28b | |
bornyl acetate | 1285 | 1288 | om | 0.2 ± 0.01ab | 0.3 ± 0.01a | 0.1 ± 0.08b | 0.1 ± 0.02ab | |
lavandulyl acetate | 1304 | 1290 | om | 6.1 ± 0.08a | 0.9 ± 0.00b | 10.0 ± 2.14a | 6.1 ± 0.74a | |
neryl acetate | 1364 | 1361 | om | 0.9 ± 0.02c | 1.4 ± 0.02b | 1.8 ± 0.52a | 0.9 ± 0.35c | |
geranyl acetate | 1382 | 1381 | om | 2.0 ± 0.05c | 2.7 ± 0.11b | 3.3 ± 0.82a | 1.9 ± 0.23c | |
n-hexyl hexanoate | 1384 | 1381 | nt | 0.1 ± 0.00a | -b | -b | -b | |
β-caryophyllene | 1419 | 1419 | sh | 7.0 ± 0.08a | 3.5 ± 0.18b | 1.3 ± 0.21c | 3.5 ± 0.09b | −0.7 |
trans-α-bergamotene | 1436 | 1434 | sh | 0.2 ± 0.01a | -b | -b | -b | −0.8 |
α-humulene | 1454 | 1455§ | sh | 0.2 ± 0.00a | 0.1 ± 0.01b | -c | -c | −0.9 |
(E)-β-farnesene | 1457 | 1456 | sh | 2.9 ± 0.07a | 2.0 ± 0.08b | 1.8 ± 0.03b | 0.6 ± 0.01c | −1 |
germacrene D | 1481 | 1485 | sh | 1.4 ± 0.05a | 0.4 ± 0.00b | 0.3 ± 0.00b | 0.3 ± 0.01b | |
γ-amorphene | 1496 | 1495 | sh | -b | 0.3 ± 0.01a | -b | -b | −0.8 |
trans-γ-cadinene | 1514 | 1513§ | sh | 1.5 ± 0.06a | -b | -b | 0.1 ± 0.00b | −0.7 |
caryophyllene oxide | 1581 | 1583 | os | 2.1 ± 0.13a | 0.8 ± 0.19b | 0.5 ± 0.06b | 0.3 ± 0.10b | −0.9 |
1,10-di-epi-cubenol | 1619 | 1619 | os | 0.4 ± 0.02a | -b | -b | -b | −0.8 |
1-epi-cubenol | 1627 | 1628 | os | -b | 0.1 ± 0.00a | -b | -b | |
tau-cadinol | 1640 | 1640 | os | 5.7 ± 0.35a | 2.1 ± 0.20b | 0.1 ± 0.00c | 0.5 ± 0.21c | −0.9 |
cis-14-nor-muurol-5-en-4-one | 1689 | 1689 | os | 0.7 ± 0.06a | 0.1 ± 0.02b | -c | -c | −0.9 |
10-peroxy-murolan-3,9(11)-diene | 1730 | 1729* | os | 0.1 ± 0.01a | -b | -b | -b | −0.8 |
hexahydrofarnesyl acetone | 1845 | 1845 | ac | 0.1 ± 0.02a | -b | -b | -b | −0.8 |
Yield (w/v) | VLc | 1.16b | 1.36a | 1.32a | ||||
Class of Compounds | 1st Year | 2nd Year | 3rd Year | 4th Year | ||||
monoterpene hydrocarbons (mh) | 7.0 ± 0.08d | 12.0 ± 0.85a | 9.5 ± 0.74c | 10.8 ± 0.65b | ||||
oxygenated monoterpenes (om) | 66.1 ± 1.22d | 74.3 ± 0.85c | 82.9 ± 1.01a | 80.3 ± 2.10b | ||||
sesquiterpene hydrocarbons (sh) | 13.1 ± 0.27a | 6.3 ± 0.28b | 3.4 ± 0.24d | 4.5 ± 0.27c | ||||
oxygenated sesquiterpenes (os) | 9.0 ± 0.57a | 3.2 ± 0.41b | 0.6 ± 0.06c | 0.8 ± 0.25c | ||||
apocarotenoides (ac) | 0.1 ± 0.02a | -b | -b | -b | ||||
non-terpene hydrocarbons (nt) | 2.2 ± 0.11c | 3.8 ± 0.37a | 3.3 ± 0.10b | 3.6 ± 0.20a | ||||
Total Identified | 97.5 ± 0.30b | 99.6 ± 0.02a | 99.7 ± 0.01a | 100.0 ± 0.00a |
Studied EOs | Analytical Requirements | |||||
---|---|---|---|---|---|---|
Component | 1st Year | 2nd Year | 3rd Year | 4th Year | PH-Eur | ISO 3515:2002 (Other Origin) a |
limonene | 0.3 | 0.7 | 0.4 | 0.6 | ≤1% | ≤1% |
1.8-cineoleb | 1.0 | 2.0 | 0.5 | 0.6 | ≤2.5% | ≤3% |
β-phellandreneb | 0.1 | – | ≤1% | |||
cis-β-ocimene | 3.1 | 4.2 | 4.0 | 3.9 | – | 1–10% |
trans-β-ocimene | 2.7 | 4.0 | 3.6 | 3.3 | – | 0.5–6% |
3-octanone | 0.5 | 0.8 | 0.8 | 0.9 | 0.1–5% | ≤3% |
camphor | 0.5 | 0.3 | 0.1 | 0.3 | ≤1.2% | ≤1.5% |
linalool | 19.3 | 23.1 | 27.6 | 34.2 | 20–45% | 20–43% |
linalool acetate | 26.3 | 21.2 | 26.0 | 19.4 | 25–47% | 25–47% |
terpinene-4-ol | 5.4 | 15.3 | 5.7 | 9.3 | 0.1–8% | ≤8% |
lavandulyl acetate | 6.1 | 0.9 | 10.0 | 6.1 | ≤0.2% | ≤8% |
lavandulol | 0.8 | 0.8 | 0.6 | ≤0.1% | ≤3% | |
α-terpineol | 1.4 | 4.9 | 5.6 | 4.2 | ≤2% | ≤2% |
Permutation N | 9999 |
Total sum of squares | 0.1687 |
Within-group sum of squares | 0.00755 |
F | 28.45 |
p (same) | 0.0104 |
Microorganisms | 1st Year EO | 2nd Year EO | 3rd Year EO | 4th Year EO | |
---|---|---|---|---|---|
Gram-positive | Staphylococcus aureus ATCC 6538 | 1:16 | 1:32 | 1:64 | 1:64 |
Enterococcus faecalis VAN B V 583 E | 1:16 | 1:16 | 1:32 | 1:32 | |
Listeria monocytogenes ATCC 7644 | 1:16 | 1:16 | 1:32 | 1:128 | |
Gram-negative | Pseudomonas aeruginosa ATCC 27853 | 1:8 | 1:8 | 1:16 | 1:16 |
Escherichia coli ATCC 15325 | 1:8 | 1:8 | 1:16 | 1:32 | |
Salmonella enterica ser. Typhimurium ATCC 14028 | 1:8 | 1:8 | 1:16 | 1:16 |
Microorganisms | 1st Year EO | 2nd Year EO | 3rd Year EO | 4th Year EO | |
---|---|---|---|---|---|
Gram-positive | Staphylococcus aureus ATCC 6538 | 1:8 | 1:16 | 1:32 | 1:32 |
Enterococcus faecalis VAN B V 583 E | 1:8 | 1:8 | 1:16 | 1:16 | |
Listeria monocytogenes ATCC 7644 | 1:8 | 1:8 | 1:16 | 1:64 | |
Gram-negative | Pseudomonas aeruginosa ATCC 27853 | >1:8 | >1:8 | 1:8 | 1:8 |
Escherichia coli ATCC 15325 | >1:8 | >1:8 | 1:8 | 1:16 | |
Salmonella enterica ser. Typhimurium ATCC 14028 | 1:8 | 1:8 | 1:8 | 1:8 |
ATCC 6538 | VAN B V 583 E | ATCC 7644 | ATCC 27853 | ATCC 15325 | ATCC 14028 | |
---|---|---|---|---|---|---|
(E)-β-famesene | −0.8 | −0.9 | −0.9 | −0.8 | −0.9 | −0.8 |
3-octanone | 0.9 | 0.6 | 0.6 | 0.7 | 0.8 | 0.7 |
camphor | −0.9 | 0.0 | 0.0 | −0.6 | −0.5 | −0.6 |
caryophyllene oxide | −1.0 | −0.5 | −0.5 | −0.7 | −0.7 | −0.7 |
cis-β-ocimene | 0.9 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 |
geraniol | 0.4 | 1.0 | 1.0 | 0.6 | 0.8 | 0.6 |
germacrene D | −1.0 | −0.3 | −0.3 | −0.6 | −0.6 | −0.6 |
linalool | 0.7 | 0.8 | 0.8 | 0.8 | 0.9 | 0.8 |
tau-cadinol | −1.0 | −0.4 | −0.4 | −0.8 | −0.8 | −0.8 |
trans-γ-cadinene | −1.0 | −0.3 | −0.3 | −0.5 | −0.5 | −0.5 |
α-terpineol | 0.9 | 0.2 | 0.2 | 0.7 | 0.7 | 0.7 |
β-caryophyllene | −0.9 | −0.1 | −0.1 | −0.7 | −0.6 | −0.7 |
β-myrcene | 0.9 | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 |
δ-3-carene | 0.4 | 1.0 | 1.0 | 0.6 | 0.8 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najar, B.; Pistelli, L.; Fratini, F. Exploitation of Marginal Hilly Land in Tuscany through the Cultivation of Lavandula angustifolia Mill.: Characterization of Its Essential Oil and Antibacterial Activity. Molecules 2022, 27, 3216. https://doi.org/10.3390/molecules27103216
Najar B, Pistelli L, Fratini F. Exploitation of Marginal Hilly Land in Tuscany through the Cultivation of Lavandula angustifolia Mill.: Characterization of Its Essential Oil and Antibacterial Activity. Molecules. 2022; 27(10):3216. https://doi.org/10.3390/molecules27103216
Chicago/Turabian StyleNajar, Basma, Luisa Pistelli, and Filippo Fratini. 2022. "Exploitation of Marginal Hilly Land in Tuscany through the Cultivation of Lavandula angustifolia Mill.: Characterization of Its Essential Oil and Antibacterial Activity" Molecules 27, no. 10: 3216. https://doi.org/10.3390/molecules27103216
APA StyleNajar, B., Pistelli, L., & Fratini, F. (2022). Exploitation of Marginal Hilly Land in Tuscany through the Cultivation of Lavandula angustifolia Mill.: Characterization of Its Essential Oil and Antibacterial Activity. Molecules, 27(10), 3216. https://doi.org/10.3390/molecules27103216