An In Situ Formation of Ionic Liquid for Enrichment of Triazole Fungicides in Food Applications Followed by HPLC Determination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of In Situ Ionic Liquid
2.2. Optimization of In Situ Metathesis-Reaction-Generated Ionic Liquid Combined with Liquid–Liquid Microextraction
2.3. Analytical Performance of the Proposed Method
2.4. Analysis of Real Samples
2.5. Comparison of the Proposed Microextraction Method with Other Sample-Preparation Methods
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentations
3.3. Sample Preparation
3.3.1. Honey Samples
3.3.2. Fruit Juice Samples
3.3.3. Egg Yolk Sample
3.4. In Situ Metathesis-Reaction-Generated Ionic Liquid Combined with Liquid–Liquid Microextraction
3.5. Evaluation of Enrichment Factor (EF), Extraction Recovery (ER), Relative Recovery (RR), and Matrix Effect (ME)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; He, M.; Chen, B.; Hu, B. Hydroxyl-containing porous organic framework coated stir bar sorption extraction combined with high performance liquid chromatography-diode array detector for analysis of triazole fungicides in grape and cabbage samples. J. Chromatogr. A 2020, 1633, 461628. [Google Scholar] [CrossRef] [PubMed]
- Buerge, I.J.; Poiger, T.; Müller, M.D.; Buser, H.R. Influence of pH on thestereoselective degradation of the fungicides epoxiconazole and cyproconazole in soils. Environ. Sci. Technol. 2006, 40, 5443–5450. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.S.; Li, J.; Chankvetadze, B.; Cheng, Y.P.; Xu, J.; Liu, X.G.; Li, Y.B.; Chen, X.; Bertucci, C.; Tedesco, D.; et al. Chiral triazole fungicide difenoconazole: Absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil. Environ. Sci. Technol. 2013, 47, 3386–3394. [Google Scholar] [CrossRef] [PubMed]
- Seebunrueng, K.; Tamuang, S.; Ruangchai, S.; Sansuk, S.; Srijaranai, S. In situ self-assembled coating of surfactant-mixed metal hydroxide on Fe3O4@SiO2 magnetic composite for dispersive solid phase microextraction prior to HPLC analysis of triazole fungicides. Microchem. J. 2021, 168, 106396. [Google Scholar] [CrossRef]
- Han, X.; Chen, J.; Li, Z.; Quan, K.; Qiu, H. Magnetic solid-phase extraction of triazole fungicides based on magnetic porous carbon prepared by combustion combined with solvothermal method. Anal. Chim. Acta 2020, 1129, 85–97. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Gao, Y.; Gao, M.; Huang, X.; Lv, J.; Xu, D. A beta-cyclodextrin-functionalized magnetic metal organic framework for efficient extraction and determination of prochloraz and triazole fungicides in vegetables samples. Ecotoxicol. Environ. Saf. 2019, 183, 109546. [Google Scholar] [CrossRef]
- Jing, X.; Yang, L.; Zhao, W.; Wang, F.; Chen, Z.; Ma, L.; Jia, L.; Wang, X. Evaporation-assisted dispersive liquid-liquid microextraction based on the solidification of floating organic droplets for the determination of triazole fungicides in water samples by high-performance liquid chromatography. J. Chromatogr. A 2019, 1597, 46–53. [Google Scholar] [CrossRef]
- Pang, J.; Mei, M.; Yuan, D.; Huang, X. Development of on-line monolith-based in-tube solid phase microextraction for the sensitive determination of triazoles in environmental waters. Talanta 2018, 184, 411–417. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhao, Q.; Chen, W.; Jiao, B. Vortex-assisted ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of triazole fungicides in fruit juices. Food Anal. Methods 2016, 9, 596–604. [Google Scholar] [CrossRef]
- Bordagaray, A.; Garcia-Arrona, R.; Millán, E. Determination of triazole fungicides in liquid samples using ultrasound-assisted emulsification microextraction with solidification of floating organic droplet followed by high-performance liquid chromatography. Food Anal. Methods 2014, 7, 1195–1203. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, Y.; Wang, X.; Yu, G.W.; Wang, J.; Li, Z.G.; Lee, M.R. Microwave-assisted-demulsification dispersive liquid-liquid microextraction for the determination of triazole fungicides in water by gas chromatography with mass spectrometry. J. Sep. Sci. 2018, 41, 4498–4505. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Song, Z.; Nie, J.; Xia, H.; Chen, F.; Li, Z.; Lee, M. Tablet-effervescence-assisted dissolved carbon flotation for the extraction of four triazole fungicides in water by gas chromatography with mass spectrometry. J. Sep. Sci. 2016, 39, 4603–4609. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Es’haghi, A.; Es-haghi, A.; Basiripour, F. Microwave-assisted extraction and high-throughput monolithic-polymer-based micro-solid-phase extraction of organophosphorus triazole, and organochlorine residues in apple. J. Sep. Sci. 2016, 39, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Farajzadeh, M.A.; Sheykhizadeh, S.; Khorram, P. Extraction and preconcentration of some triazole pesticides in grape juice by salting out homogeneous liquid-liquid extraction in a narrow-bore tube prior to their determination by gas chromatography-flame ionization detection. Food Anal. Methods 2014, 7, 1229–1237. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Feriduni, B.; Mogaddam, M.R.A. Extraction and enrichment of triazole and triazine pesticides from honey using air-assisted liquid-liquid microextraction. J. Food Sci. 2014, 79, H2140–H2148. [Google Scholar] [CrossRef] [PubMed]
- Aladaghlo, Z.; Fakhari, A.R.; Alavioon, S.I.; Dabiri, M. Ultrasound assisted dispersive solid phase extraction of triazole fungicides by using an N-heterocyclic carbene copper complex supported on ionic liquid-modified graphene oxide as a sorbent. Microchim. Acta 2019, 6, 209. [Google Scholar] [CrossRef]
- Zeng, H.; Xie, X.; Huang, Y.; Chen, J.; Liu, Y.; Zhang, Y.; Mai, X.; Deng, J.; Fan, H.; Zhang, W. Enantioseparation and determination of triazole fungicides in vegetables and fruits by aqueous two-phase extraction coupled with online heart-cutting two-dimensional liquid chromatography. Food Chem. 2019, 301, 125265. [Google Scholar] [CrossRef]
- Kachangoon, R.; Vichapong, J.; Santaladchaiyakit, Y.; Srijaranai, S. Green fabrication of Moringa oleifera seed as efficient biosorbent for selective enrichment of triazole fungicides in environmental water, honey and fruit juice samples. Microchem. J. 2022, 175, 107194. [Google Scholar] [CrossRef]
- Vichapong, J.; Burakham, R.; Santaladchaiyakit, Y.; Srijaranai, S. A preconcentration method for analysis of neonicotinoids in honey samples by ionic liquid-based cold-induced aggregation microextraction. Talanta 2016, 155, 216–221. [Google Scholar] [CrossRef]
- Gharehbaghi, M.; Shemirani, F.; Farahani, M.D. Cold-induced aggregation microextraction based on ionic liquids and fiber optic-linear array detection spectrophotometry of cobalt in water samples. J. Hazard. Mater. 2009, 165, 1049–1055. [Google Scholar] [CrossRef]
- Vichapong, J.; Burakham, R.; Srijaranai, S.; Grudpan, K. Room temperature imidazolium ionic liquid: A solvent for extraction of carbamates prior to liquid chromatographic analysis. Talanta 2011, 84, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chi, Y.; Jiang, G.; Tai, C.; Peng, J.; Hu, J.-T. Ionic liquid-based liquid-phase microextraction, a new sample enrichment procedure for liquid chromatography. J. Chromatogr. A 2004, 1026, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhang, P.; Shan, W.; Wang, X.; Li, S.; Zhou, W.; Gao, H. In situ metathesis reaction combined with liquid-phase microextraction based on the solidification of sedimentary ionic liquids for the determination of pyrethroid insecticides in water samples. Talanta 2015, 144, 98–104. [Google Scholar] [CrossRef]
- Yao, C.; Anderson, J.L. Dispersive liquid–liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Anal. Bioanal. Chem. 2009, 395, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Baghdadi, M.; Shemirani, F. In situ solvent formation microextraction based on ionic liquids: A novel sample preparation technique for determination of inorganic species in saline solutions. Anal. Chim. Acta 2009, 634, 186–191. [Google Scholar] [CrossRef]
- Ullah, Z.; Azmi Bustam, M.; Man, Z.; Khan, A.S. Phosphonium-based ionic liquids and their application in separation of dye from aqueous solution. ARPN J. Eng. Appl. Sci. 2016, 11, 1653–1659. [Google Scholar]
- Guo, W.; Hou, Y.; Wu, W.; Ren, S.; Tian, S.; Marsh, K.N. Separation of phenol from model oils with quaternary ammonium salts via forming deep eutectic solvents. Green Chem. 2013, 15, 226–229. [Google Scholar] [CrossRef]
- Khezeli, T.; Daneshfar, A.; Sahraei, R. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta 2016, 150, 577–585. [Google Scholar] [CrossRef]
- Shuang, Y.; Zhang, T.; Zhong, H.; Li, L. Simultaneous enantiomeric determination of multiple triazole fungicides in fruits and vegetables by chiral liquid chromatography/tandem mass spectrometry on a bridged bis(β-cyclodextrin)-bonded chiral stationary phase. Food Chem. 2021, 345, 128842. [Google Scholar] [CrossRef]
- Kadivar, M.; Aliakbar, A. A new composite based on graphene oxide-poly 3-aminophenol for solid-phase microextraction of four triazole fungicides in water and fruit juices prior to high-performance liquid chromatography analysis. Food Chem. 2019, 299, 125127. [Google Scholar] [CrossRef]
- Hu, X.Z.; Wang, J.X.; Feng, Y.Q. Determination of benzimidazole residues in edible animal food by polymer monolith microextraction combined with liquid chromatography-mass spectrometry. J. Agric. Food Chem. 2010, 58, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Vichapong, J.; Santaladchaiyakit, Y.; Burakham, R.; Srijaranai, S. Determination of Benzimidazole Anthelminthics in Eggs by Advanced Microextraction with High-Performance Liquid Chromatography. Anal. Lett. 2015, 48, 617–631. [Google Scholar] [CrossRef]
- Domínguez-álvarez, J.; Mateos-Vivas, M.; García-Gómez, D.; Rodríguez-Gonzalo, E.; Carabias-Martínez, R. Capillary electrophoresis coupled to mass spectrometry for the determination of anthelmintic benzimidazoles in eggs using a QuEChERS with preconcentration as sample treatment. J. Chromatogr. A 2013, 1278, 166–174. [Google Scholar] [CrossRef] [PubMed]
Analyte | Linear Range (µg L−1) | Linear Equation | R2 | LOD (µg L−1) | LOQ (µg L−1) | Intraday Precision (n = 5), RSD (%) | Interday Precision (n = 5), RSD (%) | EF | ER | ||
---|---|---|---|---|---|---|---|---|---|---|---|
tR | Peak Area | tR | Peak Area | ||||||||
Myclobutanil | 90–1000 | y = 1 × 106x + 9995.5 | 0.9994 | 30 | 90 | 0.61 | 2.48 | 0.77 | 2.70 | 12.26 | 85.82 |
Triadimefon | 90–1000 | y = 907,260x + 11,705 | 0.9989 | 30 | 90 | 0.51 | 2.92 | 0.80 | 3.50 | 8.53 | 59.71 |
Tebuconazole | 90–1000 | y = 484,103x + 4328.4 | 0.9991 | 30 | 90 | 0.40 | 2.60 | 0.46 | 2.72 | 11.01 | 77.07 |
Hexaconazole | 150–1000 | y = 689,281x + 3751.6 | 0.9988 | 50 | 150 | 0.70 | 2.55 | 0.77 | 2.60 | 11.34 | 79.38 |
Sample | MCBT | TDF | TBZ | HCZ | ||||
---|---|---|---|---|---|---|---|---|
%RR * | %RSD ** | %RR | %RSD | %RR | %RSD | %RR | %RSD | |
Honey I | 66.17 | 0.94 | 92.41 | 2.82 | 99.72 | 1.99 | 94.12 | 1.06 |
Honey II | 86.98 | 2.47 | 72.03 | 3.12 | 60.26 | 2.60 | 62.22 | 2.57 |
Passion fruit juice | 76.14 | 0.84 | 77.87 | 1.80 | 81.50 | 1.82 | 87.63 | 1.20 |
Pomegranate juice | 72.14 | 0.71 | 61.77 | 1.78 | 69.19 | 0.20 | 62.98 | 1.53 |
Grape juice | 72.50 | 1.82 | 62.65 | 1.39 | 66.16 | 0.87 | 63.59 | 2.87 |
Egg yolk | 84.19 | 0.31 | 72.72 | 0.47 | 69.41 | 1.69 | 69.05 | 1.08 |
Extraction Method ** | Analytical Method | Samples | Adsorbent/Desorbed *** | Linear Range (μg L−1) | Recovery (%) | LOD (μg L−1 or μg Kg−1) | EF | %RSD | Ref. |
---|---|---|---|---|---|---|---|---|---|
SMMH–d–SPME | HPLC–UV | Water | Fe3O4@SiO2/ACN | 5–100 and 2.5–50 | 90–104 | 1.0–2.5 | 40–237 | Less than 8% | [4] |
MSPE | HPLC–UV | River water | BCDP/ACN – 0.1% (v/v) HCOOH | 1–1200 | 82.8–113.2 | 0.2–0.3 | 281–283 | 1.2–4.6 | [29] |
SBSE | HPLC–DAD | Grape and cabbage | HC–POF/ACN–water | 0.1–500 | 80.7–111 | 0.022–0.071 | 49–57 | 6.4–12.4 | [1] |
MSPE | LC–MS/MS | Water and fruit juices | GO–PmAP/ACN–water in NaOH | 0.001–0.5 | 80.3–106.3 | 0.08–2.04 ng g−1 | 0.45–0.60 | 2.1–13.4 | [30] |
Ionic liquid combined with liquid–liquid microextraction | HPLC–DAD | Honey, fruit juices, and egg yolk | IL–ACN | 150–1000 | 61–112 | 30–50 | 8–11 | ≤5 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kachangoon, R.; Vichapong, J.; Santaladchaiyakit, Y.; Srijaranai, S. An In Situ Formation of Ionic Liquid for Enrichment of Triazole Fungicides in Food Applications Followed by HPLC Determination. Molecules 2022, 27, 3416. https://doi.org/10.3390/molecules27113416
Kachangoon R, Vichapong J, Santaladchaiyakit Y, Srijaranai S. An In Situ Formation of Ionic Liquid for Enrichment of Triazole Fungicides in Food Applications Followed by HPLC Determination. Molecules. 2022; 27(11):3416. https://doi.org/10.3390/molecules27113416
Chicago/Turabian StyleKachangoon, Rawikan, Jitlada Vichapong, Yanawath Santaladchaiyakit, and Supalax Srijaranai. 2022. "An In Situ Formation of Ionic Liquid for Enrichment of Triazole Fungicides in Food Applications Followed by HPLC Determination" Molecules 27, no. 11: 3416. https://doi.org/10.3390/molecules27113416
APA StyleKachangoon, R., Vichapong, J., Santaladchaiyakit, Y., & Srijaranai, S. (2022). An In Situ Formation of Ionic Liquid for Enrichment of Triazole Fungicides in Food Applications Followed by HPLC Determination. Molecules, 27(11), 3416. https://doi.org/10.3390/molecules27113416