Visible-Light-Induced Decarboxylation of Dioxazolones to Phosphinimidic Amides and Ureas
Abstract
:1. Introduction
2. Results and Discussion
Optimization of the Reaction Conditions
3. Experimental Section
3.1. General Information
3.2. General Experimental Procedures for the Synthesis of (3a–3w)
3.3. General Experimental Procedures for the Synthesis of (5a–5w)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- He, X.; Qiu, L.-Q.; Wang, W.-J.; Chen, K.-H.; He, L.-N. Photocarboxylation with CO2: An Appealing and Sustainable Strategy for CO2 Fixation. Green Chem. 2020, 22, 7301–7320. [Google Scholar] [CrossRef]
- Lewis, N.S. Introduction: Solar Energy Conversion. Chem. Rev. 2015, 115, 12631–12632. [Google Scholar] [CrossRef] [Green Version]
- Parisien-Collette, S.; Hernandez-Perez, A.C.; Collins, S.K. Photochemical Synthesis of Carbazoles Using an [Fe(phen)3](NTf2)2/O2 Catalyst System: Catalysis toward Sustainability. Org. Lett. 2016, 18, 4994–4997. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green Chemistry and Resource Efficiency: Towards a Green Economy. Green Chem. 2016, 18, 3180–3183. [Google Scholar] [CrossRef]
- Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Visible Light Photoredox-Controlled Reactions of N-Radicals and Radical Ions. Chem. Soc. Rev. 2016, 45, 2044–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corey, S.; Tehshik, Y. Enabling Chemical Synthesis with Visible Light. Acc. Chem. Res. 2016, 49, 2059–2060. [Google Scholar]
- Fu, X.-Y.; Si, Y.-F.; Qiao, L.-P.; Zhao, Y.-F.; Chen, X.-L.; Yu, B. Visible Light-Promoted Recyclable Carbon Nitride-Catalyzed Dioxygenation of Β,Γ-Unsaturated Oximes. Adv. Synth. Catal. 2022, 364, 574–580. [Google Scholar] [CrossRef]
- Li, G.; Yan, Q.; Gong, X.; Dou, X.; Yang, D. Photocatalyst-Free Regioselective C–H Thiocyanation of 4-Anilinocoumarins under Visible Light. ACS Sustainable Chem. Eng. 2019, 7, 14009–14015. [Google Scholar] [CrossRef]
- Chen, L.; Lin, C.; Lan, Y.; Li, Z.; Huang, D.; Yang, W.; Li, Y. Visible Light-Induced Green Synthesis of 2-Amino-4H-Chromenes. Environ. Chem. Lett. 2020, 18, 2157–2163. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Yue, H.; Li, J.-S.; Luo, Z.; Wei, W. Catalyst-Free Visible-Light-Initiated Oxidative Coupling of Aryldiazo Sulfones with Thiols Leading to Unsymmetrical Sulfoxides in Air. Green Chem. 2019, 21, 1609–1613. [Google Scholar] [CrossRef]
- Sun, W.; Ma, X.; Pang, Y.; Zhao, L.; Zhong, Q.; Liu, C.; Fan, Q. Straightforward Synthesis of Quinazolin-4(3H)-Ones Via Visible Light-Induced Condensation Cyclization. RSC Adv. 2022, 12, 1494–1498. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wang, L.; Yue, H.; Bao, P.; Liu, W.; Hu, C.; Wang, H. Metal-Free Visible-Light-Induced C–H/C–H Cross-Dehydrogenative-Coupling of Quinoxalin-2(H)-Ones with Simple Ethers. ACS Sustainable Chem. Eng. 2018, 6, 17252–17257. [Google Scholar] [CrossRef]
- Tang, S.; Yuan, L.; Deng, Y.-L.; Li, Z.-Z.; Wang, L.-N.; Huang, G.-X.; Sheng, R.-L. Visible-Light-Induced Perfluoroalkylation/Arylmigration/Desulfonylation Cascades of Conjugated Tosyl Amides. Tetrahedron Lett. 2017, 58, 329–332. [Google Scholar] [CrossRef]
- Tang, S.; Yuan, L.; Li, Z.-Z.; Peng, Z.-Y.; Deng, Y.-L.; Wang, L.-N.; Sheng, R.-L. Visible-Light-Induced Dearomative Spirocyclization of N-Benzylacrylamides toward Perfluorinated Azaspirocyclic Cyclohexadienones. Tetrahedron Lett. 2017, 58, 2127–2130. [Google Scholar] [CrossRef]
- Yuan, L.; Jiang, S.-M.; Li, Z.-Z.; Zhu, Y.; Yu, J.; Li, L.; Sheng, R.-R. Photocatalyzed Cascade Meerwein Addition/Cyclization of N-Benzylacrylamides toward Azaspirocycles. Org. Biomol. Chem. 2018, 16, 2406–2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.-W.; Yu, J.; Zhou, Q.-Y.; Chen, S.-Y.; Xu, Z.-H.; Tang, S. Visible-Light-Induced Atom Transfer Radical Addition and Cyclization of Perfluoroalkyl Halides with 1, N-Enynes. ACS Sustainable Chem. Eng. 2019, 7, 10154–10162. [Google Scholar] [CrossRef]
- Chen, N.; Lei, J.; Wang, Z.; Liu, Y.; Sun, K.; Tang, S. Construction of Fluoro-Containing Heterocycles Mediated by Free Radicals. Chin. J. Org. Chem. 2022, 42, 1061–1084. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; He, J.; Hong, Y.; Zhou, H.; Liu, Y.-L.; Tang, S. Recent Advances in Photoinduced Perfluoroalkylation Using Perfluoroalkyl Halides as the Radical Precursors. Synthesis 2022, 54, 1919–1938. [Google Scholar]
- Cheung, K.P.S.; Sarkar, S.; Gevorgyan, V. Visible Light-Induced Transition Metal Catalysis. Chem. Rev. 2022, 122, 1543–1625. [Google Scholar] [CrossRef]
- Sun, P.; Yang, D.; Wei, W.; Jiang, M.; Wang, Z.; Zhang, L.; Wang, H. Visible Light-Induced C–H Sulfenylation Using Sulfinic Acids. Green Chem. 2017, 19, 4785–4791. [Google Scholar] [CrossRef]
- Yang, B.; Lu, Z. Visible-Light-Promoted Metal-Free Aerobic Hydroxyazidation of Alkenes. ACS Catal. 2017, 7, 8362–8365. [Google Scholar] [CrossRef]
- Liu, X.-C.; Chen, X.-L.; Liu, Y.; Sun, K.; Peng, Y.-Y.; Qu, L.-B.; Yu, B. Visible-Light-Induced Metal-Free Synthesis of 2-Phosphorylated Thioflavones in Water. ChemSusChem. 2020, 13, 298–303. [Google Scholar] [CrossRef]
- Gui, Q.-W.; Wang, B.-B.; Zhu, S.; Li, F.-L.; Zhu, M.-X.; Yi, M.; He, W.-M. Four-Component Synthesis of 3-Aminomethylated Imidazoheterocycles in Etoh under Catalyst-Free, Oxidant-Free and Mild Conditions. Green Chem. 2021, 23, 4430–4434. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.-Y.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; He, W.-M. Electrochemical Multicomponent Synthesis of 4-Selanylpyrazoles under Catalyst- and Chemical-Oxidant-Free Conditions. Green Chem. 2021, 23, 3950–3954. [Google Scholar] [CrossRef]
- Zeng, F.-L.; Xie, K.-C.; Liu, Y.-T.; Wang, H.; Yin, P.-C.; Qu, L.-B.; Yu, B. Visible-Light-Promoted Catalyst-/Additive-Free Synthesis of Aroylated Heterocycles in a Sustainable Solvent. Green Chem. 2022, 24, 1732–1737. [Google Scholar] [CrossRef]
- Chen, Z.; Xuan, J. Photochemical Synthesis of Aroylated Heterocycles under Catalyst and Additive Free Conditions. Chin. J. Org. Chem. 2022, 42, 923–924. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, Q.-Q.; Tan, F.; Lu, L.-Q.; Xiao, W.-J. Visible-Light-Driven Organic Photochemical Reactions in the Absence of External Photocatalysts. Synthesis 2019, 51, 3021–3054. [Google Scholar] [CrossRef]
- Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Iron-Catalyzed Reactions in Organic Synthesis. Chem. Rev. 2004, 104, 6217–6254. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.-J.; Yu, X.; Wang, Y.; Yamamoto, Y.; Bao, M. Interweaving Visible-Light and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angew. Chem. Int. Ed. 2021, 60, 16426–16435. [Google Scholar] [CrossRef] [PubMed]
- Ju, M.; Schomaker, J.M. Nitrene Transfer Catalysts for Enantioselective C–N Bond Formation. Nat. Rev. Chem. 2021, 5, 580–594. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Lai, X.-J.; Huang, K.; Yadav, S.; Qiu, G.; Zhang, L.; Zhou, H. Unravelling Nitrene Chemistry from Acyclic Precursors: Recent Advances and Challenges. Org. Chem. Front. 2021, 8, 1677–1693. [Google Scholar] [CrossRef]
- Chamni, S.; Zhang, J.; Zou, H. Benign Synthesis of Unsymmetrical Arylurea Derivatives Using 3-Substituted Dioxazolones as Isocyanate Surrogates. Green Chem. Lett. Rev. 2020, 13, 246–257. [Google Scholar] [CrossRef]
- Chen, B.; Peng, J.-B.; Ying, J.; Qi, X.; Wu, X.-F. A Palladium-Catalyzed Domino Procedure for the Synthesis of Unsymmetrical Ureas. Adv. Synth. Catal 2018, 360, 2820–2824. [Google Scholar] [CrossRef]
- Mistry, L.; Mapesa, K.; Bousfield, T.W.; Camp, J.E. Synthesis of Ureas in the Bio-Alternative Solvent Cyrene. Green Chem. 2017, 19, 2123–2128. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Yan, S.; Xu, S.; Wang, M.-A.; Fu, B.; Zhang, Z. Pd/C Catalyzed Carbonylation of Azides in the Presence of Amines. Org. Lett. 2016, 18, 1736–1739. [Google Scholar] [CrossRef]
- Bizet, V.; Buglioni, L.; Bolm, C. Light-Induced Ruthenium-Catalyzed Nitrene Transfer Reactions: A Photochemical Approach Towards N-Acyl Sulfimides and Sulfoximines. Angew. Chem. Int. Ed. 2014, 53, 5639–5642. [Google Scholar] [CrossRef]
- Darses, B.; Rodrigues, R.; Neuville, L.; Mazurais, M.; Dauban, P. Transition Metal-Catalyzed Iodine(III)-Mediated Nitrene Transfer Reactions: Efficient Tools for Challenging Syntheses. Chem. Commun. 2017, 53, 493–508. [Google Scholar] [CrossRef]
- Das, A.; Chen, Y.-S.; Reibenspies, J.H.; Powers, D.C. Characterization of a Reactive Rh2 Nitrenoid by Crystalline Matrix Isolation. J. Am. Chem. Soc. 2019, 141, 16232–16236. [Google Scholar] [CrossRef]
- Zhang, J.; Shan, C.; Zhang, T.; Song, J.; Liu, T.; Lan, Y. Computational Advances Aiding Mechanistic Understanding of Silver-Catalyzed Carbene/Nitrene/Silylene Transfer Reactions. Coord. Chem. Rev. 2019, 382, 69–84. [Google Scholar] [CrossRef]
- Wentrup, C. Carbenes and Nitrenes: Recent Developments in Fundamental Chemistry. Angew. Chem. Int. Ed. 2018, 57, 11508–11521. [Google Scholar] [CrossRef]
- Shin, K.; Ryu, J.; Chang, S. Orthogonal Reactivity of Acyl Azides in C–H Activation: Dichotomy between C–C and C–N Amidations Based on Catalyst Systems. Org. Lett. 2014, 16, 2022–2025. [Google Scholar] [CrossRef]
- van Vliet, K.M.; de Bruin, B. Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes. ACS Catal. 2020, 10, 4751–4769. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.W.W.; Ton, T.M.U.; Chan, P.W.H. Transition-Metal-Catalyzed Aminations and Aziridinations of C-H and C-C Bonds with Iminoiodinanes. Chem Record 2011, 11, 331–357. [Google Scholar] [CrossRef]
- Guo, Y.; Pei, C.; Empel, C.; Jana, S.; Koenigs, R.M. Koenigs, Photochemical Nitrene Transfer Reactions of Iminoiodinanes with Sulfides. ChemPhotoChem. 2022, 6, e202100293. [Google Scholar] [CrossRef]
- Guimond, N.; Gouliaras, C.; Fagnou, K. Rhodium(III)-Catalyzed Isoquinolone Synthesis: The N−O Bond as a Handle for C−N Bond Formation and Catalyst Turnover. J. Am. Chem. Soc. 2010, 132, 6908–6909. [Google Scholar] [CrossRef]
- Tan, Y.; Hartwig, J.F. Palladium-Catalyzed Amination of Aromatic C−H Bonds with Oxime Esters. J. Am. Chem. Soc. 2010, 132, 3676–3677. [Google Scholar] [CrossRef]
- Dubé, P.; Nathel, N.F.F.; Vetelino, M.; Couturier, M.; Aboussafy, C.L.; Pichette, S.; Hardink, M. Carbonyldiimidazole-Mediated Lossen Rearrangement. Org. Lett. 2009, 11, 5622–5625. [Google Scholar] [CrossRef]
- Tang, J.-J.; Yu, X.; Yamamoto, Y.; Bao, M. Visible-Light-Promoted Iron-Catalyzed N-Arylation of Dioxazolones with Arylboronic Acids. ACS Catal. 2021, 11, 13955–13961. [Google Scholar] [CrossRef]
- van Vliet, K.M.; Polak, L.H.; Siegler, M.A.; van der Vlugt, J.I.; Guerra, C.F.; de Bruin, B. Efficient Copper-Catalyzed Multicomponent Synthesis of N-Acyl Amidines Via Acyl Nitrenes. J. Am. Chem. Soc. 2019, 141, 15240–15249. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Jung, H.; Song, F.; Zhu, S.; Bai, Z.; Chen, D.; He, G.; Chang, S.; Chen, G. Nitrene-Mediated Intermolecular N–N Coupling for Efficient Synthesis of Hydrazides. Nat. Chem. 2021, 13, 378–385. [Google Scholar] [CrossRef]
- Lee, S.; Rovis, T. Rh(III)-Catalyzed Three-Component Syn-Carboamination of Alkenes Using Arylboronic Acids and Dioxazolones. ACS Catal. 2021, 11, 8585–8590. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, S.; Lonka, M.R.; Zhang, J.; Zou, H. Rhodium(III)-Catalyzed Cascade Reactions of Benzoic Acids with Dioxazolones: Discovery of 2,5-Substituted Benzoxazinones as Aie Molecules. Chem. Commun. 2019, 55, 11203–11206. [Google Scholar] [CrossRef]
- Park, Y.; Park, K.T.; Kim, J.G.; Chang, S. Mechanistic Studies on the Rh(III)-Mediated Amido Transfer Process Leading to Robust C–H Amination with a New Type of Amidating Reagent. J. Am. Chem. Soc. 2015, 137, 4534–4542. [Google Scholar] [CrossRef]
- Fringuelli, F.; Lanari, D.; Pizzo, F.; Vaccaro, L. An E-Factor Minimized Protocol for the Preparation of Methyl Β-Hydroxy Esters. Green Chem. 2010, 12, 1301–1305. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E Factor 25 Years On: The Rise of Green Chemistry and Sustainability. Green Chem. 2017, 19, 18–43. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Y.-W.; He, W.-M. Microwave-Assisted 6π-Electrocyclization in Water. Chin. Chem. Lett. 2020, 31, 2999–3000. [Google Scholar] [CrossRef]
- Li, X.-Y.; Liu, Y.; Chen, X.-L.; Lu, X.-Y.; Liang, X.-X.; Zhu, S.-S.; Wei, C.-W.; Qu, L.-B.; Yu, B. 6π-Electrocyclization in Water: Microwave-Assisted Synthesis of Polyheterocyclic-Fused Quinoline-2-Thiones. Green Chem. 2020, 22, 4445–4449. [Google Scholar] [CrossRef]
- Leadbeater, N.E. When Is Free Really Free? Nat. Chem. 2010, 2, 1007–1009. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, W.; Bai, H.-Y.; Ding, T.-M.; Gao, D.; Bao, X.; Zhang, S.-Y. Experimental and Computational Studies on H2O- Promoted, Rh-Catalyzed Transient-Ligand-Free Ortho-C(Sp2)–H Amidation of Benzaldehydes with Dioxazolones. Chem. Commun. 2018, 54, 8889–8892. [Google Scholar] [CrossRef]
- Hutchby, M.; Houlden, C.E.; Ford, J.G.; Tyler, S.N.G.; Gagne, M.; Lloyd-Jones, G.C.; Booker-Milburn, K.I. Hindered Ureas as Masked Isocyanates: Facile Carbamoylation of Nucleophiles under Neutral Conditions. Angew. Chem. Int. Ed. 2009, 48, 8721–8724. [Google Scholar] [CrossRef]
- Peron, J.-M.R.; Packman, H.; Peveler, W.J.; Bear, J.C. In Situ Formation of Low Molecular Weight Organogelators for Slick Solidification. RSC Adv. 2020, 10, 13369–13373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Aguiar, L.C.S.; de Mattos, M.C.S.; Sanabria, C.M.; Costa, B.B.S.; Viana, G.M. Efficient Direct Halogenation of Unsymmetrical N-Benzyl- and N-Phenylureas with Trihaloisocyanuric Acids. Synthesis 2018, 50, 1359–1367. [Google Scholar] [CrossRef] [Green Version]
- Gan, Z.; Li, G.; Yan, Q.; Deng, W.; Jiang, Y.-Y.; Yang, D. Visible-Light-Promoted Oxidative Desulphurisation: A Strategy for the Preparation of Unsymmetrical Ureas from Isothiocyanates and Amines Using Molecular Oxygen. Green Chem. 2020, 22, 2956–2962. [Google Scholar] [CrossRef]
Entry | Solvent | Wavelength | Yield (%) |
---|---|---|---|
1 | DCE | 430 nm | 11 |
2 | 1,4-dioxane | 430 nm | 23 |
3 | CH3OH | 430 nm | 14 |
4 | Acetone | 430 nm | 23 |
5 | DMF | 430 nm | 22 |
6 | CH3CN | 430 nm | 26 |
7 | THF | 430 nm | 0 |
8 | CH2Cl2 | 430 nm | 81 |
9 | CH2Cl2 | 460 nm | 22 |
10 | CH2Cl2 | 390 nm | 63 |
11 b | CH2Cl2 | Green LED | 0 |
12 c | CH2Cl2 | White LED | 0 |
13 d | CH2Cl2 | 430 nm | 61 |
14 e | CH2Cl2 | 430 nm | 67 |
15 f | CH2Cl2 | -- | 0 |
16 g | CH2Cl2 | 430 nm | <5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Li, H.; Sun, K.; Tang, S.; Yu, B. Visible-Light-Induced Decarboxylation of Dioxazolones to Phosphinimidic Amides and Ureas. Molecules 2022, 27, 3648. https://doi.org/10.3390/molecules27123648
Pan J, Li H, Sun K, Tang S, Yu B. Visible-Light-Induced Decarboxylation of Dioxazolones to Phosphinimidic Amides and Ureas. Molecules. 2022; 27(12):3648. https://doi.org/10.3390/molecules27123648
Chicago/Turabian StylePan, Jie, Haocong Li, Kai Sun, Shi Tang, and Bing Yu. 2022. "Visible-Light-Induced Decarboxylation of Dioxazolones to Phosphinimidic Amides and Ureas" Molecules 27, no. 12: 3648. https://doi.org/10.3390/molecules27123648
APA StylePan, J., Li, H., Sun, K., Tang, S., & Yu, B. (2022). Visible-Light-Induced Decarboxylation of Dioxazolones to Phosphinimidic Amides and Ureas. Molecules, 27(12), 3648. https://doi.org/10.3390/molecules27123648