DIA-Based Proteomic Analysis of Plasma Protein Profiles in Patients with Severe Acute Pancreatitis
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of Participants
2.2. Quality Verification of Extracted Protein
2.3. Proteomic Data Acquired by DIA
2.4. Gene Ontology (GO) Functional Annotation and Enrichment Analysis of 35 DEPs
2.5. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Annotation and Enrichment Analysis of 35 DEPs
2.6. Eukaryotic Orthologous Groups (KOG) Functional Analysis of DEPs
2.7. Protein–Protein Interaction (PPI) Network Analysis
2.8. The Plasma Concentration of These Biomarkers of Patients with AP
2.9. Prediction Performance of These Biomarkers
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Sample Collection
4.3. Extraction and Quality Control of Proteins
4.4. Protein Digestion
4.5. Collection of Mass Spectral Data
4.6. Analyses of Raw Mass Spectral Data
4.7. Bioinformatics Analyses
4.8. Elisa
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lankisch, P.G.; Apte, M.; Banks, P.A. Acute pancreatitis. Lancet 2015, 386, 85–96. [Google Scholar] [CrossRef]
- Moggia, E.; Koti, R.; Belgaumkar, A.P.; Fazio, F.; Pereira, S.P.; Davidson, B.R.; Gurusamy, K.S. Pharmacological interventions for acute pancreatitis. Cochrane Database Syst. Rev. 2017, 4, Cd011384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, P.K.; Singh, V.P. Organ Failure Due to Systemic Injury in Acute Pancreatitis. Gastroenterology 2019, 156, 2008–2023. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Peeters, R.; Liu, Y.; Feng, Y.; Zhang, X.; Jiang, Y.; Yu, J.; Dymarkowski, S.; Himmelreich, U.; Oyen, R.; et al. Visualization, Quantification and Characterization of Caerulein-Induced Acute Pancreatitis in Rats by 3.0T Clinical MRI, Biochemistry and Histomorphology. Theranostics 2017, 7, 285–294. [Google Scholar] [CrossRef]
- Fétaud-Lapierre, V.; Pastor, C.M.; Jorge-Costa, M.; Hochstrasser, D.F.; Morel, D.R.; Frossard, J.L.; Lescuyer, P. Time-course proteomic analysis of taurocholate-induced necrotizing acute pancreatitis. J. Proteom. 2013, 85, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Papachristou, G.I.; Malehorn, D.E.; Lamb, J.; Slivka, A.; Bigbee, W.L.; Whitcomb, D.C. Serum proteomic patterns as a predictor of severity in acute pancreatitis. Pancreatology 2007, 7, 317–324. [Google Scholar] [CrossRef]
- Sun, Z.; Li, L.; Qu, J.; Li, H.; Chen, H. Proteomic analysis of therapeutic effects of Qingyi pellet on rodent severe acute pancreatitis-associated lung injury. Biomed. Pharmacother. 2019, 118, 109300. [Google Scholar] [CrossRef]
- García-Hernández, V.; Sánchez-Bernal, C.; Schvartz, D.; Calvo, J.J.; Sanchez, J.C.; Sánchez-Yagüe, J. A tandem mass tag (TMT) proteomic analysis during the early phase of experimental pancreatitis reveals new insights in the disease pathogenesis. J. Proteom. 2018, 181, 190–200. [Google Scholar] [CrossRef]
- Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 2014, 13, 2513–2526. [Google Scholar] [CrossRef] [Green Version]
- Coorssen, J.R.; Yergey, A.L. Proteomics Is Analytical Chemistry: Fitness-for-Purpose in the Application of Top-Down and Bottom-Up Analyses. Proteomes 2015, 3, 440–453. [Google Scholar] [CrossRef] [Green Version]
- Waldron, R.T.; Lugea, A.; Gulla, A.; Pandol, S.J. Proteomic Identification of Novel Plasma Biomarkers and Pathobiologic Pathways in Alcoholic Acute Pancreatitis. Front. Physiol. 2018, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.P.; Komar, H.M.; Hancioglu, B.; Yu, L.; Jin, M.; Ogata, Y.; Hart, P.A.; Cruz-Monserrate, Z.; Lesinski, G.B.; Conwell, D.L. Laser Capture Microdissection of Pancreatic Acinar Cells to Identify Proteomic Alterations in a Murine Model of Caerulein-Induced Pancreatitis. Clin. Transl. Gastroenterol. 2017, 8, e89. [Google Scholar] [CrossRef] [PubMed]
- Piagnerelli, M.; Boudjeltia, K.Z.; Nuyens, V.; De Backer, D.; Su, F.; Wang, Z.; Vincent, J.L.; Vanhaeverbeek, M. Rapid alterations in transferrin sialylation during sepsis. Shock 2005, 24, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-K.; Wang, N.; Yang, C.; Wang, Y.-M.; Che, T.-J. Differential protein expression in patients with urosepsis. Chin. J. Traumatol. Zhonghua Chuang Shang Za Zhi 2018, 21, 316–322. [Google Scholar] [CrossRef]
- Sarrias, M.R.; Roselló, S.; Sánchez-Barbero, F.; Sierra, J.M.; Vila, J.; Yélamos, J.; Vives, J.; Casals, C.; Lozano, F. A role for human Sp alpha as a pattern recognition receptor. J. Biol. Chem. 2005, 280, 35391–35398. [Google Scholar] [CrossRef] [Green Version]
- Arai, S.; Shelton, J.M.; Chen, M.; Bradley, M.N.; Castrillo, A.; Bookout, A.L.; Mak, P.A.; Edwards, P.A.; Mangelsdorf, D.J.; Tontonoz, P.; et al. A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab. 2005, 1, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Afeltra, A.; Caccavo, D.; Ferri, G.M.; Addessi, M.A.; De Rosa, F.G.; Amoroso, A.; Bonomo, L. Expression of lactoferrin on human granulocytes: Analysis with polyclonal and monoclonal antibodies. Clin. Exp. Immunol. 1997, 109, 279–285. [Google Scholar] [CrossRef]
- Bennett, R.M.; Skosey, J.L. Lactoferrin and lysozyme levels in synovial fluid: Differential indices of articular inflammation and degradation. Arthritis Rheum. 1977, 20, 84–90. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, J.W.; Kim, H. α-Lipoic Acid Inhibits IL-6 Expression by Upregulating PPAR-γ-Mediated Expression of Antioxidants in Cerulein/Resistin-Stimulated Pancreatic Acinar Cells. Curr. Dev. Nutr. 2021, 5, 1133. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, R.; Zhang, W.; Zhu, L.; Yu, Q.; Liu, Z.; Zhang, Y.; Pan, S.; Wang, Y.; Chu, C.; et al. Potassium supplementation blunts the effects of high salt intake on serum retinol-binding protein 4 levels in healthy individuals. J. Diabetes Investig. 2021, 12, 658–663. [Google Scholar] [CrossRef]
- Xie, R.; Chen, Y.; Qi, M.; Zhao, Z.; Zhang, J.; Xu, Z.; Xu, H.; Yuan, Y.; Nie, H.; Zhou, T.; et al. Increased frequency of circulating Tfh cells in patients with acute pancreatitis. Int. J. Clin. Exp. Pathol. 2018, 11, 5300–5308. [Google Scholar] [PubMed]
- Yang, B.; Davis, J.M.; Gomez, T.H.; Younes, M.; Zhao, X.; Shen, Q.; Wang, R.; Ko, T.C.; Cao, Y. Characteristic pancreatic and splenic immune cell infiltration patterns in mouse acute pancreatitis. Cell Biosci. 2021, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Naskalski, J.W.; Kusnierz-Cabala, B.; Kedra, B.; Dumnicka, P.; Panek, J.; Maziarz, B. Correlation of peripheral blood monocyte and neutrophil direct counts with plasma inflammatory cytokines and TNF-alpha soluble receptors in the initial phase of acute pancreatitis. Adv. Med. Sci. 2007, 52, 129–134. [Google Scholar] [PubMed]
- Pan, Y.; Fang, H.; Lu, F.; Pan, M.; Chen, F.; Xiong, P.; Yao, Y.; Huang, H. Ulinastatin ameliorates tissue damage of severe acute pancreatitis through modulating regulatory T cells. J. Inflamm. 2017, 14, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newell, K.A.; Adams, A.B.; Turka, L.A. Biomarkers of operational tolerance following kidney transplantation—The immune tolerance network studies of spontaneously tolerant kidney transplant recipients. Hum. Immunol. 2018, 79, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Li, W.X.; Dai, S.X.; An, S.Q.; Sun, T.; Liu, J.; Wang, J.; Liu, L.G.; Xun, Y.; Yang, H.; Fan, L.X.; et al. Transcriptome integration analysis and specific diagnosis model construction for Hodgkin’s lymphoma, diffuse large B-cell lymphoma, and mantle cell lymphoma. Aging 2021, 13, 11833–11859. [Google Scholar] [CrossRef] [PubMed]
- Hönger, G.; Hopfer, H.; Arnold, M.L.; Spriewald, B.M.; Schaub, S.; Amico, P. Pretransplant IgG subclasses of donor-specific human leukocyte antigen antibodies and development of antibody-mediated rejection. Transplantation 2011, 92, 41–47. [Google Scholar] [CrossRef]
- Cevik, O.; Baykal, A.T.; Sener, A. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients. PLoS ONE 2016, 11, e0158287. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, J.; Zhou, P.; Sun, H.; Katsarou, M.; Drakoulis, N. Exploration of vascular adhesion protein-1 expression in patients with conjunctivitis associated systemic lupus erythematosus using 2D-DIGE. Exp. Ther. Med. 2019, 18, 5072–5077. [Google Scholar] [CrossRef]
- Son, K.H.; Ahn, C.B.; Kim, H.J.; Kim, J.S. Quantitative proteomic analysis of bile in extrahepatic cholangiocarcinoma patients. J. Cancer 2020, 11, 4073–4080. [Google Scholar] [CrossRef]
- Straub, A.C.; Butcher, J.T.; Billaud, M.; Mutchler, S.M.; Artamonov, M.V.; Nguyen, A.T.; Johnson, T.; Best, A.K.; Miller, M.P.; Palmer, L.A.; et al. Hemoglobin α/eNOS coupling at myoendothelial junctions is required for nitric oxide scavenging during vasoconstriction. Arter. Thromb. Vasc. Biol. 2014, 34, 2594–2600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.; Makin, K.; Akbareian, S.; Johnson, R.; Alghamdi, A.A.A.; Robinson, S.D.; Edwards, D.R. ADAMTS-1 and syndecan-4 intersect in the regulation of cell migration and angiogenesis. J. Cell Sci. 2020, 133, jcs235762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roark, E.F.; Keene, D.R.; Haudenschild, C.C.; Godyna, S.; Little, C.D.; Argraves, W.S. The association of human fibulin-1 with elastic fibers: An immunohistological, ultrastructural, and RNA study. J. Histochem. Cytochem. Off. J. Histochem. Soc. 1995, 43, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Mongiat, M.; Fu, J.; Oldershaw, R.; Greenhalgh, R.; Gown, A.M.; Iozzo, R.V. Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J. Biol. Chem. 2003, 278, 17491–17499. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.Q.; Liu, S.Q.; Zhang, Y.; Wang, Y.; Chu, C.; Wang, D.; Pan, S.; Wang, J.K.; Yu, Q.; Mu, J.J. Effects of Salt Loading on Plasma Osteoprotegerin Levels and Protective Role of Potassium Supplement in Normotensive Subjects. Circ. J. Off. J. Jpn. Circ. Soc. 2016, 81, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Godyna, S.; Diaz-Ricart, M.; Argraves, W.S. Fibulin-1 mediates platelet adhesion via a bridge of fibrinogen. Blood 1996, 88, 2569–2577. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.M. Pathophysiology of thrombotic thrombocytopenic purpura. Int. J. Hematol. 2010, 91, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Malik, F.; Ali, N.; Ahsan, I.; Ghani, A.R.; Fidler, C. Eculizumab refractory thrombotic thrombocytopenic purpura secondary to post-endoscopic retrograde cholangiopancreatography pancreatitis in a patient. J. Community Hosp. Intern. Med. Perspect. 2016, 6, 32310. [Google Scholar] [CrossRef] [Green Version]
- León-Del-Río, A. Biotin in metabolism, gene expression, and human disease. J. Inherit. Metab. Dis. 2019, 42, 647–654. [Google Scholar] [CrossRef]
- Kiykim, E.; Kiykim, A.; Cansever, M.S.; Zeybek, C.A.A. Biotinidase deficiency mimicking primary immune deficiencies. BMJ Case Rep. 2015, 2015, bcr2014209275. [Google Scholar] [CrossRef] [Green Version]
- Cangemi, C.; Skov, V.; Poulsen, M.K.; Funder, J.; Twal, W.O.; Gall, M.A.; Hjortdal, V.; Jespersen, M.L.; Kruse, T.A.; Aagard, J.; et al. Fibulin-1 is a marker for arterial extracellular matrix alterations in type 2 diabetes. Clin. Chem. 2011, 57, 1556–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokou, M.; Yang, S.; Zhan, B.; Geng, S.; Li, K.; Yang, M.; Yang, G.; Deng, W.; Liu, H.; Liu, D.; et al. Elevated Circulating Fetuin-B Levels Are Associated with Insulin Resistance and Reduced by GLP-1RA in Newly Diagnosed PCOS Women. Mediat. Inflamm 2020, 2020, 2483435. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; He, C.; Liu, Y.; Wang, D.; Lin, M.; Liu, C.; Shi, X.; Chen, Z.; Li, X.; Yang, S.; et al. Association of Fetuin-B with Subclinical Atherosclerosis in Obese Chinese Adults. J. Atheroscler. Thromb. 2020, 27, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.H.; Yeh, C.; Chen, J.C.; Lee, T.H.; Chen, S.C.; Lee, W.J.; Chen, C.Y. Does bariatric surgery influence plasma levels of fetuin-A and leukocyte cell-derived chemotaxin-2 in patients with type 2 diabetes mellitus? PeerJ 2018, 6, e4884. [Google Scholar] [CrossRef] [PubMed]
- Himmetoglu, S.; Teksoz, S.; Zengin, K.; Yesim, T.; Taskın, M.; Dincer, Y. Serum levels of fetuin A and 8-hydroxydeoxyguanosine in morbidly obese subjects. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2013, 121, 505–508. [Google Scholar] [CrossRef]
- Qin, W.; Liang, Y.-Z.; Qin, B.-Y.; Zhang, J.-L.; Xia, N. The Clinical Significance of Glycoprotein Phospholipase D Levels in Distinguishing Early Stage Latent Autoimmune Diabetes in Adults and Type 2 Diabetes. PLoS ONE 2016, 11, e0156959. [Google Scholar] [CrossRef] [Green Version]
- Abdolmaleki, F.; Heidarianpour, A. Endurance exercise training restores diabetes-induced alteration in circulating Glycosylphosphatidylinositol-specific phospholipase D levels in rats. Diabetol. Metab. Syndr. 2020, 12, 43. [Google Scholar] [CrossRef]
- Masi, L.N.; Lotufo, P.A.; Ferreira, F.M.; Rodrigues, A.C.; Serdan, T.D.A.; Souza-Siqueira, T.; Braga, A.A.; Saldarriaga, M.E.G.; Alba-Loureiro, T.C.; Borges, F.T.; et al. Profiling plasma-extracellular vesicle proteins and microRNAs in diabetes onset in middle-aged male participants in the ELSA-Brasil study. Physiol. Rep. 2021, 9, e14731. [Google Scholar] [CrossRef]
- Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005, 436, 356–362. [Google Scholar] [CrossRef]
- Won, J.C.; Park, C.Y.; Oh, S.W.; Park, S.W. Increased plasma levels of retinol-binding protein 4 with visceral obesity is associated with cardiovascular risk factors. J. Diabetes Investig. 2012, 3, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Jugnam-Ang, W.; Pannengpetch, S.; Isarankura-Na-Ayudhya, P.; Thippakorn, C.; Isarankura-Na-Ayudhya, C.; Lawung, R.; Prachayasittiku, V. Retinol-binding protein 4 and its potential roles in hypercholesterolemia revealed by proteomics. EXCLI J. 2015, 14, 999–1013. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Marcos, L.V.; Lou-Bonafonte, J.M.; Martinez-Gracia, M.V.; Arnal, C.; Navarro, M.A.; Osada, J. Prenylcysteine oxidase 1, a pro-oxidant enzyme of low density lipoproteins. Front. Biosci. 2018, 23, 1020–1037. [Google Scholar] [CrossRef] [Green Version]
- Mavreli, D.; Evangelinakis, N.; Papantoniou, N.; Kolialexi, A. Quantitative Comparative Proteomics Reveals Candidate Biomarkers for the Early Prediction of Gestational Diabetes Mellitus: A Preliminary Study. In Vivo 2020, 34, 517–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Roy-Gagnon, M.-H.; Lefebvre, J.-F.; Burkett, K.M.; Dubois, L. Modeling gene-environment interactions in longitudinal family studies: A comparison of methods and their application to the association between the IGF pathway and childhood obesity. BMC Med. Genet. 2019, 20, 9. [Google Scholar] [CrossRef] [Green Version]
- Hess, O.; Khayat, M.; Hwa, V.; Heath, K.E.; Teitler, A.; Hritan, Y.; Allon-Shalev, S.; Tenenbaum-Rakover, Y. A novel mutation in IGFALS, c.380T>C (p.L127P), associated with short stature, delayed puberty, osteopenia and hyperinsulinaemia in two siblings: Insights into the roles of insulin growth factor-1 (IGF1). Clin. Endocrinol. 2013, 79, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S. Classification of acute pancreatitis—2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef]
- Bevan, M.; Bancroft, I.; Bent, E.; Love, K.; Goodman, H.; Dean, C.; Bergkamp, R.; Dirkse, W.; Van Staveren, M.; Stiekema, W.; et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 1998, 391, 485–488. [Google Scholar] [CrossRef]
Features/Groups | Severe Acute Pancreatitis (n = 10) | Healthy Controls (n = 3) | Statistical Result | p Value |
---|---|---|---|---|
Sex, n (%) | 1.00 a | |||
Male | 4 (40) | 1 (33.33) | ||
Female | 6 (60) | 2 (66.66) | ||
Age (years) | 51.10 ± 14.44 | 32.67 ± 5.13 | t = 2.114 | 0.058 b |
Smoker (%) | 3 (30) | 1 (33.33) | 1.00 a | |
Alcoholism (%) | 2 (20) | 1 (33.33) | 1.00 a | |
BMI (kg/m2) | 22.44 ± 4.57 | 22.30 ± 0.50 | t = 0.095 | 0.926 b |
SBP (mmHg) | 133.20 ± 13.93 | 119.33 ± 4.51 | t = 1.652 | 0.127 b |
DBP (mmHg) | 86.50 ± 9.64 | 76.00 ± 5.00 | t = 1.777 | 0.103 b |
FBG (mmol/L) | 9.47 ± 2.25 | 4.65 ± 0.75 | t = 3.545 | 0.005 b |
TC (mmol/L) | 5.46 ± 1.65 | 5.74 ± 0.20 | t = −0.278 | 0.786 b |
TG (mmol/L) | 4.52 ± 2.88 | 2.09 ± 0.58 | t = 1.412 | 0.186 b |
WBC (×109/L) | 15.97 ± 5.66 | 5.93 ± 1.48 | t = 2.956 | 0.013 b |
Amylase (U/L) | 1490.40 ± 873.33 | 41.33 ± 5.03 | t = 5.247 | 0.001 b |
Regulation | Protein Accession Identification | Gene Name | Protein Description | FC | p Value |
---|---|---|---|---|---|
UP | P04040 | CAT | Catalase | 22.61 | 0.020 |
UP | P00915 | CA1 | Carbonic anhydrase 1 | 19.78 | 0.027 |
UP | P68871 | HBB | Hemoglobin subunit beta | 11.33 | 0.007 |
UP | P69905 | HBA1 | Hemoglobin subunit alpha | 10.46 | 0.017 |
UP | P69891 | HBG1 | Hemoglobin subunit gamma-1 | 4.27 | 0.033 |
UP | P19652 | ORM2 | Alpha-1-acid glycoprotein 2 | 2.27 | 0.032 |
DOWN | P23142 | FBLN1 | Fibulin-1 | 0.66 | 0.004 |
DOWN | P02753 | RBP4 | Retinol-binding protein 4 | 0.66 | 0.009 |
DOWN | P02787 | TF | Serotransferrin | 0.65 | 0.012 |
DOWN | P43251 | BTD | Biotinidase | 0.64 | 0.010 |
DOWN | P06312 | IGKV4-1 | Immunoglobulin kappa variable 4-1 | 0.62 | 0.043 |
DOWN | P02765 | AHSG | Alpha-2-HS-glycoprotein | 0.60 | 0.008 |
DOWN | P01871 | IGHM | Immunoglobulin heavy constant mu | 0.60 | 0.025 |
DOWN | Q9UHG3 | PCYOX1 | Prenylcysteine oxidase 1 | 0.59 | 0.048 |
DOWN | Q9UGM5 | FETUB | Fetuin-B | 0.57 | 0.012 |
DOWN | P51884 | LUM | Lumican | 0.56 | 0.001 |
DOWN | P07477 | PRSS1 | Trypsin-1 | 0.56 | 0.004 |
DOWN | P0DOX8 | - | Immunoglobulin lambda-1 light chain | 0.56 | 0.007 |
DOWN | P80108 | GPLD1 | Phosphatidylinositol-glycan-specific phospholipase D | 0.55 | 0.033 |
DOWN | P35858 | IGFALS | Insulin-like growth factor-binding protein complex acid labile subunit | 0.51 | 0.007 |
DOWN | P01860 | IGHG3 | Immunoglobulin heavy constant gamma 3 | 0.51 | 0.024 |
DOWN | P01701 | IGLV1-51 | Immunoglobulin lambda variable 1-51 | 0.47 | 0.027 |
DOWN | Q16610 | ECM1 | Extracellular matrix protein 1 | 0.45 | 0.027 |
DOWN | O43866 | CD5L | CD5 antigen-like | 0.45 | 0.000 |
DOWN | P04430 | IGKV1-16 | Immunoglobulin kappa variable 1-16 | 0.43 | 0.007 |
DOWN | A0A087WSY6 | IGKV3D-15 | Immunoglobulin kappa variable 3D-15 | 0.43 | 0.021 |
DOWN | P01597; P04432 | IGKV1-39; IGKV1D-39 | Immunoglobulin kappa variable 1-39; immunoglobulin kappa variable 1D-39 | 0.40 | 0.006 |
DOWN | P01599 | IGKV1-17 | Immunoglobulin kappa variable 1-17 | 0.39 | 0.023 |
DOWN | A0A075B6K4 | IGLV3-10 | Immunoglobulin lambda variable 3-10 | 0.38 | 0.000 |
DOWN | P02788 | LTF | Lactotransferrin | 0.33 | 0.001 |
DOWN | Q9H251 | CDH23 | Cadherin-23 | 0.24 | 0.024 |
DOWN | Q03001 | DST | Dystonin | 0.18 | 0.047 |
DOWN | P04275 | VWF | Von Willebrand factor | 0.16 | 0.000 |
DOWN | P01601 | IGKV1D-16 | Immunoglobulin kappa variable 1D-16 | 0.15 | 0.018 |
DOWN | P12883; P13533 | MYH7; MYH6 | Myosin-7; myosin-6 | 0.14 | 0.028 |
Biomarkers | Non-SAP (n = 46) | SAP (n = 37) | Statistical Result | p Value | AUROC (95% CI) | COP | SEN (%) | SPE (%) |
---|---|---|---|---|---|---|---|---|
VWF (U/L) | 417.38 (400.71–437.01) | 369.43 (321.48–397.70) | z = −5.030 | <0.001 | 0.823 (0.731,0.914) | 400.71 | 76.09 | 83.78 |
ORM2 (µg/L) | 2147.26 (2026.05–2480.25) | 2357.29 (2308.36–2470.00) | z = −2.016 | 0.044 | 0.630 (0.502,0.756) | 2206.79 | 89.19 | 58.70 |
CD5L (pg/mL) | 894.24 (845.30–988.33) | 1049.10 (998.81–1108.64) | z = −4.398 | <0.001 | 0.782 (0.675,0.889) | 962.14 | 89.19 | 73.91 |
CAT (ng/L) | 38.62 (36.72–42.43) | 38.62 (37.91–40.75) | z = −0.119 | 0.905 | 0.508 (0.381,0.635) | 41.13 | 36.96 | 86.49 |
IGLV3-10 (pg/mL) | 1426.93 (1389.85–1637.12) | 1591.96 (1526.25–1664.96) | z = −3.170 | 0.002 | 0.703 (0.586,0.820) | 1442.83 | 94.59 | 56.52 |
LTF (µg/mL) | 114.83 (104.67–128.61) | 106.18 (100.72–110.90) | z = −2.877 | 0.004 | 0.684 (0.566,0.803) | 110.94 | 65.22 | 78.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Xu, Y.; Zhou, X.; Jin, T.; Wang, Z.; Sun, Y.; Wang, H.; Jiang, D.; Yin, C.; Shen, B.; et al. DIA-Based Proteomic Analysis of Plasma Protein Profiles in Patients with Severe Acute Pancreatitis. Molecules 2022, 27, 3880. https://doi.org/10.3390/molecules27123880
Li H, Xu Y, Zhou X, Jin T, Wang Z, Sun Y, Wang H, Jiang D, Yin C, Shen B, et al. DIA-Based Proteomic Analysis of Plasma Protein Profiles in Patients with Severe Acute Pancreatitis. Molecules. 2022; 27(12):3880. https://doi.org/10.3390/molecules27123880
Chicago/Turabian StyleLi, He, Yansong Xu, Xin Zhou, Taiyang Jin, Ziru Wang, Yuansong Sun, Haiping Wang, Datong Jiang, Chunlin Yin, Bing Shen, and et al. 2022. "DIA-Based Proteomic Analysis of Plasma Protein Profiles in Patients with Severe Acute Pancreatitis" Molecules 27, no. 12: 3880. https://doi.org/10.3390/molecules27123880
APA StyleLi, H., Xu, Y., Zhou, X., Jin, T., Wang, Z., Sun, Y., Wang, H., Jiang, D., Yin, C., Shen, B., & Song, K. (2022). DIA-Based Proteomic Analysis of Plasma Protein Profiles in Patients with Severe Acute Pancreatitis. Molecules, 27(12), 3880. https://doi.org/10.3390/molecules27123880