Different Types of Meatballs Enriched with Wild Thyme/Lemon Balm Aqueous Extract—Complex Characterization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity and Bioactive Compounds
2.2. FT-IR Analysis
2.3. In Vitro Release of Phenolic Compounds from Different Types of Meatballs
2.4. Color Measurements
2.5. Sensory Evaluation
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Samples Preparation
3.2.1. Preparation of the Aqueous Extracts of Herbs
3.2.2. Preparation of Meatballs
3.2.3. Sample Codification of Herbal Aqueous Extract Enriched Meatballs
3.2.4. Preparation of Extraction
3.3. Evaluation of Antioxidant Activity
3.4. Determination of Total Bioactive Compounds by Spectrophotometric Methods
3.4.1. Total Phenolic Content (TPC)
3.4.2. Total Flavonoid Content (TFC)
3.5. Fourier-Transform Infrared Spectroscopy (FT-IR)
3.6. In Vitro Release of Phenolic Compounds
3.7. Color Measurements
3.8. Sensory Evaluation
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pająk, P.; Socha, R.; Broniek, J.; Królikowska, K.; Fortuna, T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 2018, 275, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Šojić, B.; Tomović, V.; Kocić-Tanackov, S.; Kovačević, D.B.; Putnik, P.; Mrkonjić, Ž.; Đurović, S.; Jokanović, M.; Ivić, M.; Škaljac, S.; et al. Supercritical extracts of wild thyme (Thymus serpyllum L.) by-product as natural antioxidants in ground pork patties. LWT 2020, 130, 109661. [Google Scholar] [CrossRef]
- Abdel-Naime, W.A.; Fahim, J.R.; Fouad, M.A.; Kamel, M.S. Antibacterial, antifungal, and GC–MS studies of Melissa officinalis. S. Afr. J. Bot. 2019, 124, 228–234. [Google Scholar] [CrossRef]
- Savino, F.; Cresi, F.; Castagno, E.; Silvestro, L.; Oggero, R. A randomized double-blind placebo-controlled trial of a standardized extract of Matricariae recutita, Foeniculum vulgare and Melissa officinalis (ColiMil®) in the treatment of breastfed colicky infants. Phyther. Res. 2005, 19, 335–340. [Google Scholar] [CrossRef]
- Sostaric, I.; Liber, Z.; Grdisa, M.; Marin, P.D.; Dajic Stevanovic, Z.; Satovic, Z. Genetic diversity and relationships among species of the genus Thymus L. (section Serpyllum). Flora Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 654–661. [Google Scholar] [CrossRef]
- Nikolić, M.; Glamočlija, J.; Ferreira, I.C.F.R.; Calhelha, R.C.; Fernandes, Â.; Marković, T.; Marković, D.; Giweli, A.; Soković, M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Prosen, H.; Pendry, B. Determination of shelf life of Chelidonium majus, Sambucus nigra, Thymus vulgaris and Thymus serpyllum herbal tinctures by various stability-indicating tests. Phytochem. Lett. 2016, 16, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Sibeko, L.; Johns, T.; Cordeiro, L.S. Traditional plant use during lactation and postpartum recovery: Infant development and maternal health roles. J. Ethnopharmacol. 2021, 279, 114377. [Google Scholar] [CrossRef]
- Sallam, K.I.; Abd-Elghany, S.M.; Imre, K.; Morar, A.; Herman, V.; Hussein, M.A.; Mahros, M.A. Ensuring safety and improving keeping quality of meatballs by addition of sesame oil and sesamol as natural antimicrobial and antioxidant agents. Food Microbiol. 2021, 99, 103834. [Google Scholar] [CrossRef]
- Niu, Y.; Fang, H.; Huo, T.; Sun, X.; Gong, Q.; Yu, L. A novel fat replacer composed by gelatin and soluble dietary fibers from black bean coats with its application in meatballs. LWT 2020, 122, 109000. [Google Scholar] [CrossRef]
- Jia, G.; He, X.; Nirasawa, S.; Tatsumi, E.; Liu, H.; Liu, H. Effects of high-voltage electrostatic field on the freezing behavior and quality of pork tenderloin. J. Food Eng. 2017, 204, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Bastida, S.; Sánchez-Muniz, F.J.; Olivero, R.; Pérez-Olleros, L.; Ruiz-Roso, B.; Jiménez-Colmenero, F. Antioxidant activity of Carob fruit extracts in cooked pork meat systems during chilled and frozen storage. Food Chem. 2009, 116, 748–754. [Google Scholar] [CrossRef]
- Lizcano, L.J.; Bakkali, F.; Begoña Ruiz-Larrea, M.; Ignacio Ruiz-Sanz, J. Antioxidant activity and polyphenol content of aqueous extracts from Colombian Amazonian plants with medicinal use. Food Chem. 2010, 119, 1566–1570. [Google Scholar] [CrossRef]
- Sánchez-Muniz, F.J.; Olivero-David, R.; Triki, M.; Salcedo, L.; González-Muñoz, M.J.; Cofrades, S.; Ruiz-Capillas, C.; Jiménez-Colmenero, F.; Benedi, J. Antioxidant activity of Hypericum perforatum L. extract in enriched n-3 PUFA pork meat systems during chilled storage. Int. Food Res. J. 2012, 48, 909–915. [Google Scholar] [CrossRef]
- Keşkekoǧlu, H.; Üren, A. Inhibitory effects of pomegranate seed extract on the formation of heterocyclic aromatic amines in beef and chicken meatballs after cooking by four different methods. Meat Sci. 2014, 96, 1446–1451. [Google Scholar] [CrossRef]
- Mokhtari, L.; Ghoreishi, S.M. Supercritical carbon dioxide extraction of trans-anethole from Foeniculum vulgare (fennel) seeds: Optimization of operating conditions through response surface methodology and genetic algorithm. J. CO2 Util. 2019, 30, 1–10. [Google Scholar] [CrossRef]
- Ahmad, R.S.; Imran, A.; Hussain, M.B. Nutritional Composition of Meat. In Meat Science and Nutrition; Arshad, M.S., Ed.; IntechOpen: London, UK, 2018; pp. 61–77. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, G.; Motoyama, M.; Nakajima, I.; Sasaki, K. Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin. Asian-Australas. J. Anim. Sci. 2018, 31, 914–918. [Google Scholar] [CrossRef] [Green Version]
- Vaskoska, R.; Vénien, A.; Ha, M.; White, J.D.; Unnithan, R.R.; Astruc, T.; Warner, R.D. Thermal denaturation of proteins in the muscle fibre and connective tissue from bovine muscles composed of type I (masseter) or type II (cutaneous trunci) fibres: DSC and FTIR microspectroscopy study. Food Chem. 2021, 343, 128544. [Google Scholar] [CrossRef]
- Balan, V.; Mihai, C.T.; Cojocaru, F.D.; Uritu, C.M.; Dodi, G.; Gardikiotis, I. Vibrational spectroscopy fingerprinting in medicine: From molecular to clinical practice. Materials 2019, 12, 2884. [Google Scholar] [CrossRef] [Green Version]
- Caine, S.; Heraud, P.; Tobin, M.J.; McNaughton, D.; Bernard, C.C.A. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue. Neuroimage 2012, 59, 3624–3640. [Google Scholar] [CrossRef]
- Arockia Sahayaraj, P.; Gowri, J.; Dharmalingam, V.; Shobana, R.; Angelin Prema, A.; Ramaswami, S. Phytochemical screening by FTIR spectroscopic analysis of leaf and stem Extracts of wedelia biflora. Int. J. Nano Curr. Sci. Eng. 2015, 2, 322–334. [Google Scholar]
- Rohman, A.; Sismindari; Erwanto, Y.; Man, Y.B.C. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Sci. 2011, 88, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Kurniawati, E.; Rohman, A.; Triyana, K. Analysis of lard in meatball broth using Fourier transform infrared spectroscopy and chemometrics. Meat Sci. 2014, 96, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Chakraborti, C.K.; Behera, P.K.; Mishra, S.C. FTIR and Raman spectroscopic investigations of a norfloxacin/carbopol934 polymeric suspension. J. Young Pharm. 2012, 4, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Guyon, C.; Meynier, A.; de Lamballerie, M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Technol. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- Zwolan, A.; Pietrzak, D.; Adamczak, L.; Chmiel, M.; Kalisz, S.; Wirkowska-Wojdyła, M.; Florowski, T.; Oszmiański, J. Effects of Nigella sativa L. seed extracts on lipid oxidation and color of chicken meatballs during refrigerated storage. LWT 2020, 130, 109718. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Bak, K.H.; Bolumar, T.; Karlsson, A.H.; Lindahl, G.; Orlien, V. Effect of high pressure treatment on the color of fresh and processed meats: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 228–252. [Google Scholar] [CrossRef]
- García-Segovia, P.; Andrés-Bello, A.; Martínez-Monzó, J. Effect of cooking method on mechanical properties, color and structure of beef muscle (M. pectoralis). J. Food Eng. 2007, 80, 813–821. [Google Scholar] [CrossRef]
- Sazonova, S.; Grube, M.; Shvirksts, K.; Galoburda, R.; Gramatina, I. FTIR spectroscopy studies of high pressure-induced changes in pork macromolecular structure. J. Mol. Struct. 2019, 1186, 377–383. [Google Scholar] [CrossRef]
- Karpińska-Tymoszczyk, M. The effect of antioxidants, packaging type and frozen storage time on the quality of cooked turkey meatballs. Food Chem. 2014, 148, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelska, E.; Godziszewska, J.; Brodowska, M.; Wierzbicka, A. Antioxidant potential of Haematococcus pluvialis extract rich in astaxanthin on colour and oxidative stability of raw ground pork meat during refrigerated storage. Meat Sci. 2018, 135, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Hmidani, A.; Bouhlali, E.d.T.; Khouya, T.; Ramchoun, M.; Filali-zegzouti, Y.; Benlyas, M.; Alem, C. Effect of extraction methods on antioxidant and anticoagulant activities of Thymus atlanticus aerial part. Sci. Afr. 2019, 5, e00143. [Google Scholar] [CrossRef]
- Araújo, L.R.S.; Watanabe, P.H.; Fernandes, D.R.; Maia, I.R.d.O.; da Silva, E.C.; Pinheiro, R.R.S.; de Melo, M.C.A.; dos Santos, E.O.; Owen, R.W.; Trevisan, M.T.S.; et al. Dietary ethanol extract of mango increases antioxidant activity of pork. Animal 2021, 15, 100099. [Google Scholar] [CrossRef]
- Pająk, P.; Socha, R.; Gałkowska, D.; Rozżnowski, J.; Fortuna, T. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem. 2014, 143, 300–306. [Google Scholar] [CrossRef]
- Turturică, M.; Stănciuc, N.; Bahrim, G.; Râpeanu, G. Effect of thermal treatment on phenolic compounds from plum (prunus domestica) extracts—A kinetic study. J. Food Eng. 2015, 171, 200–207. [Google Scholar] [CrossRef]
- Dewanto, V.; Xianzhong, W.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
Hot Air Convection | |||||||||
---|---|---|---|---|---|---|---|---|---|
HP | ERPC | ECPC | HT | ECCC | ERCC | HB | ECVC | ERVC | |
Antioxidant Activity, µM Trolox/g dw | 5.90 ± 0.01 B | 7.50 ± 0.22 A | 3.36 ± 0.06 D,E | 3.20 ± 0.02 D,E | 3.53 ± 0.27 C,D | 3.97 ± 0.24 C,D | 2.32 ± 0.00 E | 3.12 ± 0.64 D,E | 4.56 ± 0.76 C |
TPC, mg GAE/g dw | 1.80 ± 0.00 E | 2.21 ± 0.03 B | 1.54 ± 0.03 F | 1.71 ± 0.00 E,F | 1.79 ± 0.03 E | 1.82 ± 0.02 D,E | 2.16 ± 0.00 B,C | 2.00 ± 0.03 C,D | 2.69 ± 0.02 A |
TFC, mg EQ/g dw | 1.06 ± 0.00 B | 1.51 ± 0.19 A | 1.59 ± 0.03 A | 1.66 ± 0.00 A | 1.76 ± 0.10 A | 1.80 ± 0.20 A | 1.77 ± 0.00 A | 1.73 ± 0.05 A | 1.73 ± 0.05 A |
Steam Convection | |||||||||
SP | ECPA | ERPA | ST | ECCA | ERCA | SB | ECVA | ERVA | |
Antioxidant Activity, µM Trolox/g dw | 0.11 ± 0.03 F | 1.00 ± 0.04 E,F | 1.40 ± 0.09 E | 4.5 ± 0.00 C | 3.99 ± 0.19 C,D | 3.05 ± 0.64 D | 4.86 ± 0.01 B,C | 5.99 ± 0.69 A | 5.71 ± 0.45 A,B |
TPC, mg GAE/g dw | 1.81 ± 0.00 A | 1.57 ± 0.04 B,C | 1.56 ± 0.01 B,C | 1.68 ± 0.00 A,B | 1.72 ± 0.05 A,B | 1.75 ± 0.04 A | 1.47 ± 0.00 C | 1.46 ± 0.02 C | 1.38 ± 0.04 C |
TFC, mg EQ/g dw | 1.93 ± 0.00 C,D | 1.88 ± 0.07 C,D | 2.49 ± 0.14 B | 1.7 ± 0.00 D | 1.89 ± 0.14 C,D | 1.72 ± 0.02 D | 1.58 ± 0.00 D | 2.22 ± 0.20 B,C | 3.03 ± 0.24 A |
Samples Color Parameters | Hot Air Convection | Steam Convection | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ECPC | ERPC | ECCC | ERCC | ECVC | ERVC | ECPA | ERPA | ECCA | ERCA | ECVA | ERVA | |
L* | 50.47 ± 2.26 B | 51.37 ± 3.76 B | 57.58 ± 0.33 A | 57.75 ± 0.29 A | 42.08 ± 0.64 C | 40.93 ± 0.59 C | 48.55 ± 0.62 C | 49.34 ± 0.21 C | 57.93 ± 0.18 A | 56.47 ± 0.55 B | 41.69 ± 1.07 D | 41.37 ± 0.60 D |
a* | 4.65 ± 0.12 B | 4.83 ± 0.48 B | 2.68 ± 0.02 C | 2.30 ± 0.01 C | 6.99 ± 0.30 A | 6.97 ± 0.09 A | 4.83 ± 0.04 C | 4.78 ± 0.07 C | 2.10 ± 0.04 D | 2.11 ± 0.01 D | 6.39 ± 0.16 A | 6.12 ± 0.04 B |
b* | 7.33 ± 0.11 A | 7.39 ± 0.03 A | 6.55 ± 0.09 B,C | 6.44 ± 0.21 C | 6.77 ± 0.14 B | 7.15 ± 0.14 A | 6.37 ± 0.11 B | 6.34 ± 0.28 B | 7.02 ± 0.02 A | 7.28 ± 0.17 A | 7.02 ± 0.11 A | 7.25 ± 0.01 A |
ΔE | 19.38 ± 2.09 A | 17.18 ± 3.32 A | 18.29 ± 0.29 A | 18.26 ± 0.28 A | 16.39 ± 0.42 A | 12.20 ± 0.49 B | 17.48 ± 0.60 B | 15.29 ± 0.23 D | 18.83 ± 0.18 A | 17.20 ± 0.47 B,C | 16.44 ± 0.81 C | 13.09 ± 0.42 E |
C* | 8.68 ± 0.16 B | 8.83 ± 0.24 B | 7.07 ± 0.08 C | 6.83 ± 0.20 C | 9.73 ± 0.31 A | 9.98 ± 0.17 A | 7.99 ± 0.12 B | 7.94 ± 0.27 B | 7.32 ± 0.01 C | 7.58 ± 0.16 C | 9.49 ± 0.19 A | 9.49 ± 0.02 A |
h* | −0.01 ± 0.02 B | 0.03 ± 0.03 B | −1.20 ± 0.13 C | −2.93 ± 0.76 D | 0.69 ± 0.03 A | 0.61 ± 0.01 A,B | 0.26 ± 0.01 C | 0.25 ± 0.04 C | 5.35 ± 2.13 A | 3.13 ± 0.73 B | 0.51 ± 0.01 C | 0.41 ± 0.01 C |
WI | 49.71 ± 2.19 B | 50.57 ± 3.66 B | 56.99 ± 0.33 A | 57.20 ± 0.32 A | 41.26 ± 0.58 C | 40.09 ± 0.61 C | 47.93 ± 0.63 C | 48.72 ± 0.24 C | 57.30 ± 0.18 A | 55.82 ± 0.57 B | 40.92 ± 1.03 D | 40.60 ± 0.59 D |
BI | 22.12 ± 0.62 C | 22.13 ± 1.11 C | 15.20 ± 0.24 D | 14.47 ± 0.48 D | 29.25 ± 0.43 B | 21.22 ± 1.06 A | 21.03 ± 0.61 B | 20.53 ± 0.85 B | 15.28 ± 0.06 C | 16.24 ± 0.52 C | 29.22 ± 0.22 A | 29.70 ± 0.43 A |
YI | 20.76 ± 0.61 C | 20.61 ± 1.59 C | 16.24 ± 0.32 D | 15.92 ± 0.59 D | 22.99 ± 0.13 B | 24.97 ± 0.85 A | 18.75 ± 0.57 B | 18.36 ± 0.90 B | 17.30 ± 0.00 C | 18.24 ± 0.61 B | 24.04 ± 0.26 A | 25.04 ± 0.41 A |
Samples Color Parameters | Hot Air Convection | Steam Convection | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ECPC | ERPC | ECCC | ERCC | ECVC | ERVC | ECPA | ERPA | ECCA | ERCA | ECVA | ERVA | |
L* | 49.68 ± 0.76 B | 50.43 ± 0.42 B | 57.30 ± 0.20 A | 56.65 ± 0.39 A | 41.75 ± 0.57 A | 41.19 ± 0.56 A | 49.69 ± 0.45 B | 49.32 ± 0.12 B | 57.36 ± 1.68 A | 55.97 ± 0.62 A | 41.75 ± 0.85 C | 40.51 ± 0.26 C |
a* | 3.23 ± 0.02 B | 2.70 ± 0.00 C | 1.93 ± 0.07 D | 1.58 ± 0.06 E | 3.59 ± 0.08 A | 3.56 ± 0.01 A | 2.80 ± 0.01 D | 2.99 ± 0.13 C | 1.16 ± 0.02 E | 1.32 ± 0.06 E | 3.50 ± 0.09 B | 3.67 ± 0.12 A |
b* | 7.48 ± 0.14 A | 7.35 ± 0.06 A,B | 7.16 ± 0.19 B,C | 6.91 ± 0.18 C | 7.38 ± 0.08 A,B | 7.53 ± 0.01 A | 7.96 ± 0.18 A | 7.76 ± 0.05 A | 7.69 ± 0.25 A | 7.84 ± 0.06 A | 6.89 ± 0.57 B | 7.45 ± 0.01 A |
ΔE | 19.18 ± 0.69 A | 17.18 ± 0.37 C | 18.35 ± 0.20 A,B | 17.68 ± 0.30 B,C | 18.21 ± 0.49 B | 14.83 ± 0.35 D | 19.41 ± 0.40 A | 16.07 ± 0.04 C | 18.78 ± 1.44 A | 17.22 ± 0.45 B,C | 18.16 ± 0.44 A,B | 14.31 ± 0.25 D |
C* | 8.15 ± 0.14 A | 7.83 ± 0.05 B | 7.41 ± 0.20 C | 7.09 ± 0.17 D | 8.20 ± 0.03 A | 8.32 ± 0.01 A | 8.43 ± 0.17 A | 8.00 ± 0.10 A,B,C | 7.77 ± 0.24 C | 7.95 ± 0.07 B,C | 7.73 ± 0.47 C | 8.30 ± 0.07 A,B |
h* | −0.93 ± 0.05 D | −2.25 ± 0.13 E | 1.58 ± 0.13 A | 0.36 ± 0.31 B | −0.53 ± 0.09 C | −0.60 ± 0.01 C | −3.27 ± 0.56 B | −1.33 ± 0.26 B | 4.38 ± 4.17 A | −4.45 ± 3.64 B | −0.44 ± 0.26 B | −0.50 ± 0.08 B |
WI | 49.02 ± 0.72 B | 49.82 ± 0.43 B | 56.66 ± 0.25 A | 56.07 ± 0.41 A | 41.18 ± 0.56 C | 40.60 ± 0.55 C | 48.99 ± 0.47 B | 48.69 ± 0.10 B | 56.65 ± 1.61 A | 55.26 ± 0.60 A | 41.24 ± 0.90 C | 39.93 ± 0.27 C |
BI | 20.75 ± 0.02 C | 19.36 ± 0.30 D | 15.52 ± 0.38 E | 14.77 ± 0.40 F | 25.38 ± 0.30 B | 26.15 ± 0.34 A | 21.24 ± 0.65 C | 20.43 ± 0.26 C | 15.55 ± 0.03 D | 16.49 ± 0.00 D | 23.84 ± 1.99 B | 26.59 ± 0.45 A |
YI | 21.51 ± 0.08 C | 20.82 ± 0.34 D | 17.84 ± 0.39 E | 17.43 ± 0.58 E | 25.24 ± 0.08 B | 26.10 ± 0.33 A | 22.87 ± 0.72 B,C | 21.51 ± 0.09 C,D | 19.14 ± 0.06 E | 20.01 ± 0.08 D,E | 23.58 ± 2.44 B | 26.28 ± 0.22 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tănase, L.-A.; Nistor, O.-V.; Andronoiu, D.-G.; Mocanu, G.-D.; Botezatu Dediu, A.V.; Botez, E. Different Types of Meatballs Enriched with Wild Thyme/Lemon Balm Aqueous Extract—Complex Characterization. Molecules 2022, 27, 3920. https://doi.org/10.3390/molecules27123920
Tănase L-A, Nistor O-V, Andronoiu D-G, Mocanu G-D, Botezatu Dediu AV, Botez E. Different Types of Meatballs Enriched with Wild Thyme/Lemon Balm Aqueous Extract—Complex Characterization. Molecules. 2022; 27(12):3920. https://doi.org/10.3390/molecules27123920
Chicago/Turabian StyleTănase (Butnariu), Luiza-Andreea, Oana-Viorela Nistor, Doina-Georgeta Andronoiu, Gabriel-Dănuț Mocanu, Andreea Veronica Botezatu Dediu, and Elisabeta Botez. 2022. "Different Types of Meatballs Enriched with Wild Thyme/Lemon Balm Aqueous Extract—Complex Characterization" Molecules 27, no. 12: 3920. https://doi.org/10.3390/molecules27123920
APA StyleTănase, L. -A., Nistor, O. -V., Andronoiu, D. -G., Mocanu, G. -D., Botezatu Dediu, A. V., & Botez, E. (2022). Different Types of Meatballs Enriched with Wild Thyme/Lemon Balm Aqueous Extract—Complex Characterization. Molecules, 27(12), 3920. https://doi.org/10.3390/molecules27123920