Connarus semidecandrus Jack Exerts Anti-Alopecia Effects by Targeting 5α-Reductase Activity and an Intrinsic Apoptotic Pathway
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Components of C. semidecandrus
2.2. Hair Growth Promoting and Hair Thickening Effects of Cs-EE
2.3. Histological Analysis and Ex Vivo Culture of Mouse Hair Follicles Reveal Hair Protective and Growth Effects of Cs-EE
2.4. Cs-EE Reduces AR Level and Inhibits Apoptotic Pathway In Vivo
2.5. Cs-EE Exhibits Opposite Effects on the Survival and Proliferation of LNCaP and HDP Cells
2.6. Cs-EE Promotes 5α-Reductase Inhibition and Anti-Apoptotic Processes in HDP Cells
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Preparation of C. semidecandrus Ethanol Extract and GC-MS
4.3. Animals and Cell Culture
4.4. Testosterone-Induced AGA Model
4.5. Hair–Skin Ratio, Hair Type Frequency, and Hair Thickness Analysis
4.6. Hematoxylin & Eosin Staining
4.7. Ex Vivo Culture of C57BL/6 Mouse Hair Follicles
4.8. Quantitative Real-Time PCR
4.9. Western Blotting
4.10. 5α—Reductase Activity Assay
4.11. Cell Viability Assay
4.12. Cell Proliferation Assay
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
Cs-EE | Connarus semidecandrus ethanol extract |
AGA | Androgenic alopecia |
AR | Androgenic receptor |
DHT | Dihydrotestosterone |
Bcl-2 | B-cell leukemia/lymphoma 2 |
Bax | Bcl-2 associated X protein |
Caspase 9 | Cysteinyl aspartic acid protease 9 |
Caspase 3 | Cysteinyl aspartic acid protease 3 |
LNCaP cell | Lymph node carcinoma of the prostate cell |
HDP cell | Human hair follicle dermal papilla cell |
GC-MS | Gas chromatography-mass spectrometry |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazo |
References
- Lee, W.-S.; Lee, H.-J. Characteristics of androgenetic alopecia in asian. Ann. Dermatol. 2012, 24, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, V.L.; Keum, Y.S.; Jeong, W.S. Red ginseng oil promotes hair growth and protects skin against UVC radiation. J. Ginseng Res. 2021, 45, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, J.; Xu, J.F.; Tang, F.; Chen, L.; Tan, Y.Z.; Rao, C.L.; Ao, H.; Peng, C. Panax ginseng and its ginsenosides: Potential candidates for the prevention and treatment of chemotherapy-induced side effects. J. Ginseng Res. 2021, 45, 617–630. [Google Scholar] [CrossRef]
- Hunt, N.; McHale, S. The psychological impact of alopecia. BMJ 2005, 331, 951–953. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.E.; Park, S.D.; Hwang, H.; Choi, S.H.; Lee, R.M.; Nam, S.M.; Choi, J.H.; Rhim, H.; Cho, I.H.; Kim, H.C.; et al. Effects of a gintonin-enriched fraction on hair growth: An in vitro and in vivo study. J. Ginseng Res. 2020, 44, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Trüeb, R.M. Molecular mechanisms of androgenetic alopecia. Exp. Gerontol. 2002, 37, 981–990. [Google Scholar] [CrossRef]
- Marchetti, P.M.; Barth, J.H. Clinical biochemistry of dihydrotestosterone. Ann. Clin. Biochem. 2013, 50, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Nesterova, A.; Yuryev, A. Androgenic alopecia: Cross-talk between cell signaling transduction pathways. In Hair and Scalp Disorders; Intech Open: London, UK, 2017; pp. 141–174. [Google Scholar]
- Munkley, J.; Lafferty, N.P.; Kalna, G.; Robson, C.N.; Leung, H.Y.; Rajan, P.; Elliott, D.J. Androgen-regulation of the protein tyrosine phosphatase PTPRR activates ERK1/2 signalling in prostate cancer cells. BMC Cancer 2015, 15, 9. [Google Scholar] [CrossRef] [Green Version]
- Harlow, C.R.; Davidson, L.; Burns, K.H.; Yan, C.; Matzuk, M.M.; Hillier, S.G. FSH and TGF-beta superfamily members regulate granulosa cell connective tissue growth factor gene expression in vitro and in vivo. Endocrinology 2002, 143, 3316–3325. [Google Scholar] [CrossRef] [Green Version]
- Carmina, E.; Lobo, R.A. Treatment of hyperandrogenic alopecia in women. Fertil. Steril. 2003, 79, 91–95. [Google Scholar] [CrossRef]
- Hamishehkar, H.; Ghanbarzadeh, S.; Sepehran, S.; Javadzadeh, Y.; Adib, Z.M.; Kouhsoltani, M. Histological assessment of follicular delivery of flutamide by solid lipid nanoparticles: Potential tool for the treatment of androgenic alopecia. Drug Dev. Ind. Pharm. 2016, 42, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Irwig, M.S.; Kolukula, S. Persistent sexual side effects of finasteride for male pattern hair loss. J. Sex. Med. 2011, 8, 1747–1753. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, L.; Dupont, A.; Labrie, F.; Couture, M. Sexuality changes in prostate cancer patients receiving antihormonal therapy combining the antiandrogen flutamide with medical (LHRH agonist) or surgical castration. Arch. Sex. Behav. 1988, 17, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Falto-Aizpurua, L.; Choudhary, S.; Tosti, A. Emerging treatments in alopecia. Expert. Opin. Emerg. Drugs 2014, 19, 545–556. [Google Scholar] [CrossRef]
- Traish, A.M.; Guay, A.T.; Zitzmann, M. 5α-Reductase inhibitors alter steroid metabolism and may contribute to insulin resistance, diabetes, metabolic syndrome and vascular disease: A medical hypothesis. Horm. Mol. Biol. Clin. Investig. 2014, 20, 73–80. [Google Scholar] [CrossRef]
- Botchkareva, N.V.; Ahluwalia, G.; Shander, D. Apoptosis in the hair follicle. J. Investig. Dermatol. 2006, 126, 258–264. [Google Scholar] [CrossRef] [Green Version]
- Kale, J.; Osterlund, E.J.; Andrews, D.W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2018, 25, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R.L.; Cepero, E.; Boise, L.H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013, 14, 32. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Duan, H.; Xie, F.; Gao, Z.; Wu, X.; Chen, F.; Wu, W. Tetrahydroxystilbene glucoside effectively prevents apoptosis induced hair loss. Biomed. Res. Int. 2018, 2018, 1380146. [Google Scholar] [CrossRef] [Green Version]
- Nunes Alves Paim, L.F.; Patrocínio Toledo, C.A.; Lima da Paz, J.R.; Picolotto, A.; Ballardin, G.; Souza, V.C.; Salvador, M.; Moura, S. Connaraceae: An updated overview of research and the pharmacological potential of 39 species. J. Ethnopharmacol. 2020, 261, 112980. [Google Scholar] [CrossRef]
- Rideley, H.N. The flora of the Malay Peninsula. Nature 1923, 111, 6–7. [Google Scholar]
- Wantana, R.; Subhadhirasakul, S.; Kritawan, M.; Kaesorn, N.; Gomol, R.; Hiromitsu, T. Antipyretic activity of Connarus semidecandrus extract in rats. Songklanakarin J. Sci. Technol. 2000, 22, 191–198. [Google Scholar]
- Bhinge, S.D.; Bhutkar, M.A.; Randive, D.S.; Wadkar, G.H.; Todkar, S.S.; Savali, A.S.; Chittapurkar, H.R. Screening of hair growth promoting activity of Punica granatum L. (pomegranate) leaves extracts and its potential to exhibit antidandruff and anti-lice effect. Heliyon 2021, 7, e06903. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, S.H.; Yang, W.M. Beneficial effects of Astragaloside IV for hair loss via inhibition of Fas/Fas L-mediated apoptotic signaling. PLoS ONE 2014, 9, e92984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.L.; Liu, J.S.; Lin, A.C.; Yang, C.H.; Chung, W.H.; Wu, W.G. Minoxidil may suppress androgen receptor-related functions. Oncotarget 2014, 5, 2187–2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Chen, S.Y.; Ross, K.N.; Balk, S.P. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 2006, 66, 7783–7792. [Google Scholar] [CrossRef] [Green Version]
- Junsongduang, A.; Kasemwan, W.; Lumjoomjung, S.; Sabprachai, W.; Tanming, W.; Balslev, H. Ethnomedicinal knowledge of traditional healers in Roi Et, Thailand. Plants 2020, 9, 1177. [Google Scholar] [CrossRef]
- Schmidt, J.B. Hormonal basis of male and female androgenic alopecia: Clinical relevance. Skin. Pharmacol. 1994, 7, 61–66. [Google Scholar] [CrossRef]
- Gao, W.; Bohl, C.E.; Dalton, J.T. Chemistry and structural biology of androgen receptor. Chem. Rev. 2005, 105, 3352–3370. [Google Scholar] [CrossRef] [Green Version]
- Randall, V.A. Role of 5 alpha-reductase in health and disease. Baillieres Clin. Endocrinol. Metab. 1994, 8, 405–431. [Google Scholar] [CrossRef]
- Soma, T.; Ogo, M.; Suzuki, J.; Takahashi, T.; Hibino, T. Analysis of apoptotic cell death in human hair follicles in vivo and in vitro. J. Investig. Dermatol. 1998, 111, 948–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jan, R.; Chaudhry, G.E. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 2019, 9, 205–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.E.; Didelot, C.; Kroemer, G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006, 13, 1423–1433. [Google Scholar] [CrossRef] [Green Version]
- Ott, M.; Robertson, J.D.; Gogvadze, V.; Zhivotovsky, B.; Orrenius, S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl. Acad. Sci. USA 2002, 99, 1259–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafer, Z.T.; Kornbluth, S. The apoptosome: Physiological, developmental, and pathological modes of regulation. Dev. Cell 2006, 10, 549–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arca, E.; Açikgöz, G.; Taştan, H.B.; Köse, O.; Kurumlu, Z. An open, randomized, comparative study of oral finasteride and 5% topical minoxidil in male androgenetic alopecia. Dermatology 2004, 209, 117–125. [Google Scholar] [CrossRef]
- Lee, J.A.; Shin, J.Y.; Hong, S.S.; Cho, Y.R.; Park, J.H.; Seo, D.W.; Oh, J.S.; Kang, J.S.; Lee, J.H.; Ahn, E.K. Tetracera loureiri extract regulates lipopolysaccharide-induced inflammatory response via Nuclear Factor-κB and Mitogen Activated Protein Kinase signaling pathways. Plants 2022, 11, 284. [Google Scholar] [CrossRef]
- Chi, W.; Wu, E.; Morgan, B.A. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 2013, 140, 1676–1683. [Google Scholar] [CrossRef] [Green Version]
- Yuen, G.K.; Ho, B.S.; Lin, L.S.; Dong, T.T.; Tsim, K.W. Tectoridin stimulates the activity of human dermal papilla cells and promotes hair shaft elongation in mouse vibrissae hair follicle culture. Molecules 2022, 27, 400. [Google Scholar] [CrossRef]
- Kim, J.K.; Shin, K.K.; Kim, H.; Hong, Y.H.; Choi, W.; Kwak, Y.S.; Han, C.K.; Hyun, S.H.; Cho, J.Y. Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice. J. Ginseng Res. 2021, 45, 717–725. [Google Scholar] [CrossRef]
- Lorz, L.R.; Kim, D.; Kim, M.Y.; Cho, J.Y. Panax ginseng-derived fraction BIOGF1K reduces atopic dermatitis responses via suppression of mitogen-activated protein kinase signaling pathway. J. Ginseng Res. 2020, 44, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.O.; Hwang, S.H.; Shen, T.; Kim, J.H.; You, L.; Hu, W.; Cho, J.Y. Enhancement of skin barrier and hydration-related molecules by protopanaxatriol in human keratinocytes. J. Ginseng Res. 2021, 45, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.O.; Yang, Y.; Tao, Y.; Yi, Y.S.; Cho, J.Y. Korean Red Ginseng saponin fraction exerts anti-inflammatory effects by targeting the NF-kappaB and AP-1 pathways. J. Ginseng Res. 2022, 46, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Iwai, A.; Yoshimura, T.; Wada, K.; Watabe, S.; Sakamoto, Y.; Ito, E.; Miura, T. Spectrophotometric method for the assay of steroid 5α-reductase activity of rat liver and prostate microsomes. Anal. Sci. 2013, 29, 455–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koseki, J.; Matsumoto, T.; Matsubara, Y.; Tsuchiya, K.; Mizuhara, Y.; Sekiguchi, K.; Nishimura, H.; Watanabe, J.; Kaneko, A.; Hattori, T.; et al. Inhibition of Rat 5α-Reductase activity and testosterone-induced Sebum synthesis in hamster sebocytes by an extract of Quercus acutissima Cortex. Evid.-Based. Complement. Alternat. Med. 2015, 2015, 853846. [Google Scholar] [CrossRef] [Green Version]
- Quehenberger, J.; Reichenbach, T.; Baumann, N.; Rettenbacher, L.; Divne, C.; Spadiut, O. Kinetics and predicted structure of a novel xylose reductase from Chaetomium thermophilum. Int. J. Mol. Sci. 2019, 20, 185. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.H.; Kim, J.H.; Cho, J.Y. Ranunculus bulumei methanol extract exerts anti-inflammatory activity by targeting Src/Syk in NF-κB signaling. Biomolecules 2020, 10, 546. [Google Scholar] [CrossRef] [Green Version]
- Rho, T.; Jeong, H.W.; Hong, Y.D.; Yoon, K.; Cho, J.Y.; Yoon, K.D. Identification of a novel triterpene saponin from Panax ginseng seeds, pseudoginsenoside RT8, and its antiinflammatory activity. J. Ginseng Res. 2020, 44, 145–153. [Google Scholar] [CrossRef]
- Lee, J.O.; Kim, J.H.; Kim, S.; Kim, M.Y.; Hong, Y.H.; Kim, H.G.; Cho, J.Y. Gastroprotective effects of the nonsaponin fraction of Korean Red Ginseng through cyclooxygenase-1 upregulation. J. Ginseng Res. 2020, 44, 655–663. [Google Scholar] [CrossRef]
- Ha, E.J.; Yun, J.H.; Si, C.; Bae, Y.S.; Jeong, Y.H.; Park, K.H.; Choi, S.E. Application of ethanol extracts from Alnus sibirica Fisch. ex Turcz in hair growth promotion. Front. Bioeng. Biotechnol. 2021, 9, 673314. [Google Scholar] [CrossRef]
- Wisuitiprot, V.; Ingkaninan, K.; Chakkavittumrong, P.; Wisuitiprot, W.; Neungchamnong, N.; Chantakul, R.; Waranuch, N. Effects of Acanthus ebracteatus Vahl. extract and verbascoside on human dermal papilla and murine macrophage. Sci. Rep. 2022, 12, 1491. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Choi, Y.H.; Kim, J.; Park, S.Y.; Nam, Y.J.; Lee, S.Y.; Jeon, J.H.; Jin, M.H.; Lee, S. Polygonum multiflorum extract support hair growth by elongating anagen phase and abrogating the effect of androgen in cultured human dermal papilla cells. BMC Complement. Med. Ther. 2020, 20, 144. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Retention Time | Name of the Compound | Peak Area % |
---|---|---|---|
1 | 1.768 | Acetic acid | 7.31 |
2 | 2.084 | 2-Propanone, 1-hydroxy | 2.74 |
3 | 3.250 | Glyceraldehyde | 1.30 |
4 | 3.588 | 2-Furanmethanol | 1.45 |
5 | 3.848 | 1,4-Butanediamine | 1.95 |
6 | 4.022 | Dihydroxyacetone | 4.30 |
7 | 5.358 | Glycerin | 17.05 |
8 | 6.576 | Maltol | 2.21 |
9 | 7.472 | Ethanamine, N-ethyl-N-nitroso- | 1.21 |
10 | 7.616 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl | 5.09 |
11 | 7.802 | Benzoic acid | 2.74 |
12 | 8.356 | Catechol | 0.92 |
13 | 8.628 | 2-Pyrrolidinone | 1.56 |
14 | 8.776 | 5-Hydroxymethylfurfural | 3.94 |
15 | 9.007 | 1,2,3-Propanetriol, 1-acetate | 2.64 |
16 | 9.533 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl | 3.16 |
17 | 10.046 | Phosphoramidothioic dichloride, dimethyl | 0.86 |
18 | 10.425 | 2,7-Oxepanedione | 3.42 |
19 | 10.526 | Phenol, 2,6-dimethoxy | 1.87 |
20 | 11.871 | Ethanol, 2-(1-methylethoxy), acetate | 14.01 |
21 | 13.685 | 4-Fluoro-N-(1H-tetrazol-5-yl)benzamide | 4.53 |
22 | 14.042 | Trehalose | 6.97 |
23 | 14.246 | 2,6-Dimethoxyhydroquinone | 4.59 |
24 | 15.219 | 4-((1E)-3-Hydorxy-1-propenyl)-2-methoxypehnol | 0.52 |
25 | 17.409 | n-Hexadecanoic acid | 1.46 |
26 | 19.063 | 10(E),12(Z)-Conjugated linoleic acid | 1.54 |
27 | 29.375 | Tetrasiloxane, decamethyl | 0.65 |
PCR Type | Gene Name | Sequence (5′-3′) | |
---|---|---|---|
Real-time PCR | Bcl-2 (Human) | Forward | ATCGCCCTGTGGATGACTGAGT |
Reverse | GCCAGGAGAAATCAAACAGAGGC | ||
Caspase 9 (Human) | Forward | AGGCAAGCAGCAAAGTTGTC | |
Reverse | GTCTTTCTGCTCGACATCACCA | ||
GAPDH (Human) | Forward | GACAGTCAGCCGCATCTTCT | |
Reverse | GCGCCAATACGACCAAATC |
PCR Type | Gene Name | Sequence (5′-3′) | |
---|---|---|---|
Real-time PCR | Bcl-2 (Mouse) | Forward | GAGTACCTGAACCGGCATCT |
Reverse | GAAATCAAACAGAGGTCGCA | ||
Bax (Mouse) | Forward | GAACCATCATGGGCTGGACA | |
Reverse | GGAGAGGAGGCCTTCCCAG | ||
Caspase 9 (Mouse) | Forward | CGAGAACTACCGCAGGAAGC | |
Reverse | CTGTCGTATTCCCGCGATCC | ||
GAPDH (Mouse) | Forward | TGTGAACGGATTTGGCCGTA | |
Reverse | ACTGTGCCGTTGAATTTGCC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, W.Y.; Kim, D.S.; Park, S.H.; Yoon, J.H.; Shin, C.Y.; Huang, L.; Nang, K.; Kry, M.; Byun, H.-W.; Lee, B.-H.; et al. Connarus semidecandrus Jack Exerts Anti-Alopecia Effects by Targeting 5α-Reductase Activity and an Intrinsic Apoptotic Pathway. Molecules 2022, 27, 4086. https://doi.org/10.3390/molecules27134086
Jang WY, Kim DS, Park SH, Yoon JH, Shin CY, Huang L, Nang K, Kry M, Byun H-W, Lee B-H, et al. Connarus semidecandrus Jack Exerts Anti-Alopecia Effects by Targeting 5α-Reductase Activity and an Intrinsic Apoptotic Pathway. Molecules. 2022; 27(13):4086. https://doi.org/10.3390/molecules27134086
Chicago/Turabian StyleJang, Won Young, Dong Seon Kim, Sang Hee Park, Ji Hye Yoon, Chae Yun Shin, Lei Huang, Ket Nang, Masphal Kry, Hye-Woo Byun, Byoung-Hee Lee, and et al. 2022. "Connarus semidecandrus Jack Exerts Anti-Alopecia Effects by Targeting 5α-Reductase Activity and an Intrinsic Apoptotic Pathway" Molecules 27, no. 13: 4086. https://doi.org/10.3390/molecules27134086
APA StyleJang, W. Y., Kim, D. S., Park, S. H., Yoon, J. H., Shin, C. Y., Huang, L., Nang, K., Kry, M., Byun, H. -W., Lee, B. -H., Lee, S., Lee, J., & Cho, J. Y. (2022). Connarus semidecandrus Jack Exerts Anti-Alopecia Effects by Targeting 5α-Reductase Activity and an Intrinsic Apoptotic Pathway. Molecules, 27(13), 4086. https://doi.org/10.3390/molecules27134086