A Fluoroponytailed NHC–Silver Complex Formed from Vinylimidazolium/AgNO3 under Aqueous–Ammoniacal Conditions †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Considerations
2.2. Crystallography
2.3. Spectroscopy and Supplementary Analyses
3. Materials and Methods
Preparation of [Bis(3-(1H,1H,2H,2H-perfluoroctyl)-1-vinylimidazol-2-ylidene)silver(I)] Nitrate, Ag(FNHC)2NO3
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pareek, M.; Reddi, Y.; Sunoj, R.B. Tale of the Breslow intermediate, a central player in N-heterocyclic carbene organocatalysis: Then and now. Chem. Sci. 2021, 12, 7973–7992. [Google Scholar] [CrossRef] [PubMed]
- Bellotti, P.; Koy, M.; Hopkinson, M.N.; Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 2021, 5, 711–725. [Google Scholar] [CrossRef]
- Smith, C.A.; Narouz, M.R.; Lummis, P.A.; Singh, I.; Nazemi, A.; Li, C.-H.; Crudden, C.M. N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119, 4986–5056. [Google Scholar] [CrossRef] [PubMed]
- Peris, E. Smart N-Heterocyclic Carbene Ligands in Catalysis. Chem. Rev. 2018, 118, 9988–10031. [Google Scholar] [CrossRef]
- Flanigan, D.M.; Romanov-Michailidis, F.; White, N.A.; Rovis, T. Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. Chem. Rev. 2015, 115, 9307–9387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 2010, 110, 1746–1787. [Google Scholar] [CrossRef]
- Hamad, F.B.; Sun, T.; Xiao, S.; Verpoort, F. Olefin metathesis ruthenium catalysts bearing unsymmetrical heterocylic carbenes. Coord. Chem. Rev. 2013, 257, 2274–2292. [Google Scholar] [CrossRef]
- Zhao, Q.; Meng, G.; Nolan, S.P.; Szostak, M. N-Heterocyclic Carbene Complexes in C-H Activation Reactions. Chem. Rev. 2020, 120, 1981–2048. [Google Scholar] [CrossRef]
- Budagumpi, S.; Haque, R.A.; Salman, A.W. Stereochemical and structural characteristics of single- and double-site Pd(II)–N-heterocyclic carbene complexes: Promising catalysts in organic syntheses ranging from CC coupling to olefin polymerizations. Coord. Chem. Rev. 2012, 256, 1787–1830. [Google Scholar] [CrossRef]
- Zhu, S.; Liang, R.; Jiang, H. A direct and practical approach for the synthesis of N-heterocyclic carbene coinage metal complexes. Tetrahedron 2012, 68, 7949–7955. [Google Scholar] [CrossRef]
- Wang, Z.; Tzouras, N.V.; Nolan, S.P.; Bi, X. Silver N-heterocyclic carbenes: Emerging powerful catalysts. Trends Chem. 2021, 3, 674–685. [Google Scholar] [CrossRef]
- Delgado-Rebollo, M.; García-Morales, C.; Maya, C.; Prieto, A.; Echavarren, A.M.; Pérez, P.J. Coinage metal complexes bearing fluorinated N-Heterocyclic carbene ligands. J. Organomet. Chem. 2019, 898, 120856. [Google Scholar] [CrossRef]
- Kaloğlu, N.; Özdemir, İ. Synthesis of Silver- and Gold-N-Heterocyclic Carbene Complexes Including Strong. Metal-Carbon Binding. Hacet. J. Biol. Chem. 2022, 50, 31–36. [Google Scholar] [CrossRef]
- Wróblewska, A.; Lauriol, G.; Mlostoń, G.; Bantreil, X.; Lamaty, F. Expedient synthesis of NOxy-Heterocyclic Carbenes (NOHC) ligands and metal complexes using mechanochemistry. J. Organomet. Chem. 2021, 949, 121914. [Google Scholar] [CrossRef]
- Nayak, S.; Gaonkar, S.L. Coinage Metal N-Heterocyclic Carbene Complexes: Recent Synthetic Strategies and Medicinal Applications. ChemMedChem 2021, 16, 1360–1390. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev. 2016, 327–328, 349–359. [Google Scholar] [CrossRef]
- Johnson, N.A.; Southerland, M.R.; Youngs, W.J. Recent Developments in the Medicinal Applications of Silver-NHC Complexes and Imidazolium Salts. Molecules 2017, 22, 1263. [Google Scholar] [CrossRef]
- Budagumpi, S.; Haque, R.A.; Endud, S.; Rehman, G.U.; Salman, A.W. Biologically Relevant Silver(I)–N-Heterocyclic Carbene Complexes: Synthesis, Structure, Intramolecular Interactions, and Applications. Eur. J. Inorg. Chem. 2013, 2013, 4367–4388. [Google Scholar] [CrossRef]
- Prencipe, F.; Zanfardino, A.; Di Napoli, M.; Rossi, F.; D’Errico, S.; Piccialli, G.; Mangiatordi, G.F.; Saviano, M.; Ronga, L.; Varcamonti, M.; et al. Silver (I) N-Heterocyclic Carbene Complexes: A Winning and Broad Spectrum of Antimicrobial Properties. Int. J. Mol. Sci. 2021, 22, 2497. [Google Scholar] [CrossRef]
- Kascatan-Nebioglu, A.; Panzner, M.J.; Tessier, C.A.; Cannon, C.L.; Youngs, W.J. N-Heterocyclic carbene–silver complexes: A new class of antibiotics. Coord. Chem. Rev. 2007, 251, 884–895. [Google Scholar] [CrossRef]
- Napoli, M.; Saturnino, C.; Cianciulli, E.I.; Varcamonti, M.; Zanfardino, A.; Tommonaro, G.; Longo, P. Silver(I) N-heterocyclic carbene complexes: Synthesis, characterization and antibacterial activity. J. Organomet. Chem. 2013, 725, 46–53. [Google Scholar] [CrossRef]
- Gök, Y.; Sarı, Y.; Akkoç, S.; Özdemir, İ.; Günal, S. Antimicrobial Studies of N-Heterocyclic Carbene Silver Complexes Containing Benzimidazol-2-ylidene Ligand. Int. J. Inorg. Chem. 2014, 2014, 191054. [Google Scholar] [CrossRef] [Green Version]
- Akkoç, M.; Balcıoğlu, S.; Gürses, C.; Taskin Tok, T.; Ateş, B.; Yaşar, S. Protonated water-soluble N-heterocyclic carbene ruthenium(II) complexes: Synthesis, cytotoxic and DNA binding properties and molecular docking study. J. Organomet. Chem. 2018, 869, 67–74. [Google Scholar] [CrossRef]
- Slimani, I.; Dridi, K.; Özdemir, I.; Gürbüz, N.; Hamdi, N. Novel N-Heterocyclic Carbene Silver (I) Complexes: Synthesis, Structural Characterization, Antimicrobial, Antioxidant and Cytotoxicity Potential Studies. In Carbene; Saha, S., Manna, A., Eds.; IntechOpen: Londen, UK, 2022. [Google Scholar] [CrossRef]
- Haque, R.A.; Ghdhayeb, M.Z.; Salman, A.W.; Budagumpi, S.; Khadeer Ahamed, M.B.; Abdul Majid, A.M.S. Ag(I)-N-heterocyclic carbene complexes of N-allyl substituted imidazol-2-ylidenes with ortho-, meta- and para-xylyl spacers: Synthesis, crystal structures and in vitro anticancer studies. Inorg. Chem. Commun. 2012, 22, 113–119. [Google Scholar] [CrossRef]
- Horvath, U.E.I.; Bentivoglio, G.; Hummel, M.; Schottenberger, H.; Wurst, K.; Nell, M.J.; van Rensburg, C.E.J.; Cronje, S.; Raubenheimer, H.G. A cytotoxic bis(carbene)gold(i) complex of ferrocenyl complexes: Synthesis and structural characterisation. New J. Chem. 2008, 32, 533–539. [Google Scholar] [CrossRef]
- Hindi, K.M.; Panzner, M.J.; Tessier, C.A.; Cannon, C.L.; Youngs, W.J. The medicinal applications of imidazolium carbene-metal complexes. Chem. Rev. 2009, 109, 3859–3884. [Google Scholar] [CrossRef] [Green Version]
- Asekunowo, P.O.; Haque, R.A.; Razali, M.R. A comparative insight into the bioactivity of mono- and binuclear silver(I)-N-heterocyclic carbene complexes: Synthesis, lipophilicity and substituent effect. Rev. Inorg. Chem. 2017, 37, 29–50. [Google Scholar] [CrossRef]
- Skalický, M.; Skalická, V.; Paterová, J.; Rybáčková, M.; Kvíčalová, M.; Cvačka, J.; Březinová, A.; Kvíčala, J. Ag Complexes of NHC Ligands Bearing Polyfluoroalkyl and/or Polyfluoropolyalkoxy Ponytails. Why Are Polyethers More Fluorous Than Alkyls? Organometallics 2012, 31, 1524–1532. [Google Scholar] [CrossRef]
- Kwiatkowski, C.F.; Andrews, D.Q.; Birnbaum, L.S.; Bruton, T.A.; DeWitt, J.C.; Knappe, D.R.U.; Maffini, M.V.; Miller, M.F.; Pelch, K.E.; Reade, A.; et al. Scientific Basis for Managing PFAS as a Chemical Class. Environ. Sci. Technol. Lett. 2020, 7, 532–543. [Google Scholar] [CrossRef]
- Wang, W.; Cui, L.; Sun, P.; Shi, L.; Yue, C.; Li, F. Reusable N-Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective on Recycling Strategies. Chem. Rev. 2018, 118, 9843–9929. [Google Scholar] [CrossRef]
- Xu, D.; Su, Y.; Zhao, L.; Meng, F.; Liu, C.; Guan, Y.; Zhang, J.; Luo, J. Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles. J. Biomed. Mater. Res. A 2017, 105, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Hummel, M.; Markiewicz, M.; Stolte, S.; Noisternig, M.; Braun, D.E.; Gelbrich, T.; Griesser, U.J.; Partl, G.; Naier, B.; Wurst, K.; et al. Phase-out-compliant fluorosurfactants: Unique methimazolium derivatives including room temperature ionic liquids. Green Chem. 2017, 19, 3225–3237. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, W.A.; Köcher, C.; Goossen, L. Process for Preparing Heterocyclic Carbenes. WO. Patent WO1997034875A1, 25 September 1997. [Google Scholar]
- Xu, L.; Chen, W.; Bickley, J.F.; Steiner, A.; Xiao, J. Fluoroalkylated N-heterocyclic carbene complexes of palladium. J. Organomet. Chem. 2000, 598, 409–416. [Google Scholar] [CrossRef]
- Yao, Q.; Zhang, Y. Poly(fluoroalkyl acrylate)-bound ruthenium carbene complex: A fluorous and recyclable catalyst for ring-closing olefin metathesis. J. Am. Chem. Soc. 2004, 126, 74–75. [Google Scholar] [CrossRef]
- Yu, H.; Wan, L.; Cai, C. A novel system for the Suzuki cross-coupling reaction catalysed with light fluorous palladium–NHC complex. J. Fluor. Chem. 2012, 144, 143–146. [Google Scholar] [CrossRef]
- Skalický, M.; Rybáčková, M.; Kysilka, O.; Kvíčalová, M.; Cvačka, J.; Čejka, J.; Kvíčala, J. Synthesis of bis(polyfluoroalkylated)imidazolium salts as key intermediates for fluorous NHC ligands. J. Fluor. Chem. 2009, 130, 966–973. [Google Scholar] [CrossRef]
- Červenková Šťastná, L.; Bílková, V.; Cézová, T.; Cuřínová, P.; Karban, J.; Čermák, J.; Krupková, A.; Strašák, T. Imidazolium Based Fluorous N-Heterocyclic Carbenes as Effective and Recyclable Organocatalysts for Redox Esterification. Eur. J. Org. Chem. 2020, 2020, 3591–3598. [Google Scholar] [CrossRef]
- Lo, A.S.W.; Yiu, K.S.M.; Horváth, I.T. Synthesis and characterization of light-fluorous NHC-ligands and their palladium complexes. J. Organomet. Chem. 2021, 932, 121634. [Google Scholar] [CrossRef]
- Šimůnek, O.; Rybáčková, M.; Svoboda, M.; Kvíčala, J. Synthesis, catalytic activity and medium fluorous recycle of fluorous analogues of PEPPSI catalysts. J. Fluor. Chem. 2020, 236, 109588. [Google Scholar] [CrossRef]
- Hope, E.G.; Simayi, R.; Stuart, A.M. Fluorous Organometallic Chemistry. In Organometallic Fluorine Chemistry. Topics in Organometallic Chemistry; Braun, T., Hughes, R., Eds.; Springer: Cham, Switzerland, 2015; Volume 52, pp. 217–240. [Google Scholar] [CrossRef]
- Rufino-Felipe, E.; Colorado-Peralta, R.; Reyes-Márquez, V.; Valdés, H.; Morales-Morales, D. Fluorinated-NHC Transition Metal Complexes: Leading Characters as Potential Anticancer Metallodrugs. Anti-Cancer Agents Med. Chem. 2021, 21, 938–948. [Google Scholar] [CrossRef]
- Rufino-Felipe, E.; Valdés, H.; Germán-Acacio, J.M.; Reyes-Márquez, V.; Morales-Morales, D. Fluorinated N-Heterocyclic carbene complexes. Applications in catalysis. J. Organomet. Chem. 2020, 921, 121364. [Google Scholar] [CrossRef]
- Topchiy, M.A.; Ageshina, A.A.; Gribanov, P.S.; Masoud, S.M.; Akmalov, T.R.; Nefedov, S.E.; Osipov, S.N.; Nechaev, M.S.; Asachenko, A.F. Azide-Alkyne Cycloaddition (CuAAC) in Alkane Solvents Catalyzed by Fluorinated NHC Copper(I) Complex. Eur. J. Org. Chem. 2019, 2019, 1016–1020. [Google Scholar] [CrossRef]
- Akmalov, T.R.; Masoud, S.M.; Petropavlovskikh, D.A.; Zotova, M.A.; Nefedov, S.E.; Osipov, S.N. New olefin metathesis catalysts with fluorinated unsymmetrical imidazole-based ligands. Mendeleev Commun. 2018, 28, 609–611. [Google Scholar] [CrossRef]
- Partl, G.J.; Naier, B.F.E.; Bakry, R.; Schlapp-Hackl, I.; Kopacka, H.; Wurst, K.; Gelbrich, T.; Fliri, L.; Schottenberger, H. Can’t touch this: Highly omniphobic coatings based on self-textured C6-fluoroponytailed polyvinylimidazolium monoliths. J. Fluor. Chem. 2021, 249, 109839. [Google Scholar] [CrossRef]
- Levin, E.; Ivry, E.; Diesendruck, C.E.; Lemcoff, N.G. Water in N-heterocyclic carbene-assisted catalysis. Chem. Rev. 2015, 115, 4607–4692. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, H.D.; Verpoort, F. N-Heterocyclic carbene transition metal complexes for catalysis in aqueous media. Chem. Soc. Rev. 2012, 41, 7032–7060. [Google Scholar] [CrossRef]
- Schaper, L.-A.; Hock, S.J.; Herrmann, W.A.; Kühn, F.E. Synthesis and application of water-soluble NHC transition-metal complexes. Angew. Chem. Int. Ed. 2013, 52, 270–289. [Google Scholar] [CrossRef]
- Arduengo, A.J.; Krafczyk, R. Auf der Suche nach Stabilen Carbenen. Chem. Unserer Zeit 1998, 32, 6–14. [Google Scholar] [CrossRef]
- Gurau, G.; Rodríguez, H.; Kelley, S.P.; Janiczek, P.; Kalb, R.S.; Rogers, R.D. Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate Ionic Liquids. Angew. Chem. Int. Ed. 2011, 50, 12024–12026. [Google Scholar] [CrossRef]
- Fliri, L.; Partl, G.; Winkler, D.; Laus, G.; Müller, T.; Schottenberger, H.; Hummel, M. Fluoroponytailed Brooker’s merocyanines: Studies on solution behavior, solvatochromism and supramolecular aggregation. Dye. Pigment. 2021, 184, 108798. [Google Scholar] [CrossRef]
- Adamer, V.; Laus, G.; Griesser, U.J.; Schottenberger, H. Synthesis and Sorption Analysis of Task-specific Fluorous Ionic Liquids. Z. Naturforsch. B 2013, 68, 1154–1162. [Google Scholar] [CrossRef]
- Paleos, C.M.; Malliaris, A. Polymerization of Micelle-Forming Surfactants. J. Macromol. Chem. Phys. 1988, 28, 403–419. [Google Scholar] [CrossRef]
- Epsztein, R.; Cheng, W.; Shaulsky, E.; Dizge, N.; Elimelech, M. Elucidating the mechanisms underlying the difference between chloride and nitrate rejection in nanofiltration. J. Membr. Sci. 2018, 548, 694–701. [Google Scholar] [CrossRef]
- Richards, L.A.; Richards, B.S.; Corry, B.; Schäfer, A.I. Experimental energy barriers to anions transporting through nanofiltration membranes. Environ. Sci. Technol. 2013, 47, 1968–1976. [Google Scholar] [CrossRef] [PubMed]
- Blackshaw, K.J.; Varmecky, M.G.; Patterson, J.D. Interfacial Structure and Partitioning of Nitrate Ions in Reverse Micelles. J. Phys. Chem. A 2019, 123, 336–342. [Google Scholar] [CrossRef]
- Epsztein, R.; Shaulsky, E.; Dizge, N.; Warsinger, D.M.; Elimelech, M. Role of Ionic Charge Density in Donnan Exclusion of Monovalent Anions by Nanofiltration. Environ. Sci. Technol. 2018, 52, 4108–4116. [Google Scholar] [CrossRef]
- Cui, F.; Yang, P.; Huang, X.; Yang, X.-J.; Wu, B. Homometallic Silver(I) Complexes of a Heterotopic NHC-Bridged Bis-Bipyridine Ligand. Organometallics 2012, 31, 3512–3518. [Google Scholar] [CrossRef]
- Gan, M.-M.; Liu, J.-Q.; Zhang, L.; Wang, Y.-Y.; Hahn, F.E.; Han, Y.-F. Preparation and Post-Assembly Modification of Metallosupramolecular Assemblies from Poly(N-Heterocyclic Carbene) Ligands. Chem. Rev. 2018, 118, 9587–9641. [Google Scholar] [CrossRef]
- Kumarasamy, E.; Manning, I.M.; Collins, L.B.; Coronell, O.; Leibfarth, F.A. Ionic Fluorogels for Remediation of Per- and Polyfluorinated Alkyl Substances from Water. ACS Cent. Sci. 2020, 6, 487–492. [Google Scholar] [CrossRef]
- Anastas, P.T. Green Chemistry Next: Moving from Evolutionary to Revolutionary. Aldrichim. Acta 2015, 48, 3–4. [Google Scholar]
- Mukherjee, T.; Gladysz, J.A. Fluorous Chemistry Meets Green Chemistry: A Concise Primer. Aldrichim. Acta 2015, 48, 25–28. [Google Scholar]
- Tiddy, G.J.T. Concentrated Surfactant Systems. In Modern Trends of Colloid Science in Chemistry and Biology; Eicke, H.F., Ed.; Birkhäuser: Basel, Switzerland, 1985; pp. 148–183. [Google Scholar] [CrossRef]
- Kuduva, S.S.; Boese, R. Private Communication (Refcode OLAWUT); CCDC: Ambridge, UK, 2003. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krafft, M.P. Applications of Fluorous Compounds in Materials Chemistry: 12.1 Basic Principles and Recent Advances in Fluorinated Self-Assemblies and Colloidal Systems. In Handbook of Fluorous Chemistry; Gladysz, J.A., Curran, D.P., Horváth, I.T., Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp. 478–490. [Google Scholar] [CrossRef]
- Vincent, J.-M.; Contel, M.; Pozzi, G.; Fish, R.H. How the Horváth paradigm, Fluorous Biphasic Catalysis, affected oxidation chemistry: Successes, challenges, and a sustainable future. Coord. Chem. Rev. 2019, 380, 584–599. [Google Scholar] [CrossRef]
- Henry, B.J.; Carlin, J.P.; Hammerschmidt, J.A.; Buck, R.C.; Buxton, L.W.; Fiedler, H.; Seed, J.; Hernandez, O. A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers. Integr. Environ. Assess. Manag. 2018, 14, 316–334. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.A.; Hoagland, A.P.; Patil, S.A.; Bugarin, A. N-heterocyclic carbene-metal complexes as bio-organometallic antimicrobial and anticancer drugs, an update (2015–2020). Future Med. Chem. 2020, 12, 2239–2275. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Partl, G.; Rauter, M.; Fliri, L.; Gelbrich, T.; Kreutz, C.; Müller, T.; Kahlenberg, V.; Nerdinger, S.; Schottenberger, H. A Fluoroponytailed NHC–Silver Complex Formed from Vinylimidazolium/AgNO3 under Aqueous–Ammoniacal Conditions. Molecules 2022, 27, 4137. https://doi.org/10.3390/molecules27134137
Partl G, Rauter M, Fliri L, Gelbrich T, Kreutz C, Müller T, Kahlenberg V, Nerdinger S, Schottenberger H. A Fluoroponytailed NHC–Silver Complex Formed from Vinylimidazolium/AgNO3 under Aqueous–Ammoniacal Conditions. Molecules. 2022; 27(13):4137. https://doi.org/10.3390/molecules27134137
Chicago/Turabian StylePartl, Gabriel, Marcus Rauter, Lukas Fliri, Thomas Gelbrich, Christoph Kreutz, Thomas Müller, Volker Kahlenberg, Sven Nerdinger, and Herwig Schottenberger. 2022. "A Fluoroponytailed NHC–Silver Complex Formed from Vinylimidazolium/AgNO3 under Aqueous–Ammoniacal Conditions" Molecules 27, no. 13: 4137. https://doi.org/10.3390/molecules27134137
APA StylePartl, G., Rauter, M., Fliri, L., Gelbrich, T., Kreutz, C., Müller, T., Kahlenberg, V., Nerdinger, S., & Schottenberger, H. (2022). A Fluoroponytailed NHC–Silver Complex Formed from Vinylimidazolium/AgNO3 under Aqueous–Ammoniacal Conditions. Molecules, 27(13), 4137. https://doi.org/10.3390/molecules27134137