Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review
Abstract
:1. Introduction
2. Biological Characteristics of P. harmala
3. Main Components of P. harmala
4. Antimicrobial Activity
4.1. Antibacterial Activity
4.2. Antifungal Activity
4.3. Antiviral Activity
4.4. Antiparasitic Activity
5. Antimicrobial Mechanisms of P. harmala
5.1. Effects on ROS and Cell Membrane
5.2. Effects on Nucleic Acid
5.3. Effects on Reverse Transcriptase (RT) Activity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blaser, M.J. Antibiotic use and its consequences for the normal microbiome. Science 2016, 352, 544–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinner, S.H. Antibiotic use: Present and future. New Microbiol. 2007, 30, 321–325. [Google Scholar] [PubMed]
- Cui, X.; Zhao, Z.; Zhang, T.; Guo, W.; Guo, W.; Zheng, J.; Zhang, J.; Dong, C.; Na, R.; Zheng, L.; et al. A systematic review and meta-analysis of children with coronavirus disease 2019 (COVID-19). J. Med. Virol. 2021, 93, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020, 24, 91–98. [Google Scholar] [CrossRef]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on antibiotic resistance: Alarm bells are ringing. Cureus 2017, 9, e1403. [Google Scholar] [CrossRef] [Green Version]
- Okhravi, C. Economics of public antibiotics development. Front. Public Health 2020, 8, 161. [Google Scholar] [CrossRef]
- Ardal, C.; Balasegaram, M.; Laxminarayan, R.; McAdams, D.; Outterson, K.; Rex, J.H.; Sumpradit, N. Antibiotic development—Economic, regulatory and societal challenges. Nat. Rev. Microbiol. 2020, 18, 267–274. [Google Scholar] [CrossRef]
- Curti, V.; Capelli, E.; Boschi, F.; Nabavi, S.F.; Bongiorno, A.I.; Habtemariam, S.; Nabavi, S.M.; Daglia, M. Modulation of human miR-17-3p expression by methyl 3-O-methyl gallate as explanation of its in vivo protective activities. Mol. Nutr. Food Res. 2014, 58, 1776–1784. [Google Scholar] [CrossRef]
- Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155–176. [Google Scholar] [CrossRef]
- Sevindik, M.; Akgul, H.; Pehlivan, M.; Selamoglu, Z. Determination of therapeutic potential of Mentha longifolia ssp. longifolia. Fresen. Environ. Bull. 2017, 26, 4757–4763. [Google Scholar]
- Mohammed, F.S.; Akgul, H.; Sevindik, M.; Khaled, B.M.T. Phenolic content and biological activities of Rhus coriaria var. Zebaria. Fresenius Environ. Bull. 2018, 27, 5694–5702. [Google Scholar]
- Wang, W.; Liang, Y.S. Artemisinin: A wonder drug from Chinese natural medicines. Chin. J. Nat. Med. 2016, 14, 5–6. [Google Scholar] [PubMed]
- Li, S.; Cheng, X.; Wang, C. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. J. Ethnopharmacol. 2017, 203, 127–162. [Google Scholar] [CrossRef] [PubMed]
- Moloudizargari, M.; Mikaili, P.; Aghajanshakeri, S.; Asghari, M.H.; Shayegh, J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn. Rev. 2013, 7, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Wang, Z.T.; Branford-White, C.J.; Xu, H.; Wang, C.H. Classification and differentiation of the genus Peganum indigenous to China based on chloroplast trnL-F and psbA-trnH sequences and seed coat morphology. Plant. Biol. 2011, 13, 940–947. [Google Scholar] [CrossRef]
- Mina, C.N.; Farzaei, M.H.; Gholamreza, A. Medicinal properties of Peganum harmala L. in traditional Iranian medicine and modern phytotherapy: A review. J. Tradit. Chin. Med. 2015, 35, 104–109. [Google Scholar]
- Wang, K.B.; Li, S.G.; Huang, X.Y.; Li, D.H.; Li, Z.L.; Hua, H.M. (±)-Peharmaline A: A pair of rare β-carboline–vasicinone hybrid alkaloid enantiomers from Peganum harmala. Eur. J. Org. Chem. 2017, 2017, 1876–1879. [Google Scholar] [CrossRef]
- Wang, K.B.; Li, D.H.; Bao, Y.; Cao, F.; Wang, W.J.; Lin, C.; Bin, W.; Bai, J.; Pei, Y.H.; Jing, Y.K.; et al. Structurally diverse alkaloids from the seeds of Peganum harmala. J. Nat. Prod. 2017, 80, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Li, S.G.; Wang, K.B.; Gong, C.; Bao, Y.; Qin, N.B.; Li, D.H.; Li, Z.L.; Bai, J.; Hua, H.M. Cytotoxic quinazoline alkaloids from the seeds of Peganum harmala. Bioorg. Med. Chem. Lett. 2018, 28, 103–106. [Google Scholar] [CrossRef]
- Fang, X.; Yu, H.Y.; Han, L.F.; Pang, X. N-containing compounds from seeds of Paganum harmala. Zhongguo Zhong Yao Za Zhi 2019, 44, 1601–1606. [Google Scholar]
- Wu, Z.N.; Chen, N.H.; Tang, Q.; Chen, S.; Zhan, Z.C.; Zhang, Y.B.; Wang, G.C.; Li, Y.L.; Ye, W.C. beta-carboline alkaloids from the seeds of Peganum harmala and their anti-HSV-2 virus activities. Org. Lett. 2020, 22, 7310–7314. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Khan, K.A.; Sultana, S.; Siddiqui, B.S.; Begum, S.; Faizi, S.; Siddiqui, S. Study of the In vitro antimicrobial activity of harmine, harmaline and their derivatives. J. Ethnopharmacol. 1992, 35, 289–294. [Google Scholar] [CrossRef]
- Abutbul, S.; Golan-Goldhirsh, A.; Barazani, O.; Ofir, R.; Zilberg, D. Screening of desert plants for use against bacterial pathogens in fish. Isr. J. Aquac.-Bamidgeh 2005, 57, 71–80. [Google Scholar] [CrossRef]
- Muhaisen, H.M.; Ab-Mous, M.M.; Ddeeb, F.A.; Rtemi, A.A.; Taba, O.M.; Parveen, M. Antimicrobial agents from selected medicinal plants in Libya. Chin. J. Integr. Med. 2016, 22, 177–184. [Google Scholar] [CrossRef]
- Arshad, N.; Zitterl-Eglseer, K.; Hasnain, S.; Hess, M. Effect of Peganum harmala or its beta-carboline alkaloids on certain antibiotic resistant strains of bacteria and protozoa from poultry. Phytother. Res. 2008, 22, 1533–1538. [Google Scholar] [CrossRef]
- Darabpour, E.; Poshtkouhian Bavi, A.; Motamedi, H.; Seyyed Nejad, S.M. Antibacterial activity of different parts of Peganum harmala L. growing in Iran against multi-drug resistant bacteria. EXCLI J. 2011, 10, 252–263. [Google Scholar]
- Omar, S.S. Inhibitory effect of nisin and some of plant extracts against growth of Cronobacter sakazakii in reconstituted infant milk formula. Milchwissenschaft 2011, 66, 389. [Google Scholar]
- Fazal, H.; Ahmad, N.; Abbasi, B.; Abbass, N. Selected medicinal plants used in herbal industries; their toxicity against pathogenic microoraganisms. Pak. J. Bot. 2012, 44, 1103–1109. [Google Scholar]
- Soltani, J.; Aliabadi, A.A. Antibacterial effects of several plant extracts and essential oils on Xanthomonas arboricola pv. Juglandis In vitro. J. Essent. Oil Bear. Plants 2013, 16, 461–468. [Google Scholar] [CrossRef]
- Irshaid, F.I.; Tarawneh, K.A.; Jacob, J.H.; Alshdefat, A.M. Phenol content, antioxidant capacity and antibacterial activity of methanolic extracts derived from four Jordanian medicinal plants. Pak. J. Biol. Sci. 2014, 17, 372–379. [Google Scholar] [CrossRef]
- Apostolico, I.; Aliberti, L.; Caputo, L.; De Feo, V.; Fratianni, F.; Nazzaro, F.; Souza, L.F.; Khadhr, M. Chemical composition, antibacterial and phytotoxic activities of Peganum harmala seed essential oils from five different localities in northern Africa. Molecules 2016, 21, 1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabrizizadeh, M.; Kazemipoor, M.; Hakimian, M.; Maleksabet, M.; Kazemipoor, M.; Zandi, H.; Pourrajab, F.; Che, C.T.; Cordell, G.A. Effects of a Peganum harmala (Zygophyllaceae) preparation for root canal disinfection. Phytother. Res. 2018, 32, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Khalid, R.; Jaffar, Q.; Tayyeb, A.; Qaisar, U. Peganum harmala peptides (PhAMP) impede bacterial growth and biofilm formation in burn and surgical wound pathogens. Pak. J. Pharm. Sci. 2018, 31, 2597–2605. [Google Scholar]
- Ait Abderrahim, L.; Taïbi, K.; Ait Abderrahim, C. Assessment of the antimicrobial and antioxidant activities of Ziziphus lotus and Peganum harmala. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 409–414. [Google Scholar] [CrossRef]
- Iranshahy, M.; Fazly Bazzaz, S.; Haririzadeh, G.; Abootorabi, B.Z.; Mohamadi, A.M.; Khashyarmanesh, Z. Chemical composition and antibacterial properties of Peganum harmala L. Avicenna J. Phytomed. 2019, 9, 530–537. [Google Scholar]
- Nenaah, G. Antibacterial and antifungal activities of (beta)-carboline alkaloids of Peganum harmala (L) seeds and their combination effects. Fitoterapia 2010, 81, 779–782. [Google Scholar] [CrossRef]
- Shaheen, H.A.; Issa, M.Y. In vitro and in vivo activity of Peganum harmala L. alkaloids against phytopathogenic bacteria. Sci. Hortic-Amst. 2020, 264, 108940. [Google Scholar] [CrossRef]
- Siddique, M.; Din, N.; Ahmad, M.; Ali, A.; Naz, I.; Alam, S.S.; Ullah, N. Bioefficacy of some aqueous phytoextracts against Clavibacter michiganensis subsp. michiganensis (Smith), the cause of bacterial canker of tomato. Gesunde Pflanz. 2020, 72, 207–217. [Google Scholar] [CrossRef]
- Khadraoui, N.; Essid, R.; Jallouli, S.; Damergi, B.; Ben Takfa, I.; Abid, G.; Jedidi, I.; Bachali, A.; Ayed, A.; Limam, F.; et al. Antibacterial and antibiofilm activity of Peganum harmala seed extract against multidrug-resistant Pseudomonas aeruginosa pathogenic isolates and molecular mechanism of action. Arch. Microbiol. 2022, 204, 133. [Google Scholar] [CrossRef]
- Filban, F.; Ravanbakhsh, M.; Poormohammadi, A.; Khaghani, S.; Sadeghi-Nejad, B.; Neisi, A.; Goudarzi, G. Antimicrobial properties of Peganum harmala L. seeds’ smoke in indoors: Applications and prospects. Environ. Monit. Assess. 2021, 194, 17. [Google Scholar] [CrossRef]
- Shahverdi, A.R.; Monsef-Esfahani, H.R.; Nickavar, B.; Bitarafan, L.; Khodaee, S.; Khoshakhlagh, N. Antimicrobial activity and main chemical composition of two smoke condensates from Peganum harmala seeds. Z. Naturforsch. C J. Biosci. 2005, 60, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Sarpeleh, A.; Sharifi, K.; Sonbolkar, A. Evidence of antifungal activity of wild rue (Peganum harmala L.) on phytopathogenic fungi. J. Plant. Dis. Prot. 2009, 116, 208–213. [Google Scholar] [CrossRef]
- Behidj-Benyounes, N.; Dahmene, T.; Allouche, N.; Laddad, A. Phytochemical, antibacterial and antifungal activities of alkaloids extracted from Peganum harmala (Linn.) seeds of south of Algeria. Asian. J. Chem. 2014, 26, 2960. [Google Scholar] [CrossRef]
- Diba, K.; Shoar, M.G.; Shabatkhori, M.; Khorshivand, Z. Anti fungal activity of alcoholic extract of Peganum harmala seeds. J. Med. Plants Res. 2011, 5, 5550–5554. [Google Scholar]
- Olmedo, G.M.; Cerioni, L.; Gonzalez, M.M.; Cabrerizo, F.M.; Volentini, S.I.; Rapisarda, V.A. UVA Photoactivation of harmol enhances its antifungal activity against the phytopathogens Penicillium digitatum and Botrytis cinerea. Front. Microbiol. 2017, 8, 347. [Google Scholar] [CrossRef] [PubMed]
- Hajji, A.; Bnejdi, F.; Saadoun, M.; Ben Salem, I.; Nehdi, I.; Sbihi, H.; Alharthi, F.A.; El Bok, S.; Boughalleb-M’Hamdi, N. High reserve in delta-Tocopherol of Peganum harmala seeds oil and antifungal activity of oil against ten plant pathogenic fungi. Molecules 2020, 25, 4569. [Google Scholar] [CrossRef] [PubMed]
- Izadi, M.; Jorf, S.A.M.; Nikkhah, M.; Moradi, S. Antifungal activity of hydrocolloid nano encapsulated Carum copticum essential oil and Peganum harmala extract on the pathogenic fungi Alternaria alternata. Physiol. Mol. Plant P 2021, 116, 101714. [Google Scholar] [CrossRef]
- Ma, X.; Liu, D.; Tang, H.; Wang, Y.; Wu, T.; Li, Y.; Yang, J.; Yang, J.; Sun, S.; Zhang, F. Purification and characterization of a novel antifungal protein with antiproliferation and anti-HIV-1 reverse transcriptase activities from Peganum harmala seeds. Acta Biochim. Biophys. Sin. 2013, 45, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Liu, Y.; Liu, Y.; Wang, L.; Wang, Q. Synthesis and antiviral and fungicidal activity evaluation of beta-carboline, dihydro-beta-carboline, tetrahydro-beta-carboline alkaloids, and their derivatives. J. Agric. Food Chem. 2014, 62, 1010–1018. [Google Scholar] [CrossRef]
- Moradi, M.T.; Karimi, A.; Rafieian-Kopaei, M.; Fotouhi, F. In vitro antiviral effects of Peganum harmala seed extract and its total alkaloids against Influenza virus. Microb. Pathog. 2017, 110, 42–49. [Google Scholar] [CrossRef]
- Moradi, M.T.; Karimi, A.; Fotouhi, F.; Kheiri, S.; Torabi, A. In vitro and in vivo effects of Peganum harmala L. seeds extract against influenza A virus. Avicenna J. Phytomed. 2017, 7, 519–530. [Google Scholar] [PubMed]
- Edziri, H.; Marzouk, B.; Mabrouk, H.; Garreb, M.; Douki, W.; Mahjoub, A.; Verschaeve, L.; Najjar, F.; Mastouri, M. Phytochemical screening, butyrylcholinesterase inhibitory activity and anti-inflammatory effect of some Tunisian medicinal plants. S. Afr. J. Bot. 2018, 114, 84–88. [Google Scholar] [CrossRef]
- Chen, D.; Tian, X.; Zou, X.; Xu, S.; Wang, H.; Zheng, N.; Wu, Z. Harmine, a small molecule derived from natural sources, inhibits enterovirus 71 replication by targeting NF-kappaβ pathway. Int. Immunopharmacol. 2018, 60, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, S.A.; Mahdy, N.K.; Al Mulla, H.; ElMeshad, A.N.; Issa, M.Y.; Azzazy, H.M.E. PLGA/PEG nanoparticles loaded with cyclodextrin-Peganum harmala alkaloid complex and ascorbic acid with promising antimicrobial activities. Pharmaceutics 2022, 14, 142. [Google Scholar] [CrossRef] [PubMed]
- Lala, S.; Pramanick, S.; Mukhopadhyay, S.; Bandyopadhyay, S.; Basu, M.K. Harmine: Evaluation of its antileishmanial properties in various vesicular delivery systems. J. Drug. Target 2004, 12, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M. Treatment of natural tropical theileriosis with the extract of the plant Peganum harmala. Korean J. Parasitol. 2007, 45, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Astulla, A.; Zaima, K.; Matsuno, Y.; Hirasawa, Y.; Ekasari, W.; Widyawaruyanti, A.; Zaini, N.C.; Morita, H. Alkaloids from the seeds of Peganum harmala showing antiplasmodial and vasorelaxant activities. J. Nat. Med. 2008, 62, 470–472. [Google Scholar] [CrossRef]
- Derakhshanfar, A.; Mirzaei, M. Effect of Peganum harmala (wild rue) extract on experimental ovine malignant theileriosis: Pathological and parasitological findings. Onderstepoort J. Vet. Res. 2008, 75, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Moazeni, M.; Saadaty Ardakani, Z.S.; Saharkhiz, M.J.; Jalaei, J.; Khademolhoseini, A.A.; Shams Esfand Abad, S.; Mootabi Alavi, A. In vitro ovicidal activity of Peganum harmala seeds extract on the eggs of Fasciola hepatica. J. Parasit. Dis. 2017, 41, 467–472. [Google Scholar] [CrossRef]
- Shoaib, H.M.; Muazzam, A.G.; Mir, A.; Jung, S.Y.; Matin, A. Evaluation of inhibitory potential of some selective methanolic plants extracts on biological characteristics of Acanthamoeba castellanii using human corneal epithelial cells In vitro. Parasitol. Res. 2013, 112, 1179–1188. [Google Scholar] [CrossRef]
- Tanweer, A.J.; Chand, N.; Saddique, U.; Bailey, C.A.; Khan, R.U. Antiparasitic effect of wild rue (Peganum harmala L.) against experimentally induced coccidiosis in broiler chicks. Parasitol. Res. 2014, 113, 2951–2960. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, U.; Khan, M.; Sajid, M.; Zafar, I.; Ghulam, M. Comparative efficacies of Curcuma longa, Citrullus colocynthis and Peganum harmala against Rhipicephalus microplus through modified larval immersion test. Int. J. Agric. Biol. 2015, 17, 216–220. [Google Scholar]
- Tabari, M.A.; Youssefi, M.R.; Moghadamnia, A.A. Antitrichomonal activity of Peganum harmala alkaloid extract against trichomoniasis in pigeon (Columba livia domestica). Br. Poult. Sci. 2017, 58, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, H.; Tasneem, S.; Farooq, S.; Sami, A.; Rahman, A.U.; Choudhary, M.I. Harmaline and its derivatives against the infectious multi-drug resistant Escherichia coli. Med. Chem. 2017, 13, 465–476. [Google Scholar] [CrossRef]
- Goncalves, J.; Luis, A.; Gradillas, A.; Garcia, A.; Restolho, J.; Fernandez, N.; Domingues, F.; Gallardo, E.; Duarte, A.P. Ayahuasca beverages: Phytochemical analysis and biological properties. Antibiotics 2020, 9, 731. [Google Scholar] [CrossRef]
- Safari, N.; Mirabzadeh Ardakani, M.; Hemmati, R.; Parroni, A.; Beccaccioli, M.; Reverberi, M. The potential of plant-based bioactive compounds on inhibition of aflatoxin B1 biosynthesis and down-regulation of aflR, aflM and aflP genes. Antibiotics 2020, 9, 728. [Google Scholar] [CrossRef]
- Jiang, X.; Zou, J.; Zhuang, Y.; Yuan, W.; Zhu, L.; Zhu, G. The antiviral effects of harmine against BoHV-1 infection In vitro. Lett. Drug. Des. Discov. 2017, 14, 1303–1307. [Google Scholar] [CrossRef]
- Chen, D.; Su, A.; Fu, Y.; Wang, X.; Lv, X.; Xu, W.; Xu, S.; Wang, H.; Wu, Z. Harmine blocks herpes simplex virus infection through downregulating cellular NF-kappaβ and MAPK pathways induced by oxidative stress. Antivir. Res. 2015, 123, 27–38. [Google Scholar] [CrossRef]
- Mirza, R.; Azeem, M.; Qaisar, U. Influence of Peganum harmala peptides on the transcriptional activity of biofilm related genes in sensitive and resistant strains of Pseudomonas aeruginosa and Staphylococcus aureus. Pak. J. Pharm. Sci. 2019, 32, 2341–2345. [Google Scholar]
Species | Name | Composition | Mechanism | Reference |
---|---|---|---|---|
Bacteria | S. aureus, P. aeruginosa, K. pneumoniae | PhAMP | Disrupt the developed biofilm | [33] |
P. aeruginosa | PhAMP | Downregulate the expression of flgK, pilA, cupA1, plsA genes | [56] | |
S. aureus | PhAMP | Upregulate the expression of CPS5 and icaA | [56] | |
R. solanacearum | P. harmala seeds | Cause cellular damage, clotting of the genome, as well as disorganized cytoplasm, and thickened cell wall | [37] | |
E. coli | harmaline derivatives | Cause significant generation of ROS | [64] | |
Acinetobacter baumannii | whole plant | Inhibit both the biofilm formation and the production of violacein pigment | [65] | |
Fungi | B. cinerea | harmol | Cause membrane integrity loss, cell wall disruption, and cytoplasm disorganization | [45] |
A. flavus | whole plant | Downregulate aflR, aflM and aflP genes | [66] | |
Virus | Bohv-1 | harmine | Inhibit BoHV-1 replication | [67] |
HIV-1 | P. harmala seeds | Inhibit reverse transcriptase | [48] | |
HSV-2 | harmine | Downregulate cellular NF-κβ and MAPK pathways | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Zhao, S.; Wang, C. Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review. Molecules 2022, 27, 4161. https://doi.org/10.3390/molecules27134161
Zhu Z, Zhao S, Wang C. Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review. Molecules. 2022; 27(13):4161. https://doi.org/10.3390/molecules27134161
Chicago/Turabian StyleZhu, Zihao, Shujuan Zhao, and Changhong Wang. 2022. "Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review" Molecules 27, no. 13: 4161. https://doi.org/10.3390/molecules27134161
APA StyleZhu, Z., Zhao, S., & Wang, C. (2022). Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review. Molecules, 27(13), 4161. https://doi.org/10.3390/molecules27134161