Effects of Different Extraction Methods in Pharmacopoeia on the Content and Structure Transformation of Ginsenosides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of UPLC-Q-Exactive-MS Conditions
2.2. UPLC-Q-Exactive-MS Analysis
2.3. Determination of Ginsenoside Content
2.4. Extraction Parameters
2.5. Effects of the Extraction Variables on Total Ginsenosides Content
2.6. Investigating the Interaction of Factors
2.7. Optimal Extraction Process Parameters and Experimental Verification of Response Surface
3. Material and Methods
3.1. Reagents and Materials
3.2. Preparation of Standard Solutions and Sample Solutions
3.3. UPLC-Q-Exactive-MS Analysis
3.4. Simultaneous Determination of Individual Ginsenosides
3.5. Optimization of Extraction Process
3.5.1. Extraction Method
3.5.2. Selection of Variables
3.5.3. Selection of Various Factors and Experimental Design
3.5.4. Total Ginsenoside Content of Ginseng
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Guo, M.; Shao, S.; Wang, D.; Zhao, D.; Wang, M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct. 2021, 12, 494–518. [Google Scholar] [CrossRef] [PubMed]
- Ratan, Z.A.; Haidere, M.F.; Hong, Y.H.; Park, S.H.; Lee, J.; Lee, J.; Cho, J.Y. Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res. 2021, 45, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.X. Quality Evaluation of Ginseng Products and Its Influencing Factors; Jilin Agricultural University: Changchun, China, 2012. [Google Scholar]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. A review of ginseng species in different regions as a multipurpose herb in traditional Chinese medicine, modern herbology and pharmacological science. J. Med. Plants Res. 2019, 13, 213–226. [Google Scholar]
- Shi, Z.; Zeng, J.; Wong, A.S. Chemical structures and pharmacological profiles of ginseng saponins. Molecules 2019, 24, 2443. [Google Scholar] [CrossRef]
- Xu, J.; Liu, H.R.; Su, G.Y.; Ding, M.; Wang, W.; Lu, J.C.; Bi, X.L.; Zhao, Y.Q. Purification of ginseng rare sapogenins 25-OH-PPT and its hypoglycemic, antiinflammatory and lipid-lowering mechanisms. J. Ginseng Res. 2021, 45, 86–97. [Google Scholar] [CrossRef]
- Chen, W.; Balan, P.; Popovich, D.G. Comparison of ginsenoside components of various tissues of new zealand forest-grown Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolium L.). Biomolecules 2020, 10, 372. [Google Scholar] [CrossRef]
- Huang, X.; Li, N.; Pu, Y.; Zhang, T.; Wang, B. Neuroprotective effects of ginseng phytochemicals: Recent Perspectives. Molecules 2019, 24, 2399. [Google Scholar] [CrossRef]
- Liu, M.Q.; Zhang, S.L. Overview of ginseng application. J. Pract. Intern. Med. Tradit. Chin. Med. 2016, 30, 84–85. [Google Scholar]
- Li, S.S.; Jin, Y.P.; Yao, C.L. Research progress on structure and activity of ginseng polysaccharide. Chin. J. Tradit. Chin. Med. 2014, 39, 4709–4715. [Google Scholar]
- Nan, M.L.; Zhao, Y.W. Research progress on chemical structure and hypoglycemic activity of ginseng polysaccharide. Chin. Pharm. 2014, 47, 4506–4508. [Google Scholar]
- Lim, T.; Na, K.; Choi, E. Immunomodulating activities of polysaccharides isolated from Panax ginseng. J. Med. Food 2004, 7, 1–6. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, H.; Zhu, X. Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer. Biomed. Pharmacother. 2017, 89, 227. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Veselov, V.V.; Zakharenko, A.M.; Golokhvast, K.S.; Nosyrev, A.E.; Cravotto, G.; Tsatsakis, A.M.; Spandidos, D.A. Panax ginseng components and the pathogenesis of Alzheimer’s disease. Mol. Med. Rep. 2019, 19, 2975–2998. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Z.H.; Jia, X.B. Effect of ginseng rare ginsenoside components combined with paclitaxel on A549 lung cancer. China J. Chin. Mater. Med. 2018, 43, 7. [Google Scholar]
- Men, F.Q. Chemical composition of ginseng and quality evaluation of ginseng products. Food Saf. Guide 2016, 27, 102. [Google Scholar]
- Liu, Y.G.; Zhang, H.; Dai, X.; Zhu, R.Y.; Chen, B.B.; Xia, B.K.; Guo, S.Z. A comprehensive review on the phytochemistry, pharmacokinetics, and antidiabetic effect of ginseng. Phytomedicine 2021, 92, 153717. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.; Yin, G.; Wang, J.; Wang, P.; Chen, Z.; Wang, T.; Ren, G. Antimicrobial activities of Asian ginseng, American ginseng, and notoginseng. Phytother. Res. 2020, 34, 1226–1236. [Google Scholar] [CrossRef]
- National Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China; Chemical Industry Press: Beijing, China, 2015; pp. 11–12. [Google Scholar]
- The United States Pharmacopoeia 40. The National Formulary 35; United States Pharmacopoeia: Rockville, MD, USA, 2016; p. 6805. [Google Scholar]
- United States Pharmacopoeia. European Pharmacopoeia, 9th ed.; United States Pharmacopoeia: Rockville, MD, USA, 2016; p. 1372. [Google Scholar]
- Pharmaceutical Affairs and Food Sanitation Council (PAFSC). The 17th Amendment to the Japanese Drug Administration, (JP X VII); Pharmaceutical Affairs and Food Sanitation Council (PAFSC): Tokyo, Japan, 2016; p. 1859. [Google Scholar]
- Kim, C.J.; Kim, B.M.; Kim, C.S.; Baek, J.Y.; Jung, I.C. Variations in ginsenosides of raw ginseng according to heating temperature and time. J. Pharmacopunct. 2020, 23, 79–87. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, K.M.; Li, W.D.; Yin, F.Z.; Cai, H.; Cai, B.C. Study on the changes of chemical components and its mechanism in the processing of ginseng. Chin. J. Tradit. Chin. Med. 2014, 39, 3701–3706. [Google Scholar]
- Zheng, Y.; Lei, L.; Ai, J.; Liang, S.; Deng, X.; Shi, L.; Mei, Z.N.; Ren, Y.S. Study on the changes of water state and chemical composition in the process of drying/rehydration of fresh ginseng. Chin. Herb. Med. 2019, 50, 3302–3312. [Google Scholar]
- Lin, M.; Sun, W.; Gong, W. Ginsenoside Rg1 protects against transient focal cerebral ischemic injury and suppresses its systemic metabolic changes in cerabral injury rats. Acta Pharm. Sin. B 2015, 5, 277–284. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Jiang, H.; Yan, J. Analysis of chemical constituents in Shenqi Jiangtang Granules by UPLC-Q-TOF MS/MS. Chin. Tradit. Pat. Med. 2017, 39, 2101–2108. [Google Scholar]
- Muhammad, A.; Md, R.R.; Sinin, H. Formulation optimization and characterization of bamboo/polyvinyl alcohol/clay nanocomposite by response surface methodology. Compos. Part B 2019, 176, 107297. [Google Scholar]
CP | USP | EP | J/KP | |
---|---|---|---|---|
Rg1 (mg/g) | 0.43 ± 0.022 | 0.46 ± 0.026 | 0.49 ± 0.029 | 0.70 ± 0.037 |
Re (mg/g) | 1.80 ± 0.091 | 1.87 ± 0.099 | 1.96 ± 0.112 | 2.25 ± 0.122 |
Rh1 (mg/g) | 0.21 ± 0.021 | 0.20 ± 0.015 | 0.18 ± 0.011 | 0.04 ± 0.002 |
Rb1 (mg/g) | 2.01 ± 0.102 | 2.26 ± 0.106 | 2.31 ± 0.112 | 2.42 ± 0.116 |
Rc (mg/g) | 0.23 ± 0.013 | 0.20 ± 0.011 | 0.20 ± 0.012 | 0.11 ± 0.006 |
F1 (mg/g) | 0.05 ± 0.004 | 0.05 ± 0.003 | 0.04 ± 0.002 | 0.01 ± 0.001 |
Rd (mg/g) | 0.39 ± 0.023 | 0.30 ± 0.022 | 0.22 ± 0.015 | 0.06 ± 0.003 |
Rg3 (mg/g) | 0.02 ± 0.001 | 0.01 ± 0.001 | 0.01 ± 0.001 | - |
Rg5 (mg/g) | 0.09 ± 0.006 | 0.04 ± 0.002 | 0.02 ± 0.001 | - |
Rh2 (mg/g) | 0.01 ± 0.001 | 0.01 ± 0001 | 0.01 ± 0.001 | - |
PPT (mg/g) | - | - | - | - |
PPD (mg/g) | - | - | - | - |
No. | A: Ethanol Concentration (%) | B: The Ratio of Liquid to Material (mL/g) | C: Extraction Time (min) | Y: Total Saponin Content (mg/g) |
---|---|---|---|---|
1 | 80 | 20 | 40 | 34.25 ± 0.86 |
2 | 70 | 30 | 40 | 35.12 ± 0.97 |
3 | 70 | 20 | 30 | 42.33 ± 1.05 |
4 | 70 | 20 | 30 | 41.65 ± 1.16 |
5 | 60 | 20 | 40 | 28.50 ± 0.59 |
6 | 70 | 10 | 20 | 34.00 ± 0.82 |
7 | 80 | 30 | 30 | 34.16 ± 0.75 |
8 | 60 | 30 | 30 | 29.88 ± 0.68 |
9 | 80 | 10 | 30 | 33.48 ± 1.03 |
10 | 70 | 30 | 20 | 35.82 ± 0.68 |
11 | 70 | 10 | 40 | 36.89 ± 0.96 |
12 | 60 | 20 | 20 | 32.25 ± 0.72 |
13 | 60 | 10 | 30 | 30.59 ± 0.78 |
14 | 70 | 20 | 30 | 41.23 ± 0.99 |
15 | 70 | 20 | 30 | 42.12 ± 1.21 |
16 | 70 | 20 | 30 | 42.27 ± 1.12 |
17 | 80 | 20 | 20 | 33.67 ± 0.72 |
Source | Sum of Squares | DF | Mean Square | F Value | p-Value Prob > F | Significant |
---|---|---|---|---|---|---|
Model | 331.17 | 9 | 36.80 | 57.94 | <0.0001 | ** |
A | 25.59 | 1 | 25.59 | 40.30 | 0.0004 | ** |
B | 4.51 × 10−5 | 1 | 4.51 × 10−5 | 7.11 × 10−5 | 0.9935 | |
C | 0.12 | 1 | 0.12 | 0.18 | 0.6830 | |
AB | 0.49 | 1 | 0.49 | 0.77 | 0.4089 | |
AC | 4.63 | 1 | 4.63 | 7.29 | 0.0307 | * |
BC | 3.21 | 1 | 3.21 | 5.06 | 0.0593 | |
A2 | 182.79 | 1 | 182.79 | 287.80 | <0.0001 | ** |
B2 | 45.89 | 1 | 45.89 | 72.25 | <0.0001 | ** |
C2 | 41.94 | 1 | 41.94 | 66.03 | <0.0001 | ** |
Residual | 4.45 | 7 | 0.64 | |||
Lack of Fit | 3.56 | 3 | 1.19 | 5.34 | 0.0697 | |
Pare Error | 0.89 | 4 | 0.22 | |||
Cor Total | 335.62 | 16 | ||||
Std. Dev | 0.80 | R2 | 0.9868 | |||
Mean | 35.78 | Adj R2 | 0.9697 | |||
C.V. % | 2.23 | Pred R2 | 0.8263 | |||
PRESS | 58.31 | Adeq precision | 20.825 |
Pharmacopoeia Name | Extraction Method | Temperature | Heating Time | Reagent |
---|---|---|---|---|
CP | Trichloromethane soxhlet and butannol ultrasonic extraction | 60 °C | 3 h | Trichloromethane; Butanol |
USP | Water bath reflux extraction | 100 °C | 1 h | Ethanol-water (4:6) |
EP | Water bath reflux extraction | 100 °C | 1 h | Methanol-water (50:50); Acetonitrile-water (20:80) |
J/KP | Shake extraction | Room temperature | - | Methanol-water (3:5); Dilute sodium hydroxide solution; 0.1 mol/L Hydrochloric acid solution |
Factor | Level | ||
---|---|---|---|
Low (−1) | Central (0) | High (1) | |
A: Ethanol concentration (%) | 60 | 70 | 80 |
B: The ratio of liquor to material (mL/g) | 10 | 20 | 30 |
C: Extraction time (min) | 20 | 30 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Jiang, H.; Xu, L.; Deng, Y.; Xu, J.; Zhao, Y. Effects of Different Extraction Methods in Pharmacopoeia on the Content and Structure Transformation of Ginsenosides. Molecules 2022, 27, 4347. https://doi.org/10.3390/molecules27144347
Li H, Jiang H, Xu L, Deng Y, Xu J, Zhao Y. Effects of Different Extraction Methods in Pharmacopoeia on the Content and Structure Transformation of Ginsenosides. Molecules. 2022; 27(14):4347. https://doi.org/10.3390/molecules27144347
Chicago/Turabian StyleLi, Hui, Hua Jiang, Lei Xu, Yaling Deng, Jing Xu, and Yuqing Zhao. 2022. "Effects of Different Extraction Methods in Pharmacopoeia on the Content and Structure Transformation of Ginsenosides" Molecules 27, no. 14: 4347. https://doi.org/10.3390/molecules27144347
APA StyleLi, H., Jiang, H., Xu, L., Deng, Y., Xu, J., & Zhao, Y. (2022). Effects of Different Extraction Methods in Pharmacopoeia on the Content and Structure Transformation of Ginsenosides. Molecules, 27(14), 4347. https://doi.org/10.3390/molecules27144347