Salpianthus macrodontus Extracts, a Novel Source of Phenolic Compounds with Antibacterial Activity against Potentially Pathogenic Bacteria Isolated from White Shrimp
Abstract
:1. Introduction
2. Results
2.1. Antibacterial Susceptibility Assay and Minimum Inhibitory Concentration (MIC)
2.2. Analysis of Polyphenolic Compounds of Extracts
2.3. Effect of Polyphenols on the Bacterial Inhibition
2.4. Motility Assays
2.5. Microplate Assay for Biofilm Quantification
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of the Vegetable Extracts
4.3. Bacterial Strains
4.4. Antibacterial Assay and Minimum Inhibitory Concentration (MIC)
4.5. Polyphenol Profile by UPLC-ESI-Q-ToF MS
4.6. Motility Assays
4.7. Microtiter Plate Assay for Biofilm Quantification
4.8. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Béne, C.; Arthur, R.; Norbury, H.; Allison, E.H.; Beveridge, M.; Bush, S.; Campling, L.; Leschen, W.; Little, D.; Squires, D.; et al. Contribution of fisheries and aquaculture to food security and poverty reduction: Assessing the current evidence. World Dev. 2016, 79, 177–196. [Google Scholar] [CrossRef]
- Flegel, T.W. A future vision for disease control in shrimp aquaculture. J. World Aquac. Soc. 2019, 50, 249–266. [Google Scholar] [CrossRef]
- Jamal, M.T.; Abdulrahman, I.A.; Al-Harbi, M.; Chithambaran, S. Probiotics as alternative control measures in shrimp aquaculture: A review. J. Appl. Biol. Biotechnol. 2019, 7, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Letchumanan, V.; Mutalib, N.S.A.; Wong, S.H.; Chan, K.G.; Lee, L.H. Determination of antibiotic resistance patterns of Vibrio parahaemolyticus from shrimp and shellfish in Selangor, Malaysia. Prog. Microbes Mol. Biol. 2019, 2, a0000019. [Google Scholar] [CrossRef] [Green Version]
- Chandrakala, N.; Priya, S. Vibriosis in Shrimp Aquaculture A Review. Int. J. Sci. Res. Sci. Eng. Technol. 2017, 3, 27–33. [Google Scholar]
- Liu, F.; Liu, G.; Li, F. Characterization of two pathogenic Photobacterium strains isolated from exopalaemon carinicauda causing mortality of shrimp. Aquaculture 2016, 464, 129–135. [Google Scholar] [CrossRef]
- Mohamad, N.; Amal, M.N.A.; Yasin, I.S.M.; Saad, M.Z.; Nasruddin, N.S.; Al-saari, N.; Mino, S.; Sawabe, T. Vibriosis in cultured marine fishes: A review. Aquaculture 2019, 512, 734289. [Google Scholar] [CrossRef]
- Zorriehzahrha, M.J.; Banaederakhshan, R. Early mortality syndrome (EMS) as new emerging threat in shrimp industry. Adv. Anim. Vet. Sci. 2015, 3, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque-Costa, R.; Araújo, R.L.; Souza, O.V.; Vieira, R.H. Antibiotic-resistant Vibrios in farmed shrimp. BioMed Res. Int. 2015, 2015, 505914. [Google Scholar] [CrossRef] [Green Version]
- Santiago, M.L.; Espinosa, A.; Bermúdez, M.D.C. Uso de antibióticos en la camaronicultura. Rev. Mex. Cienc. Farm. 2009, 40, 22–32. [Google Scholar]
- Okocha, R.C.; Olatoye, I.O.; Adedeji, O.B. Food safety impacts of antimicrobial use their residues in aquaculture. Public Health Rev. 2018, 39, 21. [Google Scholar] [CrossRef] [PubMed]
- Silvester, R.; Alexander, D.; George, M.; Hatha, A. Prevalence and multiple antibiotic resistance of Vibrio coralliilyticus, along the southwest coast of India. Curr. Sci. 2017, 112, 1749–1755. [Google Scholar] [CrossRef]
- Han, J.E.; Tang, K.F.J.; Pantoja, C.R.; White, B.L.; Lightner, D.V. qPCR assay for detecting and quantifying a virulence plasmid in acute hepatopancreatic necrosis disease (AHPND) due to pathogenic Vibrio parahaemolyticus. Aquaculture 2015, 442, 12–15. [Google Scholar] [CrossRef]
- Loo, K.Y.; Letchumanan, V.; Law, J.W.F.; Pusparajah, P.; Goh, B.H.; Mutalib, N.S.A.; He, Y.W.; Lee, L.H. Incidence of antibiotic resistance in Vibrio spp. Rev. Aquacult. 2020, 12, 2590–2608. [Google Scholar] [CrossRef]
- FAO. Report of the FAO/MARD Technical Workshop on Early Mortality Syndrome (EMS) or Acute Hepatopancreatic Necrosis Syndrome (AHPNS) of Cultured Shrimp (under TCP/VIE/3304); Food and Agriculture Organization of the United Nations and World Health Organization: Hanoi, Vietnam, 2013; pp. 1–53. [Google Scholar]
- Caruso, G. Antibiotic resistance in fish farming environments: A global concern. J. Fish. Sci. 2016, 10, 9–13. [Google Scholar]
- Banerjee, S.; Kim, L.M.; Shariff, M.; Khatoon, H.; Yusoff, F.M. Antibacterial activity of neem (Azadirachta indica) leaves on Vibrio spp. isolated from cultured shrimp. Asian J. Anim. Vet. Adv. 2013, 8, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Dhayanithi, N.B.; Kumar, T.T.A.; Kathiresan, K. Effect of neem extract against the bacteria isolated from marine fish. J. Environ. Biol. 2010, 31, 409–412. [Google Scholar]
- Farjana, A.; Zerin, N.; Kabir, M.S. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria. Asian Pac. J. Trop. Dis. 2014, 4, S920–S923. [Google Scholar] [CrossRef]
- Kongchum, P.; Chimtong, S.; Chareansak, N.; Subprasert, P. Effect of green tea extract on Vibrio parahaemolyticus inhibition in pacific white shrimp (Litopenaeus vannamei) postlarvae. Agric. Agric. Sci. Proc. 2016, 11, 117–124. [Google Scholar] [CrossRef]
- Mahfuzul-Hoque, M.D.; Bari, M.L.; Inatsu, Y.; Juneja, V.K.; Kawamoto, S. Antibacterial activity of guava (Psidium guajava L.) and neem (Azadirachta indica A. Juss.) extracts against foodborne pathogens and spoilage bacteria. Foodborne Pathog. Dis. 2007, 4, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Patel, V.K. In vitro screening of the antibacterial activity and identification of bioactive compounds from plants against selected Vibrio spp. pathogens. Turk. J. Biol. 2009, 33, 137–144. [Google Scholar] [CrossRef]
- Tequida-Meneses, M.; Cortez-Rocha, M.; Rosas-Burgos, E.C.; López-Sandoval, S.; Corrales-Maldonado, C. Efecto de los extractos alcohólicos de plantas silvestres sobre la inhibición de crecimiento de Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium moniliforme y Fusarium poae. Rev. Iber. Mic. 2002, 19, 84–88. [Google Scholar]
- Xia, Y.T.; Chan, G.K.L.; Wang, H.Y.; Dong, T.T.X.; Duan, R.; Hu, W.H.; Qin, Q.W.; Wan, W.X.; Tsim, K.W.K. The anti-bacterial effects of aerial parts of Scutellaria baicalensis: Potential application as an additive in aquaculture feedings. Aquaculture 2020, 526, 735418. [Google Scholar] [CrossRef]
- Romero, J.; Feijoó, C.; Navarrete, P. Antibiotics in aquaculture—Use, abuse and alternatives. In Health and Environment in Aquaculture; Carvalho, E.D., David, G.S., Silva, R.J., Eds.; Intechopen: Rijeka, Croatia, 2012; pp. 159–198. [Google Scholar]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Rahman, S.; Bilal, M.; Huang, D.F. Role of flavonoids in plant interactions with the environment and against human pathogens—A review. J. Integr. Agric. 2019, 18, 211–230. [Google Scholar] [CrossRef]
- Alves, M.J.; Ferreira, I.C.F.R.; Froufe, H.J.C.; Abreu, R.M.V.; Martins, A.; Pintado, M. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J. Appl. Microbiol. 2013, 115, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.C.; De-Sousa, C.P.; Fernandez-Prada, C.; Harel, J.; Dubreuil, J.D.; De-Sousa, E.L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog. 2019, 130, 259–270. [Google Scholar] [CrossRef]
- Oh, E.; Jeon, B. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds. Front. Microbiol. 2015, 6, 1129. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Xiao, M.; Zuo, J.; He, X.; Lu, P.; Li, Y.; Zhao, Y.; Xia, F. Vainillic acid combats Vibrio alginolyticus by cell membrane damage and biofilm reduction. J. Fish. Dis. 2021, 44, 1799–1809. [Google Scholar] [CrossRef]
- Erhabor, C.R.; Erhabor, J.O.; McGaw, L.J. The potential of South African medicinal plants against microbial biofilm and quorum sensing of foodborne pathogens: A review. S. Afr. J. Bot. 2019, 126, 214–231. [Google Scholar] [CrossRef]
- Matejczyk, M.; Swisłocka, R.; Golonko, A.; Lewandowski, W.; Hawrylik, E. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv. Med. Sci. 2018, 63, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Truchado, P.; Giménez-Bastida, J.A.; Larrosa, M.; Castro-Ibáñez, I.; Espín, J.C.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Allende, A. Inhibition of Quorum Sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. J. Agric. Food Chem. 2012, 60, 8885–8894. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.S.; Bais, H.P.; Déziel, E.; Schweizer, H.P.; Rahme, L.G.; Fall, R.; Vivanco, J.M. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol. 2004, 134, 320–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouyahya, A.; Dakka, N.; Et-Touys, A.; Abrini, J.; Bakri, Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac. J. Trop. Med. 2017, 10, 729–743. [Google Scholar] [CrossRef]
- Corrales, M.; Fernández, A.; Han, J.H. Antimicrobial Packaging Systems. In Innovations in Food Packaging; Han, J.H., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 133–170. [Google Scholar]
- Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020, 146, 104720. [Google Scholar] [CrossRef]
- Cid-Ortega, S.; Monroy-Rivera, J.A. Extraction of kaempferol and its glycosides using supercritical fluids from plant sources: A review. Food Technol. Biotechnol. 2018, 56, 480–493. [Google Scholar] [CrossRef]
- Sati, P.; Dhyani, P.; Bhatt, I.D.; Pandey, A. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. J. Trad. Complement. Med. 2019, 9, 15–23. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: Highly generalizable and beyond laboratory. Trends Plant Sci. 2020, 25, 1076–1086. [Google Scholar] [CrossRef]
- Verstraeten, N.; Braeken, K.; Debkumari, B.; Fauvart, M.; Fransaer, J.; Vermant, J.; Michiels, J. Living on a surface: Swarming and biofilm formation. Trends Microbiol. 2008, 16, 496–506. [Google Scholar] [CrossRef]
- Vikram, A.; Jayaprakasha, G.K.; Jesudhasan, P.R.; Pillai, S.D.; Patil, B.S. Supression of bacterial cell-cell signaling, biofilm formation and type III secretion system by citrus flavonoids. J. Appl. Microbiol. 2010, 109, 515–527. [Google Scholar] [CrossRef]
- Santhakumari, S.; Ravi, A.V. Targeting quorum sensing mechanism: An alternative anti-virulent strategy for the treatment of bacterial infections. S. Afr. J. Bot. 2019, 120, 81–86. [Google Scholar] [CrossRef]
- Vandeputte, O.M.; Kiendrebeogo, M.; Rasamiravaka, T.; Stévigny, C.; Duez, P.; Rajaonson, S.; Diallo, B.; Mol, A.; Baucher, M.; El-Jaziri, M. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 2011, 157, 2120–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Montañez, G.; Ragazzo-Sánchez, J.A.; Calderón-Santoyo, M.; Velazquez-De-La-Cruz, G.; De-León, J.R.; Navarro-Ocaña, A. Evaluation of extraction methods for preparative scale obtention of mangiferin and lupeol from mango peels (Mangifera indica L.). Food Chem. 2014, 159, 267–272. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- De-la-Fuente-Núñez, C.; Korolik, V.; Bains, M.; Nguyen, U.; Breidenstein, E.B.; Horsman, S.; Lewensa, S.; Burrows, L.; Hancock, R.E. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob. Agents Chemother. 2012, 56, 2696–2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naves, P.; Del-Prado, G.; Huelves, L.; Gracia, M.; Ruiz, V.; Blanco, J.; Dhabi, G.; Blanco, M.; Ponte, M.C.; Soriano, F. Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains. Microb. Pathog. 2008, 45, 86–91. [Google Scholar] [CrossRef] [PubMed]
Extract Key | Maximum Inhibition % | MIC (mg/mL) | ||||||
---|---|---|---|---|---|---|---|---|
VP | VH | PD | PL | VP | VH | PD | PL | |
MNE | 82.63 | 50.70 | 84.19 | 89.96 | - | - | - | - |
ANE | NP | NP | 8.81 | 5.36 | - | - | - | - |
HNE | NP | NP | 63.57 | 4.76 | - | - | - | - |
MLE | 68.12 | 72.10 | 87.26 | 100 * | - | - | - | 50 * |
ALE | 95.08 * | 99.66 * | 100 * | 99.27 * | 50 * | 50 * | 25 | 25 |
HLE | NP | NP | 96.51 * | NP | - | - | 100 * | - |
MFE | 98.21 * | 100 * | 98.28 * | 100 * | 50 * | 50 * | 50 | 50 * |
AFE | 5.16 | NP | 3.32 | 3.30 | - | - | - | - |
HFE | 96.88 * | NP | 100 * | 57.23 | - | - | 100 * | - |
Family | Code | Component Name | Retention Time (min) | Molecular Formula | Expected Mass (Da) | Observed m/z | Mass Error (ppm) | Adducts | Concentration (µg/mL) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MFE | AFE | HFE | MLE | ALE | HLE | |||||||||
Flavanols | F_1 | (Epi)-catechin hexoside | 1.54 | C21H24O11 | 452.1319 | 451.1229 | −3.6505 | [M-H]− | 0.08 ± 0.00 | 2.76 ± 0.03 | ND | ND | 9.97 ± 0.07 | ND |
F_2 | (Epi)-catechin+ | 2.59 | C15H14O6 | 290.0790 | 289.0720 | 0.8901 | [M-H]− | 0.21 ± 0.00 | ND | ND | ND | ND | ND | |
F_3 | (Epi)-catechin gallate | 3.05 | C22H18O10 | 442.0900 | 441.0829 | 0.4607 | [M-H]− | ND | ND | ND | ND | 0.21 ± 0.00 | ND | |
Flavanones | F_4 | Eriodictyol | 5.56 | C15H12O6 | 288.0634 | 287.0564 | 0.9815 | [M-H]− | 0.06 ± 0.00 | 0.02 ± 0.00 | ND | ND | ND | ND |
F_5 | Naringenin hexoside | 5.80 | C21H22O10 | 434.1213 | 433.1148 | 1.9102 | [M-H]− | 0.25 ± 0.00 | ND | ND | 0.41 ± 0.00 | ND | ND | |
F_6 | Hesperidin | 6.34 | C28H34O15 | 610.1898 | 609.1830 | 0.9104 | [M-H]− | 0.58 ± 0.03 | 0.26 ± 0.01 | 0.31 ± 0.00 | 10.19 ± 0.30 | 13.61 ± 0.13 | 0.63 ± 0.01 | |
F_7 | Naringenin+ | 10.97 | C15H12O5 | 272.0685 | 271.0604 | −2.8797 | [M-H]− | 4.16 ± 0.09 | 7.77 ± 0.16 | 0.02 ± 0.00 | 0.34 ± 0.00 | 1.18 ± 0.00 | ND | |
F_8 | Naringin | 12.85 | C27H32O14 | 580.1792 | 579.1710 | −1.5524 | [M-H]− | 0.67 ± 0.00 | 5.05 ± 0.07 | ND | 2.55 ± 0.20 | 3.05 ± 0.00 | ND | |
F_9 | Eriocitrin | 12.98 | C27H32O15 | 596.1741 | 595.1670 | 0.3245 | [M-H]− | 10.04 ± 0.12 | 1.34 ± 0.02 | ND | 30.82 ± 0.72 | 20.89 ± 0.08 | ND | |
Flavonols | F_10 | Kaempferol trihexoside | 3.10 | C33H40O21 | 772.2062 | 771.1992 | 0.3066 | [M-H]− | 28.18 ± 0.39 | ND | ND | 9.07 ± 0.10 | 0.06 ± 0.00 | ND |
F_11 | Myricetin | 3.27 | C15H10O8 | 318.0376 | 317.0311 | 2.4073 | [M-H]− | ND | 0.09 ± 0.00 | ND | ND | 0.16 ± 0.00 | ND | |
F_12 | Quercetin dihexoside | 3.33 | C27H30O17 | 626.1483 | 625.1388 | −3.6122 | [M-H]− | 30.72 ± 0.13 | ND | ND | 27.65 ± 0.20 | 0.08 ± 0.00 | ND | |
F_13 | Kaempferol hexosyl-rhamnosyl-hexoside | 3.42 | C33H40O20 | 756.2113 | 755.2041 | 0.1350 | [M-H]− | 49.16 ± 2.64 | 0.04 ± 0.00 | ND | 66.46 ± 4.47 | 1.91 ± 0.01 | 0.03 ± 0.00 | |
F_14 | Myricetin hexoside | 3.48 | C21H20O13 | 480.0904 | 479.0838 | 1.4405 | [M-H]− | 1.72 ± 0.01 | ND | ND | 9.46 ± 0.09 | ND | ND | |
F_15 | Kaempferol dihexoside | 3.71 | C27H30O16 | 610.1534 | 609.1466 | 0.7270 | [M-H]− | 24.18 ± 0.35 | 0.23 ± 0.00 | ND | 185.64 ± 1.81 | 33.69 ± 0.19 | ND | |
F_16 | Kaempferol pentosyl-rutinoside | 3.85 | C33H40O19 | 740.2164 | 739.2105 | 1.8810 | [M-H]− | 2.27 ± 0.01 | 0.03 ± 0.00 | ND | 3.06 ± 0.02 | 0.72 ± 0.01 | 0.04 ± 0.00 | |
F_17 | Quercetin hexoside-rhamnoside | 4.05 | C27H30O16 | 610.1534 | 609.1467 | 0.9506 | [M-H]− | 42.14 ± 0.30 | 0.46 ± 0.00 | ND | 189.71 ± 0.37 | 14.14 ± 0.32 | 0.07 ± 0.00 | |
F_18 | Quercetin hexoside | 4.32 | C21H20O12 | 464.0955 | 463.0892 | 2.2038 | [M-H]− | 11.90 ± 0.43 | 0.15 ± 0.00 | ND | 250.17 ± 3.43 | 29.92 ± 0.51 | ND | |
F_19 | Kaempferol rutinoside | 4.38 | C27H30O15 | 594.1585 | 593.1515 | 0.5894 | [M-H]− | 2.47 ± 0.02 | 0.12 ± 0.00 | ND | 123.01 ± 4.82 | 20.86 ± 0.07 | ND | |
F_20 | Kaempferol pentosyl-hexoside | 4.54 | C26H28O15 | 580.1428 | 579.1327 | −4.8449 | [M-H]− | ND | ND | ND | 0.33 ± 0.00 | ND | ND | |
F_21 | Kaempferol hexoside | 5.33 | C21H20O11 | 448.1006 | 447.0945 | 2.7252 | [M-H]− | 0.44 ± 0.00 | 0.06 ± 0.00 | 0.02 ± 0.00 | 33.24 ± 0.14 | 6.22 ± 0.16 | ND | |
F_22 | Quercetin rhamnoside | 5.94 | C21H20O11 | 448.1006 | 447.0944 | 2.5920 | [M-H]− | ND | ND | ND | 2.84 ± 0.02 | ND | ND | |
F_23 | Kaempferol hexoside-rhamnoside | 6.01 | C27H30O15 | 594.1585 | 593.1489 | −3.8024 | [M-H]− | 0.11 ± 0.00 | ND | ND | 3.06 ± 0.02 | 0.08 ± 0.00 | ND | |
F_24 | Quercetin+ | 9.09 | C15H10O7 | 302.0427 | 301.0350 | −1.3696 | [M-H]− | 0.90 ± 0.01 | ND | ND | 4.41 ± 0.01 | 26.54 ± 0.06 | ND | |
F_25 | Isorhamnetin | 10.92 | C16H12O7 | 316.0583 | 315.0518 | 2.4448 | [M-H]− | ND | ND | ND | 39.40 ± 0.10 | ND | ND | |
F_26 | Kaempferol | 11.14 | C15H10O6 | 286.0477 | 285.0397 | −2.6008 | [M-H]− | 0.37 ± 0.00 | 0.94 ± 0.01 | 0.03 ± 0.00 | 0.22 ± 0.00 | 20.65 ± 0.05 | 0.04 ± 0.00 | |
F_27 | Rhamnetin | 11.21 | C16H12O7 | 316.0583 | 315.0508 | −0.8097 | [M-H]− | ND | 0.81 ± 0.00 | 0.08 ± 0.00 | ND | 5.67 ± 0.28 | 0.24 ± 0.00 | |
Hydroxybenzoic acids | PA_1 | Gallic acid+ | 1.34 | C7H6O5 | 170.0215 | 169.0138 | −2.3862 | [M-H]− | 0.76 ± 0.02 | ND | ND | ND | ND | ND |
PA_2 | Hydroxybenzoic acid hexoside | 1.60 | C13H16O8 | 300.0845 | 299.0779 | 2.3341 | [M-H]− | 0.22 ± 0.01 | ND | ND | ND | ND | ND | |
PA_3 | Vanillic acid | 1.86 | C8H8O4 | 168.0423 | 167.0347 | −1.4459 | [M-H]− | 0.28 ± 0.00 | 0.86 ± 0.00 | ND | ND | 0.22 ± 00 | ND | |
PA_4 | Dihydroxybenzoic acid | 1.93 | C7H6O4 | 154.0266 | 153.0187 | −4.3680 | [M-H]− | 3.92 ± 0.02 | 0.52 ± 0.00 | ND | ND | 0.27 ± 0.01 | ND | |
PA_5 | Hydroxybenzoic acid isomer I | 2.46 | C7H6O3 | 138.0317 | 137.0238 | −4.2825 | [M-H]− | ND | 1.18 ± 0.01 | ND | ND | 2.51 ± 0.03 | ND | |
PA_6 | Hydroxybenzoic acid isomer II | 5.24 | C7H6O3 | 138.0317 | 137.0238 | −4.5771 | [M-H]− | 1.68 ± 0.03 | 0.32 ± 0.00 | ND | ND | 0.29 ± 0.00 | ND | |
Hydroxycinnamic acids | PA_7 | Caffeoylquinic acid isomer I | 2.62 | C16H18O9 | 354.0951 | 353.0884 | 1.6415 | [M-H]− | 8.65 ± 0.25 | 0.36 ± 00 | ND | 16.72 ± 0.31 | 0.58 ± 0.00 | ND |
PA_8 | Coumaric acid hexoside | 2.73 | C15H18O8 | 326.1002 | 325.0932 | 0.9335 | [M-H]− | 1.27 ± 0.01 | ND | ND | 0.85 ± 0.01 | ND | ND | |
PA_9 | Ferulic acid hexoside | 2.95 | C16H20O9 | 356.1107 | 355.1038 | 0.9349 | [M-H]− | 1.12 ± 0.01 | ND | ND | 2.84 ± 0.00 | ND | ND | |
PA10 | Sinapic acid hexoside | 3.04 | C17H22O10 | 386.1213 | 385.1150 | 2.4722 | [M-H]− | 0.39 ± 0.00 | ND | ND | 0.27 ± 0.00 | ND | ND | |
PA_11 | Caffeoylquinic acid isomer II | 3.23 | C16H18O9 | 354.0951 | 353.0887 | 2.5286 | [M-H]− | 1.00 ± 0.00 | 0.06 ± 0.00 | ND | 0.39 ± 0.00 | 0.10 ± 0.00 | ND | |
PA_12 | Sinapic acid | 3.72 | C11H12O5 | 224.0685 | 223.0604 | −3.6818 | [M-H]− | 0.05 ± 0.00 | ND | ND | ND | ND | ND | |
PA_13 | Coumaric acid | 3.86 | C9H8O3 | 164.0473 | 163.0394 | −3.8243 | [M-H]− | 16.07 ± 0.30 | ND | ND | ND | ND | ND | |
PA_14 | Ferulic acid | 4.04 | C10H10O4 | 194.0579 | 193.0502 | −2.4580 | [M-H]− | 4.18 ± 0.02 | ND | ND | 3.42 ± 0.00 | ND | ND | |
PA_15 | Coumaric acid maleate | 4.65 | C13H12O7 | 280.0583 | 279.0516 | 1.9362 | [M-H]− | 0.19 ± 0.00 | ND | ND | 0.13 ± 0.00 | ND | ND | |
PA_16 | Coumaroylquinic acid isomer I | 4.83 | C16H18O8 | 338.1002 | 337.0933 | 1.1496 | [M-H]− | 0.15 ± 0.00 | ND | ND | ND | ND | ND | |
PA_17 | Coumaroylquinic acid isomer II | 5.57 | C16H18O8 | 338.1002 | 337.0934 | 1.6488 | [M-H]− | 0.19 ± 0.00 | ND | ND | ND | ND | ND | |
PA_18 | Rosmarinic acid | 6.36 | C18H16O8 | 360.0845 | 359.0776 | 0.9860 | [M-H]− | 3.01 ± 0.01 | 5.16 ± 0.03 | 0.02 ± 0.00 | 0.69 ± 0.00 | 1.78 ± 0.01 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bautista-Rosales, P.U.; Prado-Murguía, A.J.; Pérez-Ramírez, I.F.; Servín-Villegas, R.; Magallón-Barajas, F.J.; Balois-Morales, R.; Ochoa-Jiménez, V.A.; Magallón-Servín, P. Salpianthus macrodontus Extracts, a Novel Source of Phenolic Compounds with Antibacterial Activity against Potentially Pathogenic Bacteria Isolated from White Shrimp. Molecules 2022, 27, 4397. https://doi.org/10.3390/molecules27144397
Bautista-Rosales PU, Prado-Murguía AJ, Pérez-Ramírez IF, Servín-Villegas R, Magallón-Barajas FJ, Balois-Morales R, Ochoa-Jiménez VA, Magallón-Servín P. Salpianthus macrodontus Extracts, a Novel Source of Phenolic Compounds with Antibacterial Activity against Potentially Pathogenic Bacteria Isolated from White Shrimp. Molecules. 2022; 27(14):4397. https://doi.org/10.3390/molecules27144397
Chicago/Turabian StyleBautista-Rosales, Pedro Ulises, Alexeyevich Jassiel Prado-Murguía, Iza Fernanda Pérez-Ramírez, Rosalía Servín-Villegas, Francisco Javier Magallón-Barajas, Rosendo Balois-Morales, Verónica Alhelí Ochoa-Jiménez, and Paola Magallón-Servín. 2022. "Salpianthus macrodontus Extracts, a Novel Source of Phenolic Compounds with Antibacterial Activity against Potentially Pathogenic Bacteria Isolated from White Shrimp" Molecules 27, no. 14: 4397. https://doi.org/10.3390/molecules27144397
APA StyleBautista-Rosales, P. U., Prado-Murguía, A. J., Pérez-Ramírez, I. F., Servín-Villegas, R., Magallón-Barajas, F. J., Balois-Morales, R., Ochoa-Jiménez, V. A., & Magallón-Servín, P. (2022). Salpianthus macrodontus Extracts, a Novel Source of Phenolic Compounds with Antibacterial Activity against Potentially Pathogenic Bacteria Isolated from White Shrimp. Molecules, 27(14), 4397. https://doi.org/10.3390/molecules27144397