Effects of Different Extraction Methods on Vanilla Aroma
Abstract
:1. Introduction
2. Results
2.1. Investigation of the Effect of Different Extraction Methods on the Aroma Components of Vanilla Pods
2.1.1. SDE
2.1.2. HS-SPME
2.1.3. SD
2.1.4. Alcoholic Extraction
2.2. Quantitative Analysis of Vanilla Pods
2.3. Comparison of Different Extraction Methods
3. Materials and Methods
3.1. Plant Materials
3.2. Extraction Method
3.2.1. HS-SPME
3.2.2. SDE
3.2.3. SD
3.2.4. Alcoholic Extraction
3.3. Internal Standard (IS) Preparation
3.4. GC/GC-MS Instrument Analysis
3.4.1. GC
3.4.2. GC-MS
3.5. Quantitative Calculation of the IS Method
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sinha, A.K.; Sharma, U.K.; Sharma, N. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents. Int. J. Food Sci. Nutr. 2008, 59, 299–326. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Panigrahi, S. Solid-phase microextraction (SPME) techniques for quality characterization of food products: A review. Food Bioprocess Technol. 2011, 4, 1–26. [Google Scholar] [CrossRef]
- Zhu, F.G.; Zhou, S.H. A contactor for liquid-liquid and liquid-solid extraction of vanillin. Ind. Eng. Chem. Res. 2002, 41, 2316–2319. [Google Scholar] [CrossRef]
- Cai, J.; Liu, B.; Su, Q. Comparison of simultaneous distillation extraction and solid-phase microextraction for the determination of volatile flavor components. J. Chromatogr. A 2001, 930, 1–7. [Google Scholar] [CrossRef]
- Peng, F.; Sheng, L.; Liu, B.; Tong, H.; Liu, S. Comparison of different extraction methods: Steam distillation, simultaneous distillation and extraction and headspace co-distillation, used for the analysis of the volatile components in aged flue-cured tobacco leaves. J. Chromatogr. A 2004, 1040, 1–17. [Google Scholar] [CrossRef]
- Zhu, M.; Li, E.; He, H. Determination of volatile chemical constitutes in tea by simultaneous distillation extraction, vacuum hydro distillation and thermal desorption. Chromatographia 2008, 68, 603–610. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, Y.; Liu, B.; Fang, X.; Yang, W.; Xu, J. Comparison of headspace solid-phase microextraction with conventional extraction for the analysis of the volatile components in Melia azedarach. Talanta 2011, 86, 356–361. [Google Scholar] [CrossRef]
- Song, G.; Deng, C.; Wu, D.; Hu, Y. Comparison of headspace solid-phase microextraction with solvent extraction for the analysis of the volatile constituents of leaf twigs of Chinese arborvitae. Chromatographia 2003, 58, 769–774. [Google Scholar]
- Sostaric, T.; Boyce, M.C.; Spickett, E.E. Analysis of the volatile components in vanilla extracts and flavorings by solid-phase microextraction and gas chromatography. J. Agric. Food Chem. 2000, 48, 5802–5807. [Google Scholar] [CrossRef]
- Starmans, D.A.; Nijhuis, H.H. Extraction of secondary metabolites from plant material: A review. Trends Food Sci. Technol. 1996, 7, 191–197. [Google Scholar] [CrossRef]
- Hook, G.L.; Kimm, G.L.; Hall, T.; Smith, P.A. Solid-phase microextraction (SPME) for rapid field sampling and analysis by gas chromatography-mass spectrometry (GC-MS). TrAC-Trends Anal. Chem. 2002, 21, 534–543. [Google Scholar] [CrossRef]
- Hassan, S.; Araceli, P.S.; Denis, B.; de los Ángeles, V.V.M.; Mayra, N.G.; Delfino, R.L. Identification of volatile compounds in cured Mexican vanilla (Vanilla planifolia G. Jackson) beans using headspace solid-phase microextraction with gas chromatography-mass spectrometry. Fruits 2016, 71, 407–418. [Google Scholar] [CrossRef]
- Jalili, V.; Barkhordari, A.; Ghiasvand, A. A comprehensive look at solid-phase microextraction technique: A review of reviews. Microchem. J. 2020, 152, 104319. [Google Scholar] [CrossRef]
- Ouyang, G.; Pawliszyn, J. SPME in environmental analysis. Anal. Bioanal. Chem. 2006, 386, 1059–1073. [Google Scholar] [CrossRef]
- Chemat, F.; Boutekedjiret, C. Extraction//steam distillation. Mol. Syst. Des. Eng. 2015, 155, 1–12. [Google Scholar]
- Rao, V.P.; Pandey, D. Extraction of Essential Oil and Its Applications. Ph.D. Thesis, Department of Chemical Engineering, National Institute of Technology, Rourkela, India, July 2006. [Google Scholar]
- Huang, B.; Qin, L.; Chu, Q.; Zhang, Q.; Gao, L.; Zheng, H. Comparison of headspace SPME with hydrodistillation and SFE for analysis of the volatile components of the roots of Valeriana officinalis var. latifolia. Chromatographia 2009, 69, 489–496. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.A.; Casabianca, H.; Mousadik, A.E.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef]
- Zhang, S.; Mueller, C. Comparative analysis of volatiles in traditionally cured Bourbon and Ugandan vanilla bean (Vanilla planifolia) extracts. J. Agric. Food Chem. 2012, 60, 10433–10444. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Silva, A.; Odoux, E.; Brat, P.; Ribeyre, F.; Rodriguez-Jimenes, G.; Robles-Olvera, V.; Günata, Z. GC-MS and GC-olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans. Food Chem. 2006, 99, 728–735. [Google Scholar] [CrossRef]
- Bajer, T.; Surmová, S.; Eisner, A.; Ventura, K.; Bajerová, P. Use of simultaneous distillation-extraction, supercritical fluid extraction and solid-phase microextraction for characterisation of the volatile profile of Dipteryx odorata (Aubl.) Willd. Ind. Crop. Prod. 2018, 119, 313–321. [Google Scholar] [CrossRef]
- Yeh, C.H.; Chen, K.Y.; Chou, C.Y.; Liao, H.Y.; Chen, H.C. New Insights on Volatile Components of Vanilla planifolia Cultivated in Taiwan. Molecules 2021, 26, 3608. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, P.; Harmon, A.; Ford, P.; Zapf, M.; Weber, A.; King, S.; Grypa, R.; Philander, E.; Lentz, K.; Lentz, K. Analytical approaches to vanilla quality and authentication. In Vanilla: First International Congress; Allured Publishing Corporation: Carol Stream, IL, USA, 2005; pp. 41–49. [Google Scholar]
- Takahashi, M.; Inai, Y.; Miyazawa, N.; Kurobayashi, Y.; Fujita, A. Key odorants in cured Madagascar vanilla beans (Vanilla planiforia) of differing bean quality. Biosci. Biotechnol. Biochem. 2013, 77, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Kraujalytė, V.; Leitner, E.; Venskutonis, P.R. Characterization of Aronia melanocarpa volatiles by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation/extraction (SDE), and gas chromatography-olfactometry (GC-O) methods. J. Agric. Food Chem. 2013, 61, 4728–4736. [Google Scholar] [CrossRef] [PubMed]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Available online: http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/jecfa-flav/details/en/c/889/ (accessed on 31 December 2021).
- Yeh, C.H.; Tsai, W.Y.; Chiang, H.M.; Wu, C.S.; Lee, Y.I.; Lin, L.Y.; Chen, H.C. Headspace solid-phase microextraction analysis of volatile components in Phalaenopsis Nobby’s Pacific Sunset. Molecules 2014, 19, 14080–14093. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.C.; Chi, H.S.; Lin, L.Y. Headspace solid-phase microextraction analysis of volatile components in Narcissus tazetta var. chinensis Roem. Molecules 2013, 18, 13723–13734. [Google Scholar] [CrossRef]
- Yang, K.M.; Chao, L.K.; Wu, C.S.; Ye, Z.S.; Chen, H.C. Headspace solid-phase microextraction analysis of volatile components in peanut oil. Molecules 2021, 26, 3306. [Google Scholar] [CrossRef]
- Lee, C.L.; Lee, S.L.; Chen, C.J.; Chen, H.C.; Kao, M.C.; Liu, C.H.; Chen, J.Y.; Lai, Y.T.; Wu, Y.C. Characterization of secondary metabolites from purple Ipomoea batatas leaves and their effects on glucose uptake. Molecules 2016, 21, 745. [Google Scholar] [CrossRef] [Green Version]
- Kung, T.L.; Chen, Y.J.; Chao, L.K.; Wu, C.S.; Lin, L.Y.; Chen, H.C. Analysis of volatile constituents in Platostoma palustre (Blume) using headspace solid-phase microextraction and simultaneous distillation-extraction. Foods 2019, 8, 415. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.T.; Chen, H.C.; Chang, C. The variation of Oncidium Rosy sunset flower volatiles with daily rhythm, flowering period, and flower parts. Molecules 2017, 22, 1468. [Google Scholar] [CrossRef] [Green Version]
- National Library of Medicine, PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 12 July 2022).
- NIST Chemistry WebBook. Search for Species Data by CAS Registry Number. Available online: https://webbook.nist.gov/chemistry/cas-ser/ (accessed on 12 July 2022).
- Zhang, Y.; Wang, Y.; Tian, M.; Zhou, W.W. Analysis of aroma components in different orchid varieties. J. Anal. Sci. 2012, 28, 502–506. [Google Scholar]
- Zhang, Y.; Tian, M.; Wang, C.X.; Chen, S. Component analysis and sensory evaluation of flower aroma of Oncidium Sharry Baby ‘Sweet Fragrance’ under different temperature conditions. J. Plant Resour. Environ. 2015, 24, 112–114. [Google Scholar]
- Hernández-Fernández, M.Á.; Rojas-Avila, A.; Vazquez-Landaverde, P.A.; Cornejo-Mazón, M.; Dávila-Ortiz, G. Volatile compounds and fatty acids in oleoresins from Vanilla Planifolia Andrews obtained by extraction with supercritical carbon dioxide. CyTA J. Food 2019, 17, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Januszewska, R.; Giret, E.; Clement, F.; Van Leuven, I.; Goncalves, C.; Vladislavleva, E.; Haefliger, H. Impact of vanilla origins on sensory characteristics of chocolate. Int. Food Res. 2020, 137, 109313. [Google Scholar] [CrossRef] [PubMed]
- Ranadive, A.S. Vanilla-Inside look: Chemistry and Biochemistry of Vanilla Flavor-A survey of the latest research. Flavour Fragr. 2006, 31, 8–44. [Google Scholar]
- Brunschwig, C.; Rochard, S.; Pierrat, A.; Rouger, A.; Senger-Emonnot, P.; George, G.; Raharivelomanana, P. Volatile composition and sensory properties of Vanilla× tahitensis bring new insights for vanilla quality control. J. Sci. Food Agric. 2016, 96, 848–858. [Google Scholar] [CrossRef]
- Zheng, W.; Li, F.; Yu, Z.; Zhang, G.; Chen, Y.; Li, X.; Yan, H. Performance assessment of solvent extraction coupled with gas chromatography-mass spectrometry for the analysis of volatile components from Syringa flowers. Anal. Methods 2016, 8, 3115–3122. [Google Scholar] [CrossRef]
- Reineccius, G. Flavor Chemistry and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 40–41. [Google Scholar]
Chemical Groups | Peak Areas 1 | |||||
---|---|---|---|---|---|---|
SDE | SD | HS-SPME | SE | |||
35% | 75% | 95% | ||||
aldehydes | 3593.07 | 3383.06 | 21,546.27 | 989.18 | 2096.52 | 2266.22 |
esters | 396.12 | 319.49 | 174.65 | - | 22.45 | 22.25 |
furans | 16.11 | - 2 | 289.08 | - | - | - |
monoterpenes | 13.19 | - | 24.58 | - | - | - |
sesquiterpenes | 68.26 | - | 55.22 | - | - | - |
carboxylic acids | 3882.94 | - | - | - | 12.68 | 39.62 |
alcohols | 164.39 | 425.67 | 934.03 | 14.36 | 33.76 | 46.43 |
ketones | 137.94 | 627.84 | 204.12 | 210.39 | 110.28 | 365.43 |
phenols | 2306.55 | 175.39 | 6104.42 | 48.92 | 118.94 | 117.61 |
hydrocarbons | 779.67 | 28.73 | 30.10 | - | - | - |
total | 11,391.62 | 4960.18 | 29,362.47 | 1262.85 | 2394.63 | 2857.56 |
Compounds 1 | RI 2 | Peak Areas 3 | |||||
---|---|---|---|---|---|---|---|
SDE | SE | SD | HS-SPME | ||||
35% Ethanol | 75% Ethanol | 95% Ethanol | |||||
ethyl acetate | 601 | 24.34 ± 9.04 | - 4 | - | - | - | - |
3-methylbutanal | 627 | - | - | - | - | 873.24 ± 113.12 | - |
3-methylpentanal | 740 | - | - | - | - | 306.10 ± 145.40 | - |
hexanal | 772 | - | - | - | - | 846.53 ± 16.78 | - |
1,3-butanediol | 777 | - | - | - | - | - | 117.55 ± 18.55 |
furfural | 790 | 41.05 ± 9.58c | - | - | 20.32 ± 3.09c | 159.07 ± 6.22a | 127.28 ± 15.98b |
furfuryl alcohol | 844 | - | 27.62 ± 2.73a | 33.76 ± 14.29a | 37.67 ± 10.91a | - | - |
heptanal | 874 | - | - | - | - | 128.62 ± 16.41 | - |
5-methyl-2(5H)-furanone | 886 | - | - | 24.69 ± 11.47 | - | - | - |
5-methylfurfural | 921 | - | - | 7.44 ± 0.70b | 10.19 ± 1.22a | - | - |
benzaldehyde | 922 | 25.94 ± 5.46c | - | - | - | 246.10 ± 6.85a | 84.20 ± 13.60b |
phenol | 947 | 151.63 ± 31.97b | 11.52 ± 2.05c | 25.65 ± 2.86c | 14.92 ± 1.97c | - | 428.03 ± 52.91a |
1-octen-3-one | 948 | - | - | - | - | 61.90 ± 4.79 | - |
2-octanone | 954 | - | - | - | - | 203.83 ± 28.07 | - |
1-octen-3-ol | 955 | - | - | - | - | 47.87 ± 11.27b | 279.51 ± 53.18a |
2-pentylfuran | 968 | 16.11 ± 4.99b | - | - | - | - | 289.08 ± 59.24a |
octanal | 971 | - | - | - | - | 265.90 ± 59.40 | - |
hexanoic acid | 975 | 60.46 ± 37.02 | - | - | - | - | - |
benzyl alcohol | 992 | 22.11 ± 6.29b | - | - | - | - | 114.58 ± 14.82a |
phenylacetaldehyde | 996 | 39.00 ± 8.68a | - | - | - | 17.18 ± 3.86b | - |
3-octen-2-one | 999 | 15.71 ± 4.24c | - | - | - | 221.40 ± 19.36a | 108.05 ± 15.40b |
limonene | 1010 | 13.19 ± 4.09a | - | - | - | - | 24.58 ± 5.86a |
furaneol | 1011 | - | - | - | 9.41 ± 4.18 | - | - |
p-cresol | 1037 | 50.37 ± 13.50b | 4.75 ± 0.52c | 14.09 ± 5.72c | 10.87 ± 2.95c | - | 144.94 ± 20.72a |
1-octanol | 1041 | 117.30 ± 30.42b | - | - | - | 321.86 ± 37.59a | 380.32 ± 40.93a |
guaiacol | 1052 | 1747.13 ± 405.33b | 11.34 ± 0.97c | 24.61 ± 2.28c | 24.41 ± 5.69c | 175.39 ± 11.37c | 5315.06 ± 911.24a |
2-nonanone | 1059 | - | - | - | - | 85.18 ± 7.09a | 96.07 ± 11.61a |
nonanal | 1070 | 31.47 ± 10.74b | - | - | - | 333.49 ± 41.50a | 88.34 ± 12.20b |
2-phenylethanol | 1073 | 17.35 ± 4.16b | - | - | - | - | 42.07 ± 1.94a |
2-(1- methylethylidene)cyclohexanone | 1088 | - | - | - | - | 55.54 ± 6.39 | - |
methyl octanoate | 1091 | - | - | - | - | 35.06 ± 3.14 | - |
1,2-dimethoxybenzene | 1096 | - | - | - | - | - | 15.84 ± 1.59 |
2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | 1102 | - | 81.02 ± 18.00a | 85.59 ± 17.35a | 75.80 ± 25.06a | - | - |
benzoic acid | 1122 | - | - | 12.68 ± 3.87 | - | - | - |
3,5-dimethylphenol | 1131 | 8.25 ± 3.90 | - | - | - | - | - |
octanoic acid | 1144 | 194.34 ± 50.37 | - | - | - | - | - |
2-nonenal | 1151 | 148.27 ± 75.52 | - | ||||
creosol | 1157 | 86.53 ± 22.09b | - | 28.13 ± 0.79c | - | - | 189.44 ± 18.06a |
methyl salicylate | 1163 | 26.58 ± 8.42c | - | - | - | 231.96 ± 19.16a | 109.37 ± 10.96b |
safranal | 1170 | - | - | - | - | 58.55 ± 32.52a | 19.77 ± 4.98a |
5-hydroxymaltol | 1170 | - | 129.37 ± 69.97a | - | 280.22 ± 66.22a | - | - |
5-hydroxymethylfurfural | 1172 | - | - | 324.78 ± 52.36 | - | - | - |
3-phenyl-1-propanol | 1193 | 7.63 ± 2.96 | - | - | - | - | - |
methyl nonanoate | 1195 | 12.63 ± 7.97b | - | - | - | 41.40 ± 2.70a | 31.79 ± 2.42a |
dodecane | 1200 | - | - | - | - | - | 19.40 ± 1.32 |
anisaldehyde | 1210 | 17.43 ± 6.08 | - | - | - | - | - |
chavicol | 1218 | 11.44 ± 1.09 | - | - | - | - | - |
cinnamaldehyde | 1229 | 14.81 ± 4.42 | - | - | - | - | - |
anisyl alcohol | 1243 | - | - | - | 8.76 ± 1.81 | - | - |
nonanoic acid | 1255 | 1014.60 ± 250.70a | - | - | 29.60 ± 1.39b | - | - |
(E)-methyl cinnamate | 1268 | 24.46 ± 7.74a | - | - | - | 11.07 ± 3.90b | 33.49 ± 1.57a |
p-vinylguaiacol | 1280 | 167.46 ± 39.17a | 21.30 ± 14.47b | 26.47 ± 9.23b | 27.03 ± 4.18b | - | - |
2,4-decadienal | 1284 | 69.98 ± 17.33 | - | - | - | - | - |
p-hydroxybenzaldehyde | 1313 | 35.10 ± 12.64c | 92.54 ± 23.72b | 160.39 ± 7.12a | 195.96 ± 25.85a | - | 24.78 ± 1.63c |
methyl anisate | 1337 | 29.85 ± 5.05 | - | - | - | - | - |
decanoic acid | 1341 | 120.36 ± 4.45 | - | - | - | - | - |
(Z)-methyl cinnamate | 1349 | 208.71 ± 34.92 | - | - | - | - | - |
vanillin | 1358 | 3318.29 ± 552.20b | 896.65 ± 243.99b | 1603.90 ± 114.67b | 2026.60 ± 409.18b | - | 21,216.89 ± 7078.54a |
α-copaene | 1380 | 24.90 ± 6.47b | - | - | - | - | 44.72 ± 3.48a |
tetradecane | 1400 | - | - | - | - | - | 10.69 ± 1.15 |
2,6-dimethylnaphthalene | 1405 | - | - | - | - | 28.73 ± 8.69 | - |
methylparaben | 1410 | - | - | 22.45 ± 1.94a | 22.25 ± 1.93a | - | - |
veratraldehyde | 1424 | - | - | - | - | - | 9.78 ± 0.53 |
vanillyl alcohol | 1425 | - | 14.36 ± 3.35 | - | - | - | - |
undecanoic acid | 1434 | 59.82 ± 24.10 | - | - | - | - | - |
1-dodecanol | 1450 | - | - | - | - | 55.94 ± 11.95 | - |
2,4-di-tert-butylphenol | 1484 | 37.65 ± 14.08a | - | - | 10.36 ± 0.59b | - | - |
butylated hydroxytoluene | 1491 | 46.08 ± 13.19a | - | - | 30.02 ± 10.05ab | - | 11.11 ± 1.04b |
α-muurolene | 1496 | - | - | - | - | - | 10.50 ± 4.32 |
lauric acid | 1535 | 271.98 ± 19.08 | - | - | - | - | - |
hexadecane | 1600 | 28.29 ± 17.89 | - | - | - | - | - |
syringaldehyde | 1613 | - | - | - | 13.15 ± 2.62 | - | - |
tridecanoic acid | 1629 | 43.26 ± 9.38 | - | - | - | - | - |
cadalene | 1660 | 43.36 ± 14.21 | - | - | - | - | - |
heptadecane | 1700 | 54.54 ± 15.57 | - | - | - | - | - |
myristic acid | 1731 | 363.16 ± 59.98a | - | - | 10.02 ± 0.77b | - | - |
1-octadecene | 1757 | 56.26 ± 36.74 | - | - | - | - | - |
octadecane | 1800 | 71.81 ± 25.42 | - | - | - | - | - |
6,10,14-trimethylpentadecan-2-one | 1817 | 122.22 ± 29.90 | - | - | - | - | - |
pentadecanoic acid | 1823 | 268.47 ± 38.16 | - | - | - | - | - |
nonadecane | 1900 | 382.03 ± 24.96 | - | - | - | - | - |
methyl palmitate | 1926 | 69.55 ± 33.23 | - | - | - | - | - |
palmitic acid | 1962 | 1486.50 ± 159.94 | - | - | - | - | - |
eicosane | 2000 | 132.20 ± 72.64 | - | - | - | - | - |
Compounds 1 | RI 2 | RI 3 | Concentration (mg/kg) 4 | References |
---|---|---|---|---|
ethyl acetate | 603 | 601 | 1.39 ± 0.26 | [19] |
furfural | 799 | 790 | 2.39 ± 0.33 | [22] |
benzaldehyde | 931 | 922 | 1.52 ± 0.24 | [27,28] |
phenol | 949 | 947 | 8.86 ± 1.37 | [29] |
2-pentylfuran | 975 | 968 | 0.92 ± 0.11 | [22] |
hexanoic acid | 955 | 975 | 3.13 ± 1.34 | [30] |
benzyl alcohol | 1011 | 992 | 1.27 ± 0.09 | [28] |
phenylacetaldehyde | 1002 | 996 | 2.28 ± 0.39 | [31] |
3-octen-2-one | 1015 | 999 | 0.90 ± 0.07 | [19] |
limonene | 1017 | 1010 | 0.75 ± 0.03 | [31,32] |
p-cresol | 1043 | 1037 | 2.90 ± 0.28 | [22] |
1-octanol | 1048 | 1041 | 6.76 ± 0.69 | [31] |
guaiacol | 1056 | 1052 | 101.58 ± 13.92 | [22] |
nonanal | 1074 | 1070 | 1.79 ± 0.19 | [22] |
2-phenylethanol | 1080 | 1073 | 1.01 ± 0.12 | [22] |
3,5-dimethylphenol | 1139 | 1131 | 0.40 ± 0.21 | [33,34] |
octanoic acid | 1150 | 1144 | 11.21 ± 1.14 | [19] |
creosol | 1161 | 1157 | 5.01 ± 0.66 | [22] |
methyl salicylate | 1166 | 1163 | 1.51 ± 0.13 | [22,31] |
3-phenyl-1-propanol | 1201 | 1193 | 0.42 ± 0.03 | [19] |
methyl nonanoate | 1205 | 1195 | 0.69 ± 0.32 | [19] |
anisaldehyde | 1212 | 1210 | 0.98 ± 0.04 | [22] |
chavicol | 1223 | 1218 | 0.54 ± 0.02 | [19] |
cinnamaldehyde | 1239 | 1229 | 0.85 ± 0.09 | [19] |
nonanoic acid | 1247 | 1255 | 58.74 ± 7.10 | [19] |
(E)-methyl cinnamate | 1281 | 1268 | 1.39 ± 0.04 | [33,34] |
p-vinylguaiacol | 1280 | 1280 | 9.91 ± 2.42 | [22] |
2,4-decadienal | 1288 | 1284 | 4.10 ± 0.81 | [33,34] |
p-hydroxybenzaldehyde | 1315 | 1313 | 1.98 ± 0.22 | [19,22] |
methyl anisate | 1336 | 1337 | 1.41 ± 0.15 | [33,34] |
decanoic acid | 1344 | 1341 | 7.43 ± 2.91 | [19] |
(Z)-methyl cinnamate | 1356 | 1349 | 12.45 ± 3.14 | [30] |
vanillin | 1354 | 1358 | 196.36 ± 40.91 | [28] |
α-copaene | 1373 | 1380 | 1.46 ± 0.33 | [35,36] |
undecanoic acid | 1445 | 1434 | 3.41 ± 0.74 | [33,34] |
2,4-di-tert-butylphenol | 1494 | 1484 | 2.10 ± 0.14 | [33,34] |
butylated hydroxytoluene | 1488 | 1491 | 2.64 ± 0.23 | [33,34] |
lauric acid | 1566 | 1535 | 16.59 ± 5.68 | [19] |
hexadecane | 1600 | 1600 | 1.54 ± 0.60 | [19] |
tridecanoic acid | 1645 | 1629 | 2.57 ± 0.65 | [33,34] |
cadalene | 1653 | 1660 | 2.51 ± 0.52 | [19] |
heptadecane | 1700 | 1700 | 3.12 ± 0.19 | [19] |
myristic acid | 1739 | 1731 | 21.56 ± 4.89 | [33,34] |
1-octadecene | 1788 | 1757 | 3.49 ± 2.35 | [33,34] |
octadecane | 1800 | 1800 | 4.03 ± 0.31 | [19] |
6,10,14-trimethylpentadecan-2-one | 1817 | 1817 | 7.08 ± 0.86 | [33,34] |
pentadecanoic acid | 1823 | 1823 | 16.00 ± 3.85 | [33,34] |
nonadecane | 1900 | 1900 | 24.01 ± 11.20 | [19] |
methyl palmitate | 1909 | 1926 | 3.81 ± 0.99 | [19] |
palmitic acid | 1968 | 1962 | 90.12 ± 28.34 | [33,34] |
eicosane | 2000 | 2000 | 7.04 ± 2.43 | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-H.; Chou, C.-Y.; Wu, C.-S.; Chu, L.-P.; Huang, W.-J.; Chen, H.-C. Effects of Different Extraction Methods on Vanilla Aroma. Molecules 2022, 27, 4593. https://doi.org/10.3390/molecules27144593
Yeh C-H, Chou C-Y, Wu C-S, Chu L-P, Huang W-J, Chen H-C. Effects of Different Extraction Methods on Vanilla Aroma. Molecules. 2022; 27(14):4593. https://doi.org/10.3390/molecules27144593
Chicago/Turabian StyleYeh, Chih-Hsin, Chia-Yi Chou, Chin-Sheng Wu, Lee-Ping Chu, Wei-Juan Huang, and Hsin-Chun Chen. 2022. "Effects of Different Extraction Methods on Vanilla Aroma" Molecules 27, no. 14: 4593. https://doi.org/10.3390/molecules27144593
APA StyleYeh, C. -H., Chou, C. -Y., Wu, C. -S., Chu, L. -P., Huang, W. -J., & Chen, H. -C. (2022). Effects of Different Extraction Methods on Vanilla Aroma. Molecules, 27(14), 4593. https://doi.org/10.3390/molecules27144593