Open-Source Browser-Based Tools for Structure-Based Computer-Aided Drug Discovery
Abstract
:1. Introduction
1.1. Drug Classifications: Biologics and Small Molecules
1.2. Computer-Aided Drug Discovery
2. Software Usability
2.1. Common Usability Challenges
2.2. Server Applications
2.3. Browser Applications
2.4. Recent Advances Enable Complex Browser-Based Applications
3. Examples of CADD Browser Apps
3.1. FPocketWeb: Pocket Identification
3.2. Webina: Small-Molecule Docking
3.3. BINANA: Pose Assessment
3.4. DeepFrag: Lead Optimization
3.5. ProteinVR: Molecular Visualization in Virtual Reality
4. Browser Apps as Educational Tools
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sormanni, P.; Aprile, F.A.; Vendruscolo, M. Third generation antibody discovery methods: In silico rational design. Chem. Soc. Rev. 2018, 47, 9137–9157. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T. Toward rational antibody design: Recent advancements in molecular dynamics simulations. Int. Immunol. 2018, 30, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrow, T.; Felcone, L.H. Defining the difference: What Makes Biologics Unique. Biotechnol. Healthc. 2004, 1, 24–29. [Google Scholar]
- Makurvet, F.D. Biologics vs. small molecules: Drug costs and patient access. Med. Drug Discov. 2021, 9, 100075. [Google Scholar] [CrossRef]
- Gurevich, E.V.; Gurevich, V.V. Therapeutic potential of small molecules and engineered proteins. Handb. Exp. Pharm. 2014, 219, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement. 2017, 3, 651–657. [Google Scholar] [CrossRef]
- Wouters, O.J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009–2018. JAMA 2020, 323, 844–853. [Google Scholar] [CrossRef]
- Gogishvili, D.; Nittinger, E.; Margreitter, C.; Tyrchan, C. Nonadditivity in public and inhouse data: Implications for drug design. J. Cheminform. 2021, 13, 47. [Google Scholar] [CrossRef]
- Abriata, L.A.; Rodrigues, J.; Salathe, M.; Patiny, L. Augmenting Research, Education, and Outreach with Client-Side Web Programming. Trends Biotechnol. 2018, 36, 473–476. [Google Scholar] [CrossRef]
- Abriata, L.A. Web apps come of age for molecular sciences. Informatics 2017, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- TypeScript: JavaScript with Syntax for Types. Available online: https://www.typescriptlang.org/ (accessed on 2 July 2022).
- Transcrypt—Python in the Browser—Lean, Fast, Open! Available online: https://www.transcrypt.org/ (accessed on 2 July 2022).
- Brython. Available online: https://www.brython.info/ (accessed on 2 July 2022).
- WebAssembly. Available online: https://webassembly.org/ (accessed on 2 July 2022).
- Jiang, C.; Jin, X.; Dong, Y.; Chen, M. Kekule.js: An Open Source JavaScript Chemoinformatics Toolkit. J. Chem. Inf. Model. 2016, 56, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Jin, X. Quick Way to Port Existing C/C++ Chemoinformatics Toolkits to the Web Using Emscripten. J. Chem. Inf. Model. 2017, 57, 2407–2412. [Google Scholar] [CrossRef] [PubMed]
- Kochnev, Y.; Durrant, J. FPocketWeb: Protein pocket hunting in a web browser. bioRxiv 2022. [Google Scholar] [CrossRef]
- Kochnev, Y.; Hellemann, E.; Cassidy, K.C.; Durrant, J.D. Webina: An open-source library and web app that runs AutoDock Vina entirely in the web browser. Bioinformatics 2020, 36, 4513–4515. [Google Scholar] [CrossRef]
- Pyodide—Version 0.20.0. Available online: https://pyodide.org/en/stable/ (accessed on 2 July 2022).
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Cock, P.J.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef]
- Theisen, K.J. Programming languages in chemistry: A review of HTML5/JavaScript. J. Cheminform. 2019, 11, 11. [Google Scholar] [CrossRef]
- Babylon.js: Powerful, Beautiful, Simple, Open—Web-Based 3D at Its Best. Available online: https://www.babylonjs.com/ (accessed on 2 July 2022).
- TensorFlow.js|Machine Learning for JavaScript Developers. Available online: https://www.tensorflow.org/js (accessed on 2 July 2022).
- Brylinski, M.; Skolnick, J. A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc. Natl. Acad. Sci. USA 2008, 105, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Roy, A.; Zhang, Y. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 2013, 29, 2588–2595. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.; Ghersi, D.; Sanchez, R. SITEHOUND-web: A server for ligand binding site identification in protein structures. Nucleic Acids Res. 2009, 37, W413–W416. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cao, Y.; Zhang, L. Exploring the computational methods for protein-ligand binding site prediction. Comput. Struct. Biotechnol. J. 2020, 18, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An open source platform for ligand pocket detection. BMC Bioinform. 2009, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Manfredonia, I.; Nithin, C.; Ponce-Salvatierra, A.; Ghosh, P.; Wirecki, T.K.; Marinus, T.; Ogando, N.S.; Snijder, E.J.; van Hemert, M.J.; Bujnicki, J.M.; et al. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Res. 2020, 48, 12436–12452. [Google Scholar] [CrossRef]
- Lu, S.; He, X.; Yang, Z.; Chai, Z.; Zhou, S.; Wang, J.; Rehman, A.U.; Ni, D.; Pu, J.; Sun, J.; et al. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat. Commun. 2021, 12, 4721. [Google Scholar] [CrossRef]
- Zhang, Q.; Ren, Y.; Mo, Y.; Guo, P.; Liao, P.; Luo, Y.; Mu, J.; Chen, Z.; Zhang, Y.; Li, Y.; et al. Inhibiting Hv1 channel in peripheral sensory neurons attenuates chronic inflammatory pain and opioid side effects. Cell Res. 2022, 32, 461–476. [Google Scholar] [CrossRef]
- Main-Emscripten 3.1.9-Git (Dev) Documentation. Available online: https://emscripten.org/ (accessed on 2 July 2022).
- Discngine/Fpocket. Available online: https://github.com/Discngine/fpocket (accessed on 2 July 2022).
- Vue.js—The Progressive JavaScript Framework. Available online: https://vuejs.org/ (accessed on 9 June 2022).
- Bootstrap: The Most Popular HTML, CSS, and JS Library in the World. Available online: https://getbootstrap.com/ (accessed on 9 June 2022).
- BootstrapVue. Available online: https://bootstrap-vue.org/ (accessed on 9 June 2022).
- Rego, N.; Koes, D. 3Dmol.js: Molecular visualization with WebGL. Bioinformatics 2015, 31, 1322–1324. [Google Scholar] [CrossRef] [Green Version]
- Webpack. Available online: https://webpack.js.org/ (accessed on 9 June 2022).
- Closure Compiler. Available online: https://developers.google.com/closure/compiler (accessed on 9 June 2022).
- Kanwar, G.; Kumar, A.; Mahajan, A. Open source software tools for computer aided drug design. Int. J. Res. Pharm. Sci. 2018, 9, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem. 2015, 36, 1132–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Sanner, M.F. FLIPDock: Docking flexible ligands into flexible receptors. Proteins 2007, 68, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Grosdidier, A.; Zoete, V.; Michielin, O. EADock: Docking of small molecules into protein active sites with a multiobjective evolutionary optimization. Proteins 2007, 67, 1010–1025. [Google Scholar] [CrossRef]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res. 2005, 33, W363–W367. [Google Scholar] [CrossRef] [Green Version]
- Valdes-Tresanco, M.S.; Valdes-Tresanco, M.E.; Valiente, P.A.; Moreno, E. AMDock: A versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol. Direct. 2020, 15, 12. [Google Scholar] [CrossRef]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- Sandeep, G.; Nagasree, K.P.; Hanisha, M.; Kumar, M.M. AUDocker LE: A GUI for virtual screening with AUTODOCK Vina. BMC Res. Notes 2011, 4, 445. [Google Scholar] [CrossRef] [Green Version]
- Bullock, C.W.; Jacob, R.B.; McDougal, O.M.; Hampikian, G.; Andersen, T. Dockomatic—Automated ligand creation and docking. BMC Res. Notes 2010, 3, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Muzio, E.; Toti, D.; Polticelli, F. DockingApp: A user friendly interface for facilitated docking simulations with AutoDock Vina. J. Comput. Aided Mol. Des. 2017, 31, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Cryst. 2002, 40, 82–92. [Google Scholar]
- Goddard, T.D.; Huang, C.C.; Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2018, 27, 14–25. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Krivokolysko, D.S.; Dotsenko, V.V.; Bibik, E.Y.; Myazina, A.V.; Krivokolysko, S.G.; Vasilin, V.K.; Pankov, A.A.; Aksenov, N.A.; Aksenova, I.V. Synthesis, Structure, and Analgesic Activity of 4-(5-Cyano-{4-(fur-2-yl)-1, 4-dihydropyridin-3-yl} carboxamido) benzoic Acids Ethyl Esters. Russ. J. Gen. Chem. 2021, 91, 2588–2605. [Google Scholar] [CrossRef]
- Ghosh, A.; Roy, M.; Lahiri, A.; Mukherjee, S.; Datta, A. Prevention of Inorganic Arsenic induced Squamous Cell Carcinoma of Skin in Swiss Albino Mice By Black Tea Through Epigenetic Modulation. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Chai, T.T.; Koh, J.A.; Wong, C.C.; Sabri, M.Z.; Wong, F.C. Computational Screening for the Anticancer Potential of Seed-Derived Antioxidant Peptides: A Cheminformatic Approach. Molecules 2021, 26, 7396. [Google Scholar] [CrossRef]
- Newman, J.D.; Shah, P.; Chopra, J.; Shi, E.; McFadden, M.E.; Horness, R.E.; Brown, L.C.; van Kessel, J.C. Amino acid divergence in the ligand-binding pocket of Vibrio LuxR/HapR proteins determines the efficacy of thiophenesulfonamide inhibitors. Mol. Microbiol. 2021, 116, 1173–1188. [Google Scholar] [CrossRef] [PubMed]
- Naeem-E-mail, A.; Sheikh-E-mail, A.; Naeem, S.; Abidi-E-mail, S.H. Molecular docking analysis of fluoroquinolones and other natural and synthetic compounds with the HCV NS3 helicase. Bioinformation 2022, 18, 147–154. [Google Scholar]
- Gonzalez-Paz, L.; Hurtado-Leon, M.L.; Lossada, C.; Fernandez-Materan, F.V.; Vera-Villalobos, J.; Lorono, M.; Paz, J.L.; Jeffreys, L.; Alvarado, Y.J. Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach. Biophys. Chem. 2021, 278, 106677. [Google Scholar] [CrossRef]
- Halder, P.; Pal, U.; Paladhi, P.; Dutta, S.; Paul, P.; Pal, S.; Das, D.; Ganguly, A.; Dutta, I.; Mandal, S. Evaluation of potency of the selected bioactive molecules from Indian medicinal plants with MPro of SARS-CoV-2 through in silico analysis. J. Ayurveda Integr. Med. 2022, 13, 100449. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.H.; Koh, J.A.; Cao, H.; Tan, S.A.; Abd Manan, F.; Wong, F.C.; Chai, T.T. Purification, Identification and Characterization of Antioxidant Peptides from Corn Silk Tryptic Hydrolysate: An Integrated In Vitro-In Silico Approach. Antioxidants 2021, 10, 1822. [Google Scholar] [CrossRef]
- Ward, L.C.; McCue, H.V.; Rigden, D.J.; Kershaw, N.M.; Ashbrook, C.; Hatton, H.; Goulding, E.; Johnson, J.R.; Carnell, A.J. Carboxyl Methyltransferase Catalysed Formation of Mono- and Dimethyl Esters under Aqueous Conditions: Application in Cascade Biocatalysis. Angew. Chem. Int. Ed. Engl. 2022, 61, e202117324. [Google Scholar] [CrossRef]
- Suemune, H.; Nishimura, D.; Mizutani, K.; Sato, Y.; Hino, T.; Takagi, H.; Shiozaki-Sato, Y.; Takahashi, S.; Nagano, S. Crystal structures of a 6-dimethylallyltryptophan synthase, IptA: Insights into substrate tolerance and enhancement of prenyltransferase activity. Biochem. Biophys. Res. Commun. 2022, 593, 144–150. [Google Scholar] [CrossRef]
- Jubb, H.C.; Higueruelo, A.P.; Ochoa-Montano, B.; Pitt, W.R.; Ascher, D.B.; Blundell, T.L. Arpeggio: A Web Server for Calculating and Visualising Interatomic Interactions in Protein Structures. J. Mol. Biol. 2017, 429, 365–371. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef]
- Durrant, J.D.; McCammon, J.A. BINANA: A novel algorithm for ligand-binding characterization. J. Mol. Graph. Model. 2011, 29, 888–893. [Google Scholar] [CrossRef] [Green Version]
- Young, J.; Garikipati, N.; Durrant, J.D. BINANA 2: Characterizing Receptor/Ligand Interactions in Python and JavaScript. J. Chem. Inf. Model. 2022, 62, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Luna, J.; Perez-Benito, L.; Martinez-Rosell, G.; Sciabola, S.; Torella, R.; Tresadern, G.; De Fabritiis, G. DeltaDelta neural networks for lead optimization of small molecule potency. Chem. Sci. 2019, 10, 10911–10918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharm. 2011, 162, 1239–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza Neto, L.R.; Moreira-Filho, J.T.; Neves, B.J.; Maidana, R.; Guimaraes, A.C.R.; Furnham, N.; Andrade, C.H.; Silva, F.P., Jr. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Front. Chem. 2020, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Maziarka, L.; Pocha, A.; Kaczmarczyk, J.; Rataj, K.; Danel, T.; Warchol, M. Mol-CycleGAN: A generative model for molecular optimization. J. Cheminform. 2020, 12, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, W.; Barzilay, R.; Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2323–2332. [Google Scholar]
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef]
- Liu, Q.; Allamanis, M.; Brockschmidt, M.; Gaunt, A. Constrained graph variational autoencoders for molecule design. Adv. Neural Inf. Processing Syst. 2018, 31. [Google Scholar] [CrossRef]
- Zhou, Z.; Kearnes, S.; Li, L.; Zare, R.N.; Riley, P. Optimization of Molecules via Deep Reinforcement Learning. Sci. Rep. 2019, 9, 10752. [Google Scholar] [CrossRef]
- Bresson, X.; Laurent, T. A two-step graph convolutional decoder for molecule generation. arXiv 2019, arXiv:1906.03412. [Google Scholar]
- Gupta, A.; Muller, A.T.; Huisman, B.J.H.; Fuchs, J.A.; Schneider, P.; Schneider, G. Generative Recurrent Networks for De Novo Drug Design. Mol. Inf. 2018, 37, 1700111. [Google Scholar] [CrossRef] [Green Version]
- Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform. 2017, 9, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernandez-Lobato, J.M.; Sanchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci. 2018, 4, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Ragoza, M.; Masuda, T.; Koes, D.R. Learning a continuous representation of 3D molecular structures with deep generative models. arXiv 2020, arXiv:2010.08687. [Google Scholar]
- Li, Y.; Pei, J.; Lai, L. Structure-based de novo drug design using 3D deep generative models. Chem. Sci. 2021, 12, 13664–13675. [Google Scholar] [CrossRef] [PubMed]
- Imrie, F.; Hadfield, T.E.; Bradley, A.R.; Deane, C.M. Deep generative design with 3D pharmacophoric constraints. Chem. Sci. 2021, 12, 14577–14589. [Google Scholar] [CrossRef]
- Joshi, R.P.; Gebauer, N.W.A.; Bontha, M.; Khazaieli, M.; James, R.M.; Brown, J.B.; Kumar, N. 3D-Scaffold: A Deep Learning Framework to Generate 3D Coordinates of Drug-like Molecules with Desired Scaffolds. J. Phys. Chem. B 2021, 125, 12166–12176. [Google Scholar] [CrossRef]
- Green, H.; Durrant, J.D. DeepFrag: An Open-Source Browser App for Deep-Learning Lead Optimization. J. Chem. Inf. Model. 2021, 61, 2523–2529. [Google Scholar] [CrossRef] [PubMed]
- Green, H.; Koes, D.R.; Durrant, J.D. DeepFrag: A deep convolutional neural network for fragment-based lead optimization. Chem. Sci. 2021, 12, 8036–8047. [Google Scholar] [CrossRef]
- Landrum, G. rdkit.Chem.rdmolops Module—The RDKit 2022.03.1 Documentation. Available online: http://rdkit.org/docs/source/rdkit.Chem.rdmolops.html (accessed on 18 July 2022).
- Norrby, M.; Grebner, C.; Eriksson, J.; Bostrom, J. Molecular Rift: Virtual Reality for Drug Designers. J. Chem. Inf. Model. 2015, 55, 2475–2484. [Google Scholar] [CrossRef]
- Jamieson-Binnie, A.D.; O’Connor, M.B.; Barnoud, J.; Wonnacott, M.D.; Bennie, S.J.; Glowacki, D.R. Narupa iMD: A VR-Enabled Multiplayer Framework for Streaming Interactive Molecular Simulations. In ACM SIGGRAPH 2020 Immersive Pavilion; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–2. [Google Scholar]
- Kingsley, L.J.; Brunet, V.; Lelais, G.; McCloskey, S.; Milliken, K.; Leija, E.; Fuhs, S.R.; Wang, K.; Zhou, E.; Spraggon, G. Development of a virtual reality platform for effective communication of structural data in drug discovery. J. Mol. Graph. Model. 2019, 89, 234–241. [Google Scholar] [CrossRef]
- Walters, R.K.; Gale, E.M.; Barnoud, J.; Glowacki, D.R.; Mulholland, A.J. The emerging potential of interactive virtual reality in drug discovery. Expert Opin. Drug Discov. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.J.; Deeks, H.M.; Burfoot, E.; Clark, E.; Jones, A.J.; Mulholland, A.J.; Glowacki, D.R. Exploring human-guided strategies for reaction network exploration: Interactive molecular dynamics in virtual reality as a tool for citizen scientists. J. Chem. Phys. 2021, 155, 154106. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.B.; Bennie, S.J.; Deeks, H.M.; Jamieson-Binnie, A.; Jones, A.J.; Shannon, R.J.; Walters, R.; Mitchell, T.J.; Mulholland, A.J.; Glowacki, D.R. Interactive molecular dynamics in virtual reality from quantum chemistry to drug binding: An open-source multi-person framework. J. Chem. Phys. 2019, 150, 220901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deeks, H.M.; Walters, R.K.; Hare, S.R.; O’Connor, M.B.; Mulholland, A.J.; Glowacki, D.R. Interactive molecular dynamics in virtual reality for accurate flexible protein-ligand docking. PLoS ONE 2020, 15, e0228461. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Seritan, S.; Lahana, D.; Ford, J.E.; Valentini, A.; Hohenstein, E.G.; Martinez, T.J. InteraChem: Exploring Excited States in Virtual Reality with Ab Initio Interactive Molecular Dynamics. J. Chem. Theory Comput. 2022, 18, 3308–3317. [Google Scholar] [CrossRef]
- Deeks, H.M.; Walters, R.K.; Barnoud, J.; Glowacki, D.R.; Mulholland, A.J. Interactive Molecular Dynamics in Virtual Reality Is an Effective Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease. J. Chem. Inf. Model. 2020, 60, 5803–5814. [Google Scholar] [CrossRef]
- Cassidy, K.C.; Sefcik, J.; Raghav, Y.; Chang, A.; Durrant, J.D. ProteinVR: Web-based molecular visualization in virtual reality. PLoS Comput. Biol. 2020, 16, e1007747. [Google Scholar] [CrossRef]
- Cavanagh, A.J.; Aragon, O.R.; Chen, X.; Couch, A.; Durham, F.; Bobrownicki, A.; Hanauer, D.I.; Graham, M.J. Student Buy-In to Active Learning in a College Science Course. CBE Life Sci. Educ. 2016, 15, ar76. [Google Scholar] [CrossRef] [Green Version]
- Merrill, M.D. First principles of instruction. Educ. Technol. Res. Dev. 2002, 50, 43–59. [Google Scholar] [CrossRef]
- Callender, C.; Jackson, J. Does the fear of debt constrain choice of university and subject of study? Stud. High. Educ. 2008, 33, 405–429. [Google Scholar] [CrossRef]
- Reay, D.; Davies, J.; David, M.; Ball, S.J. Choices of degree or degrees of choice? Class, ‘race’ and the higher education choice process. Sociology 2001, 35, 855–874. [Google Scholar]
Name | App URL 1 | Source Code URL 1 | License/Method 2 | Step |
---|---|---|---|---|
FPocketWeb | /fpocketweb | /fpocketweb-download | AL2/Wasm | |
Webina | /webina | /webina-download | AL2/Wasm | Dock |
BINANA | /binana | /binana-download | AL2/Transcrypt | Assess |
DeepFrag | /deepfrag | /deepfragmodel | AL2/TF.js | Optimize |
ProteinVR | /pvr | /protein-vr | BSD3/Babylon.js | Visualize |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Durrant, J.D. Open-Source Browser-Based Tools for Structure-Based Computer-Aided Drug Discovery. Molecules 2022, 27, 4623. https://doi.org/10.3390/molecules27144623
Wang A, Durrant JD. Open-Source Browser-Based Tools for Structure-Based Computer-Aided Drug Discovery. Molecules. 2022; 27(14):4623. https://doi.org/10.3390/molecules27144623
Chicago/Turabian StyleWang, Ann, and Jacob D. Durrant. 2022. "Open-Source Browser-Based Tools for Structure-Based Computer-Aided Drug Discovery" Molecules 27, no. 14: 4623. https://doi.org/10.3390/molecules27144623
APA StyleWang, A., & Durrant, J. D. (2022). Open-Source Browser-Based Tools for Structure-Based Computer-Aided Drug Discovery. Molecules, 27(14), 4623. https://doi.org/10.3390/molecules27144623