Synergistic Flame Retardancy of Phosphatized Sesbania Gum/Ammonium Polyphosphate on Polylactic Acid
Abstract
:1. Introduction
2. Results
2.1. Structural Characterization of DESG
2.2. Flame Retardant Properties of DESG/APP on Polylactic Acid
2.3. Thermal Stabilities of Flame-Retardant PLA Composites
2.4. Dispersion of DESG/APP Flame-Retardant in PLA Matrix
2.5. Flame-Retardant Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation Procedures
3.2.1. Preparation of DESG
3.2.2. Blend Preparation of Flame-Retardant PLA Composites
3.3. Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gil-Castell, O.; Andres-Puche, R.; Dominguez, E.; Verdejo, E.; Monreal, L.; Ribes-Greus, A. Influence of substrate and temperature on the biodegradation of polyester-based materials: Polylactide and poly(3-hydroxybutyrateco-3-hydroxyhexanoate) as model cases. Polym. Degrad. Stab. 2020, 180, 109288. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Huang, Z.G.; Diao, X.Q.; Weng, Y.X.; Wang, Y.Z. Characterization of the effect of REC on the compatibility of PHBH and PLA. Polym. Test. 2015, 42, 17–25. [Google Scholar] [CrossRef]
- Corre, Y.M.; Bruzaud, S.; Audic, J.L.; Grohens, Y. Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polym. Test. 2012, 31, 226–235. [Google Scholar] [CrossRef]
- Leluk, K.; Frackowiak, S.; Ludwiczak, J.; Rydzkowski, T.; Thakur, V.K. The impact of filler geometry on polylactic acid-based sustainable polymer composites. Molecules 2021, 26, 149. [Google Scholar] [CrossRef]
- Zhang, J.; Lou, J.Z.; Ilias, S.; Krishnamachari, P.; Yan, J. Thermal properties of poly(lactic acid) fumed silica nanocomposites: Experiments and molecular dynamics simulations. Polymer 2008, 49, 2381–2386. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, D.; Zhang, H.; Su, G.; Li, G. Preparation and properties of poly(lactic acid)/sesbania gum/nano-TiO2 composites. Polym. Bull. 2018, 75, 623–635. [Google Scholar] [CrossRef]
- Wróblewska-Krepsztul, J.; Rydzkowski, T.; Michalska-Pożoga, I.; Thakur, V.K. Biopolymers for biomedical and pharmaceutical applications: Recent advances and overview of alginate electrospinning. Nanomaterials 2019, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Castro-Aguirre, E.; Iniguez-Franco, F.; Samsudin, H.; Fang, X. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–336. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Qin, S.; He, M.; Zhou, D.; Qin, Q.; Wang, H. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos. Part B Eng. 2020, 199, 108238. [Google Scholar] [CrossRef]
- Benvenuta-Tapia, J.J.; Vivaldo-Lima, E. Reduction of molar mass loss and enhancement of thermal and rheological properties of recycled poly(lactic acid) by using chain extenders obtained from RAFT chemistry. React. Funct. Polym. 2020, 153, 104628. [Google Scholar] [CrossRef]
- Chow, W.S.; Teoh, E.L.; Karger-Kocsis, J. Flame retarded poly(lactic acid): A review. Express Polym. Lett. 2018, 12, 396–417. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Yang, H.W.; Deri, F.; Ko, Y.G. Properties and medical applications of polylactic acid: A review. Express Polym. Lett. 2015, 9, 435–455. [Google Scholar] [CrossRef]
- Tawiah, B.; Zhou, Y.Y.; Yuen, R.K.K.; Sun, J.; Fei, B. Microporous boron based intumescent macrocycle flame retardant for poly (lactic acid) with excellent UV protection. Chem. Eng. J. 2020, 402, 126209. [Google Scholar] [CrossRef]
- Yang, W.; Tawiah, B.; Yu, C.; Qian, Y.F.; Wang, L.L.; Yuen, A.C.Y.; Zhu, S.E.; Hu, E.Z.; Chen, T.B.Y.; Yu, B. Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes. Compos. Part A Appl. Sci. 2018, 110, 227–236. [Google Scholar] [CrossRef]
- Jin, X.B.; Xiang, E.L.; Zhang, R.; Qin, D.C.; Jiang, M.L.; Jiang, Z.H. Halloysite nanotubes immobilized by chitosan/tannic acid complex as a green flame retardant for bamboo fiber/poly(lactic acid) composites. J. Appl. Polym. Sci. 2021, 138, 49621. [Google Scholar] [CrossRef]
- Mu, X.W.; Yuan, B.H.; Hu, W.Z.; Qiu, S.L.; Song, L.; Hu, Y. Flame retardant and anti-dripping properties of polylactic acid/poly(bis(phenoxy) phosphazene)/expandable graphite composite and its flame retardant mechanism. RSC Adv. 2015, 5, 76068–76078. [Google Scholar] [CrossRef]
- Yang, W.; Yang, W.J.; Tawiah, B.; Zhang, Y.; Wang, L.L.; Zhu, S.E.; Chen, T.B.Y.; Chun, A.; Yuen, Y.; Yu, B.; et al. Synthesis of anhydrous manganese hypophosphite microtubes for simultaneous flame retardant and mechanical enhancement on poly(lactic acid). Compos. Sci. Technol. 2018, 164, 44–50. [Google Scholar] [CrossRef]
- Tawiah, B.; Yu, B.; Yuen, R.K.K.; Hu, Y.; Wei, R.; Xin, J.H.; Fei, B. Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene Oxide/Poly(Lactic acid) nanocomposites. Carbon 2019, 150, 8–20. [Google Scholar] [CrossRef]
- Zhan, Y.; Wu, X.; Wang, S.; Yuan, B.; Fang, Q.; Shang, S.; Cao, C.; Chen, G. Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid. Polym. Degrad. Stab. 2021, 191, 109684. [Google Scholar] [CrossRef]
- Guo, Y.; Chang, C.C.; Cuiffo, M.A.; Xue, Y.; Zuo, X.; Pack, S.; Zhang, L.; He, S.; Weil, E.; Rafailovich, M.H. Engineering flame retardant biodegradable polymer nanocomposites and their application in 3D printing. Polym. Degrad. Stab. 2017, 137, 205–215. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Wang, S.; Yang, Y.; Li, H.; Sun, J.; Gu, X.; Zhang, S. Self-intumescent polyelectrolyte for flame retardant poly (lactic acid) nonwovens. J. Clean. Prod. 2021, 282, 124497. [Google Scholar] [CrossRef]
- Mauldin, T.C.; Zammarano, M.; Gilman, J.W.; Shields, J.R.; Boday, D.J. Synthesis and characterization of isosorbide-based polyphosphonates as biobased flame-retardants. Polym. Chem. 2014, 5, 5139–5146. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Song, L.; Xuan, S.; Xing, W.; Bai, Z.; Lu, H. Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites. Ind. Eng. Chem. Res. 2011, 50, 713–720. [Google Scholar] [CrossRef]
- Feng, C.; Liang, M.; Jiang, J.; Huang, J.; Liu, H. Flame retardant properties and mechanism of an efficient intumescent flame retardant PLA composites. Polym. Adv. Technol. 2016, 27, 693–700. [Google Scholar] [CrossRef]
- Feng, J.X.; Su, S.P.; Zhu, J. An intumescent flame retardant system using b-cyclodextrin as a carbon source in polylactic acid (PLA). Polym. Adv. Technol. 2011, 22, 1115–1122. [Google Scholar] [CrossRef]
- Zhu, T.; Guo, J.; Fei, B.; Feng, Z.Y.; Gu, X.Y.; Li, H.F.; Sun, J.; Zhang, S. Preparation of methacrylic acid modified microcrystalline cellulose and their applications in polylactic acid: Flame retardancy, mechanical properties, thermal stability and crystallization behavior. Cellulose 2020, 27, 2309–2323. [Google Scholar] [CrossRef]
- Cayla, A.; Rault, F.; Giraud, S.; Salaun, F.; Fierro, V.; Celzard, A. PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile. Polymers 2016, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.J.; Ren, Q.; Zheng, W.G.; Zhai, W.T. Improved flame-retardant properties of poly(lactic acid) foams using starch as a natural charring agent. Ind. Eng. Chem. Res. 2014, 53, 1422–1430. [Google Scholar] [CrossRef]
- Chen, C.; Gu, X.; Jin, X.; Sun, J.; Zhang, S. The effect of chitosan on the flammability and thermal stability ofpolylactic acid/ammonium polyphosphate biocomposites. Carbohydr. Polym. 2017, 157, 1586–1593. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, Y.; Zhai, Y.A.; Liu, F.Q.; Gao, G. Synthesis of sesbania gum supported dithiocarbamate chelating resin and studies on its adsorption performance for metal ions. Carbohydr. Polym. 2008, 73, 359–363. [Google Scholar] [CrossRef]
- Liu, B.Z.; Gao, X.Y.; Zhao, Y.F.; Dai, L.N.; Xie, Z.M.; Zhang, Z.J. 9,10-Dihydro-9-oxa-10-phosphaphenanthrene 10-oxide-based oligosiloxane as a promising damping additive for methyl vinyl silicone rubber (VMQ). J. Mater. Sci. 2017, 52, 8603–8617. [Google Scholar] [CrossRef]
- Kas’yan, L.I.; Tarabara, I.N.; Pal’chikov, V.A.; Krishchik, O.V.; Isaev, A.K.; Kas’yan, A.O. Acylation of aminopyridines and related compounds with endic anhydride. Russ. J. Org. Chem. 2005, 41, 1530–1538. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Jiang, Z.J.; Xie, Y.Y.; Zhang, X.Y.; Xu, W.J. Development of a DOPO-containing melamine epoxy hardeners and its thermal and flame-retardant properties of cured products. J. Appl. Polym. Sci. 2013, 127, 4352–4358. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhang, Q. Synthesis, characterization, and cure properties of phosphorus-containing epoxy resins for flame retardance. Eur. Polym. J. 2004, 40, 385–395. [Google Scholar] [CrossRef]
- Jin, X.D.; Cui, S.P.; Sun, S.B.; Sun, J.; Zhang, S. The preparation and characterization of polylactic acid composites with chitin-based intumescent flame retardants. Polymers 2021, 13, 3513. [Google Scholar] [CrossRef]
- Wang, B.; Qian, X.; Shi, Y.; Yu, B.; Hong, N.; Song, L.; Hu, Y. Cyclodextrin microencapsulated ammonium polyphosphate: Preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer. Compos. Part B Eng. 2015, 69, 22–30. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Semple, K.; Zhang, M.; Zhang, W.; Dai, C. Development of biodegradable flame-retardant bamboo charcoal composites, part I: Thermal and elemental analyses. Polymers 2020, 12, 2217. [Google Scholar] [CrossRef]
- Kucharczyk, P.; Zednik, J.; Sedlarik, V. Synthesis and characterization of star-shaped carboxyl group functionalized poly(lactic acid) through polycondensation reaction. Macromol. Res. 2017, 25, 180–189. [Google Scholar] [CrossRef]
- Bishai, M.; De, S.; Banerjee, R. Copolymerization of lactic acid for cost-effective PLA synthesis and studies on its improved characteristics. Food Sci. Biotechnol. 2013, 22, 73–77. [Google Scholar] [CrossRef]
- Jia, Y.W.; Zhao, X.; Fu, T.; Li, D.F.; Guo, Y.; Wang, X.L.; Wang, Y.Z. Synergy effect between quaternary phosphonium ionic liquid and ammonium polyphosphate toward flame retardant PLA with improved toughness. Compos. Part B Eng. 2020, 197, 108192. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of grapheme. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.N.; Chen, L.; Fu, T.; Zhao, H.B.; Guo, D.M.; Wang, X.L. New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters. Chem. Eng. J. 2018, 336, 622–632. [Google Scholar] [CrossRef]
Samples | PLA (wt%) | APP (wt%) | SG (wt%) | EDSG (wt%) | LOI (%) | UL-94 | Cotton Ignition |
---|---|---|---|---|---|---|---|
PLA | 100 | 0 | 0 | 0 | 19.5 | NR a | Yes |
S20 | 80 | 0 | 20 | 0 | 19.4 | NR | Yes |
D20 | 80 | 0 | 0 | 20 | 19.9 | NR | Yes |
A20 | 80 | 20 | 0 | 0 | 26.2 | V-2 | Yes |
A12S8 | 80 | 12 | 8 | 0 | 29.6 | V-2 | Yes |
A18D2 | 80 | 18 | 0 | 2 | 31.3 | V-1 | No |
A15D5 | 80 | 15 | 0 | 5 | 31.9 | V-0 | No |
A12D8 | 80 | 12 | 0 | 8 | 32.2 | V-0 | No |
A9D11 | 80 | 9 | 0 | 11 | 29.2 | V-0 | No |
A5D15 | 90 | 5 | 0 | 15 | 28.6 | V-1 | No |
A9D1 | 90 | 9 | 0 | 1 | 25.8 | V-1 | No |
A7D3 | 90 | 7 | 0 | 3 | 27.6 | V-0 | No |
A5D5 | 90 | 5 | 0 | 5 | 26.1 | V-0 | No |
A3D7 | 90 | 3 | 0 | 7 | 24.3 | V-2 | No |
Samples | Ti (°C) | Tmax (°C) | Char Yield (%) | |
---|---|---|---|---|
at 400 °C | at 600 °C | |||
PLA | 309.4 | 338.7 | 0.3 | 0.3 |
D20 | 282.5 | 319.2 | 4.2 | 4.1 |
A20 | 296.5 | 337.1 | 16.5 | 8.6 |
A12D8 | 273.0 | 343.6 | 32.1 | 16.8 |
Samples | Tensile Strength (MPa) | Young’s Modulus (GPa) | Elongation at Break (%) |
---|---|---|---|
PLA | 67.6 | 1.75 | 7.6 |
D20 | 52.3 | 1.35 | 6.2 |
A20 | 48.1 | 1.08 | 8.2 |
A12D8 | 63.4 | 1.63 | 7.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Liu, H.; Guan, J.; Yang, X.; Luo, B. Synergistic Flame Retardancy of Phosphatized Sesbania Gum/Ammonium Polyphosphate on Polylactic Acid. Molecules 2022, 27, 4748. https://doi.org/10.3390/molecules27154748
Zhang Q, Liu H, Guan J, Yang X, Luo B. Synergistic Flame Retardancy of Phosphatized Sesbania Gum/Ammonium Polyphosphate on Polylactic Acid. Molecules. 2022; 27(15):4748. https://doi.org/10.3390/molecules27154748
Chicago/Turabian StyleZhang, Qing, Huiyuan Liu, Junxia Guan, Xiaochun Yang, and Baojing Luo. 2022. "Synergistic Flame Retardancy of Phosphatized Sesbania Gum/Ammonium Polyphosphate on Polylactic Acid" Molecules 27, no. 15: 4748. https://doi.org/10.3390/molecules27154748
APA StyleZhang, Q., Liu, H., Guan, J., Yang, X., & Luo, B. (2022). Synergistic Flame Retardancy of Phosphatized Sesbania Gum/Ammonium Polyphosphate on Polylactic Acid. Molecules, 27(15), 4748. https://doi.org/10.3390/molecules27154748