Efficacy of Biologically Active Food Supplements for People with Atherosclerotic Vascular Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Research Design
2.2. Product-Manufacturing Technology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- WHO. Report on Non-Infectious Diseases Situation in the World—Executive Summary; World Health Organization: Geneva, Switzerland, 2011; pp. 14–21. [Google Scholar]
- Bokeria, L.A. Russia’s Health: Atlas, 8th ed.; Bakoulev Centre for Cardiovascular Surgery; Russia’s Academy of Sciences: Moscow, Russia, 2012; pp. 386–400. [Google Scholar]
- Aronov, D.M. Atherosclerosis: Treatment and Prevention—Monograph; Triada-X: Moscow, Russia, 2000; pp. 127–144. (In Russian) [Google Scholar]
- Karpov, R.C. Atherosclerosis, Pathogenesis, Clinical Findings, Functional Diagnostics and Treatment—Monograph; Karpov, R.C., Dudko, V.A., Eds.; STT: Tomsk, Russia, 1998; pp. 553–579. [Google Scholar]
- Kullo, I.J.; Ballantyne, C.M. Conditional risk factors for atherosclerosis. Mayo Clin. Proc. 2005, 80, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahat, R.; Singh, N.; Gupta, A.; Rathore, V. Oxidative DNA damage and carotid intima media thickness as predictors of cardiovascular disease in prediabetic subjects. J. Cardiovasc. Dev. Dis. 2018, 5, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayes, B.; Pastor, M.C.; Bonal, J.; Junca, J.; Hernandez, J.M. Homocycteine, C-reactive protein, lipid peroxidation and mortality in haemodialysis patients. Nephrol Dial Transpl. 2003, 18, 106–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mälstam, E.; Asaba, E.; Åkesson, E.; Guidetti, S.; Patomella, A.-H. ‘Weaving lifestyle habits’: Complex pathways to health for persons at risk for stroke. Scand. J. Occup. Ther. 2021, 29, 152–164. [Google Scholar] [CrossRef]
- Kumar, S.; Wagner, C.W.; Frayne, C.; Zhu, L.; Selim, M.; Feng, W.; Schlaug, G. Noninvasive brain stimulation may improve stroke-related dysphagia: A pilot study. Stroke 2011, 42, 1035–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, P.; Bahadoran, Z.; Azizi, F. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World J. Diabetes 2014, 5, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Tokhiriyon, B.; Vyalyh, E.; Pozniakovskii, V.; Andrievskikh, S. Innovative technology of natural raw materials processing and biologically active complexes with systemic effect development. Adv. Intell. Syst. Res. 2019, 167, 455–458. [Google Scholar]
- Tokhiriyon, B.; Poznyakovsky, V.M.; Andrievskikh, S.S. Industrialization issues in the production of specialized products for complex body metabolism support. Adv. Soc. Sci. Educ. Humanit. Res. 2019, 240, 115–118. [Google Scholar]
- Tokhiriyon, B.; Poznyakovsky, V.M.; Beliaev, N.M. Biologically active complex for functional support of connective tissue: Scientific substantiation, clinical evidence. Int. J. Pharm. Res. Allied Sci. 2019, 8, 115–122. [Google Scholar]
- Tokhiriyon, B.; Poznyakovsky, V.M.; Andrievskikh, S. Biologically active complex for multifactorial support of the central nervous system: New composition, efficiency. Carpathian J. Food Sci. Technol. 2020, 12, 52–60. [Google Scholar]
- Aquila, G.; Marracino, L.; Martino, V.; Calabria, D.; Campo, G.; Caliceti, C.; Rizzo, P. The Use of Nutraceuticals to Counteract Atherosclerosis: The Role of the Notch Pathway. Oxidative Med. Cell. Longev. 2019, 2019, 5470470. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Albert, C.M.; Gordon, D.; Copeland, T.; et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N. Engl. J. Med. 2019, 380, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Taotao, W.; Junnan, L.; Demei, Z.; Xiaomei, W.; Guangling, L.; Ruchao, M.; Gang, C.; Xin, L.; Xueya, G. The Relationship Between Nutrition and Atherosclerosis. Front. Bioeng. Biotechnol. 2021, 9, 269. [Google Scholar]
- Sviridenko, Y.Y.; Myagkonosov, D.S.; Abramov, D.V.; Ovchinnikova, E.G. Scientific and methodological approaches to the development of technology of protein hydrolysates for special nutrition, Part 2. Functional properties of protein hydrolysates depending on the specificity of proteolytic processes. Food Ind. 2017, 6, 50–53. [Google Scholar]
- Avstrievskikh, A.N.; Vekovtsev, A.A.; Poznyakovsky, V.M. Healthy Nutrition Products: New Technologies, Quality Assurance, Efficacy; Siberian University Publishing House: Novosibirsk, Russia, 2005; pp. 220–233. [Google Scholar]
- Chandrawati, R.; Van Koeverden, M.P.; Lomas, H.; Caruso, F. Multicompartment particle assemblies for bioinspired encapsulated reactions. J. Phys. Chem. 2011, 2, 2639–2649. [Google Scholar] [CrossRef]
- Bahgat, F.; Hoda, S.E.; Amira, A.; Amal, M.H.; Nayra, S.H.M. The application of multi-particulate microcapsule containing probiotic bacteria and inulin nanoparticles in enhancing the probiotic survivability in yoghurt. Biocatal. Agric. Biotechnol. 2019, 22, 101391. [Google Scholar]
- Salter-Venzon, D.; Kazlova, V.; Izzy Ford, S.; Intra, J.; Klosner, A.E.; Gellenbeck, K.W. Evidence for Decreased Interaction and Improved Carotenoid Bioavailability by Sequential Delivery of a Supplement. Food Sci. Nutr. 2017, 5, 424–433. [Google Scholar] [CrossRef]
- Coelho, M.C.; Pereira, R.N.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. The Use of Emergent Technologies to Extract Added Value Compounds from Grape By-Products. Trends Food Sci. Technol. 2020, 106, 182–197. [Google Scholar] [CrossRef]
- Vekovtsev, A.A.; Tokhiriyon, B.; Chelnakov, A.A.; Poznyakovskiy, V.M. Evidence for effectiveness and functional properties of specialized product in clinical. Hum. Sport. Med. 2017, 17, 94–101. [Google Scholar] [CrossRef]
- Goldberg, I. Functional Foods: Designer Foods, Pharmafoods, Nutraceuticals; Aspen Publication: Gaithersburg, MD, USA, 1999; pp. 470–498. [Google Scholar]
- Ugo, N.J.; Ade, A.R.; Joy, A.T. Nutrient Composition of Carica papaya Leaves Extracts. J. Food Nutr. Sci. Res. 2019, 2, 274–282. [Google Scholar]
- Bhinder, H.P.S.; Kamble, T. The study of carotid intima-media thickness in prediabetes and its correlation with cardiovascular risk factors. J. Datta Meghe Inst. Med. Sci. Univ. 2018, 13, 79–82. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Wall-Medrano, A.; Velderrain-Rodríguez, G.R.; Chen, C.Y.O.; Salazar-López, N.J.; Robles-Sánchez, M.; González-Aguilar, G.A. Gastrointestinal Interactions, Absorption, Splanchnic Metabolism and Pharmacokinetics of Orally Ingested Phenolic Compounds. Food Funct. 2017, 8, 15–38. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, S.; Cunningham, M.W.; Pabbidi, M.R.; Wang, S.; Booz, G.W.; Fan, F. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur. J. Pharmacol. 2018, 833, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yang, Y.; Sun, L.; Fang, Z.; Chen, L.; Zhao, P.; Wang, Z.; Guo, Y. Effect of young apple (Malus domestica Borkh. cv. Red Fuji) polyphenols on alleviating insulin resistance. Food Biosci. 2020, 36, 100637. [Google Scholar] [CrossRef]
- Thompson, D.R.; Chair, S.Y.; Chan, S.W.; Astin, F.; Davidson, P.M.; Ski, C.F. Motivational interviewing: A useful approach to improving cardiovascular health? J. Clin. Nurs. 2011, 20, 1236. [Google Scholar] [CrossRef]
- Chow, C.K.; Ariyarathna, N.; Islam, S.M.; Thiagalingam, A.; Redfern, J. Health in Cardiovascular Health Care. Heart Lung Circ. 2016, 25, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Surtees, P.G.; Wainwright, N.W.; Luben, R.L.; Wareham, N.J.; Bingham, S.A.; Khaw, K.-T. Adaptation to social adversity is associated with stroke incidence: Evidence from the EPIC-Norfolk prospective cohort study. Stroke 2007, 38, 1447–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.A.; Moore-Langston, S.; Chakraborty, T.; Rafols, J.A.; Conti, A.C.; Ding, Y. Hyperglycemia in stroke and possible treatments. Neurol. Res. 2013, 35, 479–491. [Google Scholar] [CrossRef]
- Park, S.; Kang, S.; Kim, D.S.; Shin, B.K.; Moon, N.R.; Daily, J.W., III. Ebselen pretreatment attenuates ischemia/reperfusion injury and prevents hyperglycemia by improving hepatic insulin signaling and beta-cell survival in gerbils. Free Radic. Res. 2014, 48, 864–874. [Google Scholar] [CrossRef]
- Adachi, H.; Hirai, Y.; Fujiura, Y.; Matsuoka, H.; Satoh, A.; Imaizumi, T. Plasma homocysteine levels and atherosclerosis in Japan: Epidemiological study by use of carotid ultrasonography. Stroke 2002, 33, 2177–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vellipuram, A.R.; Rodriguez, G.; Rawla, P.; Maud, A.; Cruz-Flores, S.; Khatri, R. Lifestyle Interventions to Prevent Cardiovascular Events After Stroke and Transient Ischemic Attack. Curr. Cardiol. Rep. 2019, 21, 44. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Content, mg (1 Capsule Weight—750 mg) | The Recommended Daily Intake, mg |
---|---|---|
Magnesium oxide Magnesium | 133 75 | 420 |
Potassium orotate Potassium | 100 20 | 3500 |
Potassium chloride Potassium | 80 42 | 3500 |
Taurine | 80 | 1250 |
Magnesium lactate Magnesium | 48.8 5 | 420 |
Soy isoflavones extract “Solgen” Soy isoflavones | 25 10 | 50 |
L-Carnitine | 15 | 1000 |
Vitamin C (ascorbic acid) | 14 | 100 |
Lipoic acid | 6.0 | 30 |
Vitamin B3 (nicotinic acid) | 4.0 | 20 |
Coenzyme Q10 | 3.0 | 200 |
Vitamin E (tocopherol acetate) | 2.0 | 15 |
Vitamin B5 (calcium pantothenate) | 1.0 | 5 |
Vitamin B6 (pyrodixin hydrochloride) | 0.4 | 2 |
Vitamin B1 (thiamine mononitrate) | 0.3 | 1.5 |
Chromium picolinate Chromium | 0.08 0.01 | 0.4 |
Vitamin B9 (folic acid) | 0.04 | 0.4 |
Vitamin B12 (cyanocobalamin) | 0.0006 | 0.3 |
Indicators | Content, mg (1 Capsule Weight—750 mg) |
---|---|
Vitamin E | 2.0 (1.8–2.3) |
Vitamin B1 | 0.3 (0.27–0.35) |
Vitamin B3 | 4.0 (3.6–4.6) |
Vitamin B5 | 1.0 (0.9–1.15) |
Vitamin B6 | 0.4 (0.36–0.46) |
Vitamin B9 | 0.04 (0.03–0.05) |
Vitamin B12, mcg | 0.6 (0.54–0.7) |
Vitamin C, minimum | 14.0 |
Lipoic acid | 6.0 (5.4–7.0) |
Coenzyme Q10 | 3.0 (2.7–3.5) |
L-Carnitine | 15 (13.5–17.3) |
Taurine | 80 (72–92) |
Magnesium | 80 (72–92) |
Potassium | 185 (157.5–212.8) |
Chromium, minimum | 0.01 |
Soy isoflavones, minimum | 10.0 |
Severity II III IV | Main Group (n = 20) | Control Group (n = 15) | Significance Level | |||
---|---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | Before Treatment | After Treatment | |
I (minor) II (moderate) III (major) IV (extreme) | 4 | 7 | 5 | 6 | 0.31 | 0.52 |
11 | 10 | 6 | 6 | 0.07 | 0.13 | |
5 | 3 | 4 | 3 | 0.60 | 0.51 | |
0 | 0 | 0 | 0 | - | - |
Indicators | Main Group (n = 20) | Control Group (n = 15) | Significance Level | |||
---|---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | Before Treatment | After Treatment | |
Protein, g/L | 72.63 ± 2.81 | 71.85 ± 1.95 | 72.34 ± 4.25 | 73.11 ± 13.21 | 0.54 | 0.52 |
Glucose, µmol/L | 5.21 ± 0.23 | 4.79 ± 0.75 | 5.16 ± 0.79 | 5.11 ± 0.94 | 0.34 | 0.06 |
AST, u/L | 35.53 ± 2.18 | 31.42 ± 1.56 | 36.60 ± 2.93 | 35.12 ± 2.14 | 0.64 | 0.37 |
ALT, u/L | 29.33 ± 2.54 | 26.49 ± 1.58 | 28.25 ± 1.91 | 28.24 ± 2.07 | 0.63 | 0.22 |
Bilirubin total, µmol/L | 10.61 ± 1.65 | 10.50 ± 1.69 | 10.95 ± 2.05 | 10.41 ± 1.54 | 0.54 | 0.56 |
Thymol test, u. | 1.92 ± 0.32 | 1.58 ± 0.41 | 2.06 ± 0.38 | 2.00 ± 0.59 | 0.45 | 0.29 |
CRP | 4.00 ± 0.50 | 2.7 ± 0.37 | 4.5 ± 0.48 | 3.9 ± 0.41 | 0.65 | 0.31 |
Indicators | Main Group (n = 20) | Control Group (n = 15) | Significance Level | |||
---|---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | Before Treatment | After Treatment | |
Total fibrinogen, g/L | 3.9 ± 0.85 | 3.00 ± 0.64 | 3.22 ± 0.64 | 3.16 ± 0.85 | 0.55 | 0.19 |
INR, u | 0.88 ± 0.09 | 0.80 ± 0.06 | 0.89 ± 0.04 | 0.87 ± 0.05 | 0.54 | 0.36 |
SFMC, g/L | 3.56 ± 1.04 | 3.34 ± 0.68 | 3.54 ± 1.09 | 3.46 ± 1.05 | 0.51 | 0.22 |
Indicators | Main Group (n = 20) | Control Group (n = 15) | Significance Level | |||
---|---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | Before Treatment | After Treatment | |
Total cholesterol | 8.2 ± 1.5 | 7.5 ± 1.2 * | 7.9 ± 1.3 | 7.7 ± 1.4 | 0.25 | 0.27 |
VLDL-cholesterol | 2.53 ± 0.41 | 1.75 ± 0.21 * | 2.56 ± 0.28 | 2.34 ± 0.31 | 0.22 | 0.036 |
LDL-cholesterol | 3.16 ± 0.66 | 3.02 ± 0.58 * | 3.8 ± 0.78 | 3.14 ± 0.69 | 0.45 | 0.08 |
HDL-cholesterol | 1.11 ± 0.10 | 1.31 ± 0.08 * | 1.14 ± 0.22 | 1.19 ± 0.16 | 0.46 | 0.044 |
Triglycerides | 2.42 ± 0.44 | 1.88 ± 0.35 * | 2.39 ± 0.48 | 2.20 ± 0.49 | 0.35 | 0.047 |
Atherogenic coefficient ** | 7.39 ± 1.09 | 5.72 ± 0.84 * | 6.92 ± 0.75 | 6.47 ± 0.52 | 0.18 | 0.045 |
Homocysteine, μmol/L | 16.4 ± 2.5 | 15.9 ± 2.1 | 16.1 ± 2.9 | 16.0 ± 2.3 | 0.41 | 0.43 |
Groups | Before Treatment | After Treatment | Significance Level |
---|---|---|---|
Main group, n = 15 | 2.0 ± 0.4 | 1.5 ± 0.2 * | 0.041 |
Control group, n =10 | 2.1 ± 0.3 | 1.9 ± 0.4 * | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pleshkova, N.; Tokhiriyon, B.; Vekovtsev, A.; Poznyakovsky, V.M.; Lapina, V.; Takaeva, M.A.; Sorokopudov, V.N.; Karanina, E.V. Efficacy of Biologically Active Food Supplements for People with Atherosclerotic Vascular Changes. Molecules 2022, 27, 4812. https://doi.org/10.3390/molecules27154812
Pleshkova N, Tokhiriyon B, Vekovtsev A, Poznyakovsky VM, Lapina V, Takaeva MA, Sorokopudov VN, Karanina EV. Efficacy of Biologically Active Food Supplements for People with Atherosclerotic Vascular Changes. Molecules. 2022; 27(15):4812. https://doi.org/10.3390/molecules27154812
Chicago/Turabian StylePleshkova, Natalia, Boisjoni Tokhiriyon, Andrei Vekovtsev, Valeriy Mikhailovich Poznyakovsky, Valentina Lapina, Madina Atlaevna Takaeva, Vladimir Nikolaevich Sorokopudov, and Elena Valeryevna Karanina. 2022. "Efficacy of Biologically Active Food Supplements for People with Atherosclerotic Vascular Changes" Molecules 27, no. 15: 4812. https://doi.org/10.3390/molecules27154812
APA StylePleshkova, N., Tokhiriyon, B., Vekovtsev, A., Poznyakovsky, V. M., Lapina, V., Takaeva, M. A., Sorokopudov, V. N., & Karanina, E. V. (2022). Efficacy of Biologically Active Food Supplements for People with Atherosclerotic Vascular Changes. Molecules, 27(15), 4812. https://doi.org/10.3390/molecules27154812