Sensory-Guided Identification and Characterization of Kokumi-Tasting Compounds in Green Tea (Camellia sinensis L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Separation of Peptides Fractions and Selection of Kokumi-Tasting Fractions
2.2. Analysis of Kokumi Peptides by UHPLC-MS
2.3. The Chemicals Contributing to the Kokumi-Taste of Tea Infusions
2.4. Verification of the Effects of Identified Kokumi-Tasting Compounds
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Ultrafiltration of Tea Infusions and Fraction Separation
3.3. Kokumi Taste Fractions Identified by Taste Dilution Analysis (TDA)
3.4. Analysis of Peptides by UHPLC-MS/MS
3.5. Spectrophotometric Analyses of Total Proteins, Amino Acids, Water-Soluble Sugars, and Polyphenols
3.6. HPLC Analysis of Catechin Compounds and Amino Acids
3.7. Sensory Evaluation
3.7.1. Evaluation of Kokumi Intensity
3.7.2. Quantitative Descriptive Analysis (QDA) of Reconstituted Samples
3.8. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ohsu, T.; Amino, Y.; Nagasaki, H.; Yamanaka, T.; Takeshita, S.; Hatanaka, T.; Maruyama, Y.; Miyamura, N.; Eto, Y. Involvement of the calcium-sensing receptor in human taste perception. J. Biol. Chem. 2010, 285, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.J.; Schieber, A.; Ganzle, M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations—A review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef]
- Miyamura, N.; Jo, S.; Kuroda, M.; Kouda, T. Flavour improvement of reduced-fat peanut butter by addition of a kokumi peptide, γ-glutamyl-valyl-glycine. Flavour 2015, 4, 16. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.; Lametsch, R. Current progress in kokumi-active peptides, evaluation and preparation methods: A review. Crit. Rev. Food Sci. Nutr. 2020, 62, 1230–1241. [Google Scholar] [CrossRef]
- Das, P.R.; Kim, Y.; Hong, S.-J.; Eun, J.-B. Profiling of volatile and non-phenolic metabolites—Amino acids, organic acids, and sugars of green tea extracts obtained by different extraction techniques. Food Chem. 2019, 296, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Hillmann, H.; Hofmann, T. Quantitation of key tastants and re-engineering the taste of Parmesan cheese. J. Agric. Food Chem. 2016, 64, 1794–1805. [Google Scholar] [CrossRef]
- Toelstede, S.; Hofmann, T. Kokumi-active glutamyl peptides in cheeses and their biogeneration by Penicillium roquefortii. J. Agric. Food Chem. 2009, 57, 3738–3748. [Google Scholar] [CrossRef]
- Miyamura, N.; Kuroda, M.; Kato, Y.; Yamazaki, J.; Mizukoshi, T.; Miyano, H.; Eto, Y. Determination and quantification of a kokumi peptide, γ-glutamyl-valyl-glycine, in fermented shrimp paste condiments. Food Sci. Technol. Res. 2014, 20, 699–703. [Google Scholar] [CrossRef]
- Kuroda, M.; Kato, Y.; Yamazaki, J.; Kageyama, N.; Mizukoshi, T.; Miyano, H.; Eto, Y. Determination of gamma-glutamyl-valyl-glycine in raw scallop and processed scallop products using high pressure liquid chromatography-tandem mass spectrometry. Food Chem. 2012, 134, 1640–1644. [Google Scholar] [CrossRef]
- Kuroda, M.; Kato, Y.; Yamazaki, J.; Kai, Y.; Mizukoshi, T.; Miyano, H.; Eto, Y. Determination and quantification of the kokumi peptide, γ-glutamyl-valyl-glycine, in commercial soy sauces. Food Chem. 2013, 141, 823–828. [Google Scholar] [CrossRef]
- Frank, O.; Ottinger, H.; Hofmann, T. Characterization of an intense bitter-tasting 1H,4H-quinolizinium-7-olate by application of the taste dilution analysis, a novel bioassay for the screening and identification of taste-active compounds in foods. J. Agric. Food Chem. 2001, 49, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Kusnadi, J.; Hsu, J.-L.; Doerksen, R.J.; Huang, T.-C. Identification of a novel umami peptide in tempeh (Indonesian fermented soybean) and its binding mechanism to the umami receptor T1R. Food Chem. 2020, 333, 127411. [Google Scholar] [CrossRef]
- Yang, Q.; Mei, X.; Wang, Z.; Chen, X.; Zhang, R.; Chen, Q.; Kan, J. Comprehensive identification of non-volatile bitter-tasting compounds in Zanthoxylum bungeanum Maxim. by untargeted metabolomics combined with sensory-guided fractionation technique. Food Chem. 2010, 347, 129085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-X.; Wang, Z.-Z.; Du, Z.-Z. Sensory-guided isolation and identification of new sweet-tasting dammarane-type saponins from Jiaogulan (Gynostemma pentaphyllum) herbal tea. Food Chem. 2022, 388, 132981. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Y.; Ahmed, Z.; Geng, W.; Tang, W.; Liu, Y.; Jin, H.; Jiang, F.; Wang, J.; Wang, Y. Purification and identification of kokumi-enhancing peptides from chicken protein hydrolysate. Int. J. Food Sci. Technol. 2019, 54, 2151–2158. [Google Scholar] [CrossRef]
- Schindler, A.; Dunkel, A.; Stähler, F.; Backes, M.; Ley, J.; Meyerhof, W.; Hofmann, T. Discovery of salt taste enhancing arginyl dipeptides in protein digests and fermented fish sauces by means of a sensomics approach. J. Agric. Food Chem. 2011, 59, 12578–12588. [Google Scholar] [CrossRef]
- Feng, T.; Wu, Y.; Zhang, Z.; Song, S.; Zhuang, H.; Xu, Z.; Yao, L.; Sun, M. Purification, identification, and sensory evaluation of kokumi peptides from Agaricus bisporus mushroom. Foods 2019, 8, 43. [Google Scholar] [CrossRef]
- Mittermeier, V.K.; Pauly, K.; Dunkel, A.; Hofmann, T. Ion-mobility-based liquid chromatography-mass spectrometry quantitation of taste-enhancing octadecadien-12-ynoic acids in mushrooms. J. Agric. Food Chem. 2020, 68, 5741–5751. [Google Scholar] [CrossRef]
- Toelstede, S.; Dunkel, A.; Hofmann, T. A series of kokumi peptides impart the long-lasting mouthfulness of matured Gouda cheese. J. Agric. Food Chem. 2009, 57, 1440–1448. [Google Scholar] [CrossRef]
- Li, C.-F.; Ma, J.-Q.; Huang, D.-J.; Ma, C.-L.; Jin, J.-Q.; Yao, M.-Z.; Chen, L. Comprehensive dissection of metabolic changes in albino and green tea cultivars. J. Agric. Food Chem. 2018, 66, 2040–2048. [Google Scholar] [CrossRef]
- Scharbert, S.; Holzmann, N.; Hofmann, T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 2004, 52, 3498–3508. [Google Scholar] [CrossRef]
- Carr, B.T.; Dzuroska, J.; Taylor, R.O.; Lanza, K.; Pansini, C. Multidimensional Alignment (MDA): A simple numerical tool for assessing the degree of association between products and attributes on perceptual maps. In Proceedings of the 8th Rose-Marie Pangborn Sensory Science Symposium, Florence, Italy, 26–30 July 2009. [Google Scholar]
- Ho, T.V.; Suzuki, H. Increase of “Umami” and “Kokumi” compounds in miso fermented soybeans by the addition of bacterial γ-glutamyltranspeptidase. Int. J. Food Stud. 2013, 2, 39–47. [Google Scholar] [CrossRef]
- Hua, J.; Xu, Q.; Yuan, H.; Wang, J.; Wu, Z.; Li, X.; Jiang, Y. Effects of novel fermentation method on the biochemical components change and quality formation of Congou black tea. J. Food Compos. Anal. 2021, 96, 103751. [Google Scholar] [CrossRef]
- Wu, N.; Gu, S.; Tao, N.; Wang, X. Research progress in interaction between umami substances. Sci. Technol. Food Ind. 2014, 35, 389–392+400. [Google Scholar] [CrossRef]
- Kawai, M.; Okiyama, A.; Ueda, Y. Taste enhancements between various amino acids and IMP. Chem. Senses 2002, 27, 739–745. [Google Scholar] [CrossRef]
- Shah, A.K.M.A.; Ogasawara, M.; Egi, M.; Kurihara, H.; Takahashi, K. Identification and sensory evaluation of flavour enhancers in Japanese traditional dried herring (Clupea pallasii) fillet. Food Chem. 2010, 122, 249–253. [Google Scholar] [CrossRef]
- Zhong, L. The Physical and Chemical Analysis of Tea Quality; Shangh Science and Technology Press: Shanghai, China, 1989; pp. 449–451. [Google Scholar]
- Qin, A.X.; Ji, S.; Gao, Z.; He, B.B.; Kang, X.H.; Jia, Y.N.; Chen, C.; Cui, T. Determination of oil-soluble tea polyphenols in oil by solid phase extraction and folin-ciocalteu colorimetry. J. Food Saf. Qual. 2014, 4, 1185–1190. [Google Scholar] [CrossRef]
- Li, C.; Guo, H.; Zong, B.; He, P.; Fan, F.; Gong, S. Rapid and non-destructive discrimination of special-grade flat green tea using Near-infrared spectroscopy. Spectrochim. Acta Part A 2019, 206, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Singldinger, B.; Dunkel, A.; Bahmann, D.; Bahmann, C.; Kadow, D.; Bisping, B.; Hofmann, T. New taste-active 3-(O-β-d-glucosyl)-2-oxoindole-3-acetic acids and diarylheptanoids in Cimiciato-infected hazelnuts. J. Agric. Food Chem. 2018, 66, 4660–4673. [Google Scholar] [CrossRef]
- Dunkel, A.; Koster, J.; Hofmann, T. Molecular and sensory characterization of γ-glutamyl peptides as key contributors to the kokumi taste of edible beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2007, 55, 6712–6719. [Google Scholar] [CrossRef] [PubMed]
Fraction | Taste Profile | TD-Factor |
---|---|---|
ultrafiltration fraction (<3 kDa) | umami, mellow and thick (kokumi), fresh, slightly astringent | 9 |
ultrafiltration fraction (>3 kDa) | astringent, coarse, slight bitter, slightly burnt, slightly steamed and overcooked | 2 |
F-I | astringent, slightly umami | 6 |
F-II | mellow and thick (kokumi) | 8 |
F-III | bitter, plain | 2 |
HK-1 | HK-2 | HK-3 | LK-1 | LK-2 | LK-3 | |
---|---|---|---|---|---|---|
GSH (μg/mL) | 9.40 ± 0.04 b | 8.50 ± 0.08 c | 9.80 ± 0.02 a | 6.79 ± 0.02 e | 6.96 ± 0.21 d | 5.98 ± 0.02 f |
γ-Glu-Gln (μg/mL) | 12.50 ± 0.06 a | 10.60 ± 0.01 b | 9.45 ± 0.13 c | 5.49 ± 0. 02 f | 7.34 ± 0.22 d | 6.83 ± 0.07 e |
Total peptides (μg/mL) | 21.90 ± 0.10 a | 19.10 ± 0.09 b | 19.25 ± 0.15 b | 12.28 ± 0.04 e | 14.30 ± 0.43 c | 12.81 ± 0.09 d |
Kokumi intensity | 4.56 ± 0.42 a | 4.13 ± 0.44 b | 4.06 ± 0.82 b | 0.63 ± 0.52 d | 0.94 ± 0.56 cd | 1.13 ± 0.35 c |
Variable | PCA Loading | Cos (∠Kokumi, Substance) | Taste Profile (40 μg/mL) | Pearson Correlation between kokumi and Substance | ||
---|---|---|---|---|---|---|
F1 | F2 | r | p | |||
His | 0.933 | 0.317 | 0.925 | bitter | 0.670 | 0.146 |
Phe | 0.913 | −0.309 | 0.965 | bitter | 0.699 | 0.123 |
Arg | 0.901 | 0.192 | 0.963 | bitter | 0.625 | 0.184 |
γ-Glu-Gln | 0.896 | −0.250 | 0.978 | kokumi | 0.941 | 0.005 |
Gly | 0.882 | −0.321 | 0.959 | sweet | 0.555 | 0.253 |
Total peptides | 0.870 | −0.158 | 0.993 | / | 0.975 | 0.001 |
Asn | 0.821 | 0.264 | 0.931 | bitter | 0.399 | 0.433 |
Kokumi intensity | 0.814 | −0.050 | 1.000 | / | 1.000 | / |
Theanine | 0.798 | 0.410 | 0.860 | umami | 0.443 | 0.379 |
Total proteins | 0.737 | −0.338 | 0.933 | / | 0.680 | 0.137 |
GSH | 0.727 | 0.016 | 0.997 | kokumi | 0.921 | 0.009 |
Total amino acids | 0.708 | 0.494 | 0.783 | / | 0.384 | 0.452 |
GC | 0.673 | −0.434 | 0.872 | astringent | 0.228 | 0.664 |
Val | 0.658 | −0.496 | 0.834 | bitter | 0.384 | 0.452 |
Ser | 0.644 | 0.740 | 0.609 | / | 0.421 | 0.406 |
Met | 0.632 | −0.664 | 0.733 | bitter | 0.335 | 0.516 |
TB | 0.622 | −0.512 | 0.810 | astringent | 0.562 | 0.246 |
CG | 0.622 | −0.679 | 0.720 | astringent | 0.690 | 0.130 |
Leu | 0.612 | −0.610 | 0.750 | bitter | 0.428 | 0.397 |
CAF | 0.512 | −0.447 | 0.793 | bitter | 0.259 | 0.620 |
GABA | 0.471 | 0.661 | 0.529 | / | 0.421 | 0.406 |
EC | 0.447 | 0.001 | 0.998 | astringent | 0.315 | 0.543 |
EGC | 0.437 | 0.140 | 0.932 | astringent | 0.756 | 0.082 |
Gln | 0.293 | 0.913 | 0.246 | / | 0.066 | 0.901 |
Thr | 0.097 | 0.629 | 0.091 | / | −0.053 | 0.921 |
C | 0.090 | 0.616 | 0.083 | / | −0.286 | 0.583 |
Lys | 0.004 | −0.426 | 0.070 | / | −0.116 | 0.827 |
Glu | −0.045 | 0.992 | −0.107 | / | −0.098 | 0.854 |
Asp | −0.057 | 0.974 | −0.120 | / | −0.145 | 0.784 |
Ala | −0.097 | 0.400 | −0.296 | / | −0.420 | 0.407 |
GCG | −0.174 | −0.197 | −0.613 | / | −0.221 | 0.674 |
Total water-soluble sugars | −0.222 | 0.699 | −0.361 | / | −0.064 | 0.904 |
Ile | −0.346 | −0.183 | −0.854 | / | −0.546 | 0.262 |
Total polyphenols | −0.415 | −0.506 | −0.585 | / | −0.281 | 0.590 |
Trp | −0.426 | −0.472 | −0.623 | / | −0.492 | 0.322 |
Tyr | −0.441 | −0.423 | −0.678 | / | −0.488 | 0.326 |
EGCG | −0.458 | −0.862 | −0.414 | / | −0.225 | 0.668 |
GA | −0.467 | −0.839 | −0.432 | / | −0.450 | 0.371 |
ECG | −0.773 | −0.106 | −0.981 | / | −0.875 | 0.022 |
TP | −0.872 | 0.320 | −0.958 | / | −0.611 | 0.197 |
Sample Name | Tea-Water Ratio (w/v) | Concentration in the Reconstituted Samples |
---|---|---|
Control sample | 1:150 | 0 |
Group-GSH | 1:150 | GSH, 40 μg/mL |
Group-theanine | 1:150 | Theanine, 80 μg/mL |
Group-mix | 1:150 | GSH, 40 μg/mL; Theanine, 80 μg/mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Cao, Y.; Pan, Y.; Mei, S.; Zhang, G.; Chu, Q.; Chen, P. Sensory-Guided Identification and Characterization of Kokumi-Tasting Compounds in Green Tea (Camellia sinensis L.). Molecules 2022, 27, 5677. https://doi.org/10.3390/molecules27175677
Lu J, Cao Y, Pan Y, Mei S, Zhang G, Chu Q, Chen P. Sensory-Guided Identification and Characterization of Kokumi-Tasting Compounds in Green Tea (Camellia sinensis L.). Molecules. 2022; 27(17):5677. https://doi.org/10.3390/molecules27175677
Chicago/Turabian StyleLu, Jiachun, Yanyan Cao, Yani Pan, Sifan Mei, Gang Zhang, Qiang Chu, and Ping Chen. 2022. "Sensory-Guided Identification and Characterization of Kokumi-Tasting Compounds in Green Tea (Camellia sinensis L.)" Molecules 27, no. 17: 5677. https://doi.org/10.3390/molecules27175677
APA StyleLu, J., Cao, Y., Pan, Y., Mei, S., Zhang, G., Chu, Q., & Chen, P. (2022). Sensory-Guided Identification and Characterization of Kokumi-Tasting Compounds in Green Tea (Camellia sinensis L.). Molecules, 27(17), 5677. https://doi.org/10.3390/molecules27175677