Ortho-Phosphinoarenesulfonamide-Mediated Staudinger Reduction of Aryl and Alkyl Azides
Abstract
:1. Introduction
2. Results and Discussions
3. Materials and Methods
3.1. Reagents and General Methods
3.2. Synthetic Procedures
3.2.1. Synthesis of 2-(Diarylphosphaneyl)-5-methylbenzenesulfonamide
2-(Diphenylphosphaneyl)-5-methylbenzenesulfonamide (2b) [32]
2-(Bis(4-methoxyphenyl)phosphaneyl)-5-methylbenzenesulfonamide (2c)
3.2.2. Synthesis of Organic Azides
Perfluorophenyl 4-azidobenzoate (1j)
2-Azido-N-(4-bromobenzyl)acetamide (1s)
(1S,2R,4S,5R)-2-((R)-Azido(quinolin-4-yl)methyl)-5-vinylquinuclidine (1w)
3.2.3. Synthesis of Amines
Perfluorophenyl 4-aminobenzoate (3j)
2-Amino-N-(4-bromobenzyl)acetamide (3s)
3.3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Staudinger, H.; Meyer, J. Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. Helv. Chim. Acta 1919, 2, 635–646. [Google Scholar] [CrossRef]
- Gololobov, Y.G.; Kasukhin, L.F. Recent Advances in the Staudinger Reaction. Tetrahedron 1992, 48, 1353–1406. [Google Scholar] [CrossRef]
- Gololobov, Y.G.; Zhmurova, I.N.; Kasukhin, L.F. Sixty Years of Staudinger Reaction. Tetrahedron 1981, 37, 437–472. [Google Scholar] [CrossRef]
- Saxon, E.; Bertozzi, C.R. Cell Surface Engineering by a Modified Staudinger Reaction. Science 2000, 287, 2007–2010. [Google Scholar] [CrossRef]
- Kiick, K.L.; Saxon, E.; Tirrell, D.A.; Bertozzi, C.R. Incorporation of Azides into Recombinant Proteins for Chemoselective Modification by The Staudinger Ligation. Proc. Natl. Acad. Sci. USA 2002, 99, 19–24. [Google Scholar] [CrossRef]
- Heiss, T.K.; Dorn, R.S.; Prescher, J.A. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem. Rev. 2021, 121, 6802–6849. [Google Scholar] [CrossRef]
- Bednarek, C.; Wehl, I.; Jung, N.; Schepers, U.; Bräse, S. The Staudinger Ligation. Chem. Rev. 2020, 120, 4301–4354. [Google Scholar] [CrossRef]
- Darrah, K.; Wesalo, J.; Lukasak, B.; Tsang, M.; Chen, J.K.; Deiters, A. Small Molecule Control of Morpholino Antisense Oligonucleotide Function through Staudinger Reduction. J. Am. Chem. Soc. 2021, 143, 18665–18671. [Google Scholar] [CrossRef]
- Wesalo, J.S.; Luo, J.; Morihiro, K.; Liu, J.; Deiters, A. Phosphine-Activated Lysine Analogues for Fast Chemical Control of Protein Subcellular Localization and Protein SUMOylation. ChemBioChem 2020, 21, 141–148. [Google Scholar] [CrossRef]
- Lukasak, B.; Morihiro, K.; Deiters, A. Aryl Azides as Phosphine-Activated Switches for Small Molecule Function. Sci. Rep. 2019, 9, 1470. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Liu, Q.; Morihiro, K.; Deiters, A. Small-Molecule Control of Protein Function through Staudinger Reduction. Nat. Chem. 2016, 8, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic Azides: An Exploding Diversity of a Unique Class of Compounds. Angew. Chem. Int. Ed. 2005, 44, 5188–5240. [Google Scholar] [CrossRef]
- Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis; Elsevier: Dorecht, Netherlands, 2005. [Google Scholar]
- Li, J.J. Name Reactions: A Collection of Detailed Reaction Mechanisms, 2nd ed.; Springer: Heidelberg, Germany, 2003. [Google Scholar]
- Meguro, T.; Terashima, N.; Ito, H.; Koike, Y.; Kii, I.; Yoshida, S.; Hosoya, T. Staudinger Reaction Using 2,6-Dichlorophenyl Azide Derivatives for Robust aza-Ylide Formation Applicable to Bioconjugation in Living Cells. Chem. Commun. 2018, 54, 7904–7907. [Google Scholar] [CrossRef] [PubMed]
- Sundhoro, M.; Jeon, S.; Park, J.; Ramström, O.; Yan, M. Perfluoroaryl Azide Staudinger Reaction: A Fast and Bioorthogonal Reaction. Angew. Chem. Int. Ed. 2017, 56, 12117–12121. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.D.; Fang, C.H.; Tian, G.X.; Chen, Y.; Dou, Y.H.; Wu, X.H. Reduction of 4-Azidonaphthalimide with Different Phosphine Ligands and Exploration of Their Spectroscopic Properties. J. Mol. Struct. 2015, 1102, 197–204. [Google Scholar] [CrossRef]
- Meguro, T.; Yoshida, S.; Hosoya, T. Aromatic Azido-selective Reduction via the Staudinger Reaction Using Tri-n-butylphosphonium Tetrafluoroborate with Triethylamine. Chem. Lett. 2017, 46, 473–476. [Google Scholar] [CrossRef]
- Leffler, J.E.; Temple, R.D. Staudinger Reaction Between Triarylphosphines and Azides. A Study of the Mechanism. J. Am. Chem. Soc. 1967, 89, 5235–5246. [Google Scholar] [CrossRef]
- Saneyoshi, H.; Ochikubo, T.; Mashimo, T.; Hatano, K.; Ito, Y.; Abe, H. Triphenylphosphinecarboxamide: An Effective Reagent for the Reduction of Azides and its Application to Nucleic Acid Detection. Org. Lett. 2014, 16, 30–33. [Google Scholar] [CrossRef]
- Luo, W.J.; Wang, Z.G.; Cao, X.X.; Liang, D.C.; Wei, M.J.; Yin, K.S.; Li, L. Construction of Benzo-1,2,3-thiazaphosphole Heterocycles by Annulations of ortho-Phosphinoarenesulfonyl Fluorides with Trimethylsilyl Azide. J. Org. Chem. 2020, 85, 14785–14794. [Google Scholar] [CrossRef]
- Wang, Y.; Milkiewicz, K.L.; Kaufman, M.L.; He, L.; Landmesser, N.G.; Levy, D.V.; Allwein, S.P.; Christie, M.A.; Olsen, M.A.; Neville, C.J.; et al. Plant Process for the Preparation of Cinchona Alkaloid-Based Thiourea Catalysts. Org. Process Res. Dev. 2017, 21, 408–413. [Google Scholar] [CrossRef]
- Tian, W.Q.; Wang, Y.A. Mechanisms of Staudinger Reactions within Density Functional Theory. J. Org. Chem. 2004, 69, 4299–4308. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Perrin, D.D. Purification of Laboratory Chemicals, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1997. [Google Scholar]
- Tan, C.-M.; Chen, G.S.; Chen, C.-S.; Chang, P.-T.; Chern, J.-W. Design, Synthesis And Biological Evaluation of Benzo[1.3.2]Dithiazolium Ylide 1,1-Dioxide Derivatives as Potential Dual Cyclooxygenase-2/5-Lipoxygenase Inhibitors. Bioorg. Med. Chem. 2011, 19, 6316–6328. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, H.W.; Zhang, S.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Switchable Divergent Synthesis in Gold-Catalyzed Difunctionalizations of o-Alkynylbenzenesulfonamides with Aryldiazonium Salts. Org. Lett. 2021, 23, 7713–7717. [Google Scholar] [CrossRef] [PubMed]
- Busacca, C.A.; Lorenz, J.C.; Grinberg, N.; Haddad, N.; Hrapchak, M.; Latli, B.; Lee, H.; Sabila, P.; Saha, A.; Sarvestani, M.; et al. A Superior Method for the Reduction of Secondary Phosphine Oxides. Org. Lett. 2005, 7, 4277–4280. [Google Scholar] [CrossRef] [PubMed]
- Stankevic, M.; Pietrusiewicz, M. An Expedient Reduction of sec-Phosphine Oxides to sec-Phosphine-Boranes by BH3·SMe2. Synlett 2003, 1012–1016. [Google Scholar] [CrossRef]
- Cornali, B.M.; Kimani, F.W.; Jewett, J.C. Cu-Click Compatible Triazabutadienes to Expand the Scope of Aryl Diazonium Ion Chemistry. Org. Lett. 2016, 18, 4948–4950. [Google Scholar] [CrossRef]
- Babin, V.; Sallustrau, A.; Loreau, O.; Caillé, F.; Goudet, A.; Cahuzac, H.; Del Vecchio, A.; Taran, F.; Audisio, D. A General Procedure for Carbon Isotope Labeling of Linear Urea Derivatives with Carbon Dioxide. Chem. Commun. 2021, 57, 6680–6683. [Google Scholar] [CrossRef]
- Büll, C.; Heise, T.; van Hilten, N.; Pijnenborg, F.A.J.; Bloemendal, V.R.L.J.; Gerrits, L.; Kers-Rebel, E.D.; Ritschel, T.; den Brok, M.H.; Adema, G.J.; et al. Steering Siglec–Sialic Acid Interactions on Living Cells using Bioorthogonal Chemistry. Angew. Chem. Int. Ed. 2017, 56, 3309–3313. [Google Scholar] [CrossRef]
- Li, L.; Luo, W.J.; Liang, D.C.; Wang, Z.G. Rigid Heterocyclic Compound, Preparation Method and Application Thereof, Phosphine-Containing Sulfonamide Compound and Preparation Method Thereof. Chinese Patent (Sun Yat-sen University). CN 111574567 A, 25 August 2020. [Google Scholar]
- Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts. Org. Lett. 2005, 7, 1967–1969. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory; Wiley: New York, NY, USA, 2001; ISBN 9783527303724. [Google Scholar]
- Becke, A.D. Becke’s Three Parameter Hybrid Method Using the LYP Correlation Functional. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.T.; Yang, W.T.; Parr, R.G. Development of the ColleSalvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter Mater. Phys. 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, P.C.; Pople, J.A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theoret. Chimica Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Rassolov, V.; Pople, J.A.; Ratner, M.; Windus, T.L. 6-31G* Basis Set for Atoms K through Zn. J. Chem. Phys. 1998, 109, 1223–1299. [Google Scholar] [CrossRef]
- Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161–4163. [Google Scholar] [CrossRef]
- Gonzalez, C.; Schlegel, H.B. An Improved Algorithm for Reaction Path Following. J. Chem. Phys. 1989, 90, 2154–2161. [Google Scholar] [CrossRef]
- Gonzalez, C.; Schlegel, H.B. Reaction Path Following in MassWeighted Internal Coordinates. J. Phys. Chem. 1990, 94, 5523–5527. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Wang, J.; Liang, D.; Feng, J.; Tang, X. Multicolor Cocktail for Breast Cancer Multiplex Phenotype Targeting and Diagnosis Using Bioorthogonal Surface-Enhanced Raman Scattering Nanoprobes. Anal. Chem. 2019, 91, 11045–11054. [Google Scholar] [CrossRef]
- Barrow, A.S.; Moses, J.E. Synthesis of Sulfonyl Azides via Lewis Base Activation of Sulfonyl Fluorides and Trimethylsilyl Azide. Synlett 2016, 27, 1840–1843. [Google Scholar] [CrossRef]
- Barral, K.; Moorhouse, A.D.; Moses, J.E. Efficient Conversion of Aromatic Amines into Azides: A One-Pot Synthesis of Triazole Linkages. Org. Lett. 2007, 9, 1809–1811. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Zhang, Y.; Ramström, O.; Yan, M. Base-Catalyzed Synthesis of Aryl Amides from Aryl Azides and Aldehydes. Chem. Sci. 2016, 7, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Alt, I.T.; Guttroff, C.; Plietker, B. Iron-Catalyzed Intramolecular Aminations of C(Sp3)−H Bonds in Alkylaryl Azides. Angew. Chem. Int. Ed. 2017, 56, 10582–10586. [Google Scholar] [CrossRef] [PubMed]
- Lenstra, D.C.; Lenting, P.E.; Mecinović, J. Sustainable Organophosphorus-Catalysed Staudinger Reduction. Green Chem. 2018, 20, 4418–4422. [Google Scholar] [CrossRef]
- Bow, J.-P.J.; Adami, V.; Marasco, A.; Grønnevik, G.; Rivers, D.A.; Alvaro, G.; Riss, P.J. A Direct Fixation of CO2 for Isotopic Labelling of Hydantoins Using Iodine–Phosphine Charge Transfer Complexes. Chem. Commun. 2022, 7546–7549. [Google Scholar] [CrossRef]
- vanderKnaap, M.; Lageveen, L.T.; Busscher, H.J.; Mars-Groenendijk, R.; Noort, D.; Otero, J.M.; Llamas-Saiz, A.L.; vanRaaij, M.J.; vanderMarel, G.A.; Overkleeft, H.S.; et al. Evaluation of Readily Accessible Azoles as Mimics of the Aromatic Ring of D-Phenylalanine in the Turn Region of Gramicidin S. ChemMedChem 2011, 6, 840–847. [Google Scholar] [CrossRef]
- Shi, H.; Kwok, R.T.K.; Liu, J.; Xing, B.; Tang, B.Z.; Liu, B. Real-Time Monitoring of Cell Apoptosis and Drug Screening Using Fluorescent Light-up Probe with Aggregation-Induced Emission Characteristics. J. Am. Chem. Soc. 2012, 134, 17972–17981. [Google Scholar] [CrossRef]
- Jang, M.; Lim, T.; Park, B.Y.; Han, M.S. Metal-Free, Rapid, and Highly Chemoselective Reduction of Aromatic Nitro Compounds at Room Temperature. J. Org. Chem. 2022, 87, 910–919. [Google Scholar] [CrossRef]
- Lu, H.; Geng, Z.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic Amines with B2pin2 in Isopropanol. Org. Lett. 2016, 18, 2774–2776. [Google Scholar] [CrossRef]
- Vo, G.D.; Hartwig, J.F. Palladium-Catalyzed Coupling of Ammonia with Aryl Chlorides, Bromides, Iodides, and Sulfonates: A General Method for the Preparation of Primary Arylamines. J. Am. Chem. Soc. 2009, 131, 11049–11061. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Fukumoto, R.; Ramström, O.; Yan, M. Anilide Formation from Thioacids and Perfluoroaryl Azides. J. Org. Chem. 2015, 80, 4392–4397. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Leonori, D. Minimization of Back-Electron Transfer Enables the Elusive Sp3 C−H Functionalization of Secondary Anilines. Angew. Chem. Int. Ed. 2021, 60, 7669–7674. [Google Scholar] [CrossRef] [PubMed]
- Kita, Y.; Kuwabara, M.; Yamadera, S.; Kamata, K.; Hara, M. Effects of Ruthenium Hydride Species on Primary Amine Synthesis by Direct Amination of Alcohols over a Heterogeneous Ru Catalyst. Chem. Sci. 2020, 11, 9884–9890. [Google Scholar] [CrossRef] [PubMed]
- Murai, N.; Miyano, M.; Yonaga, M.; Tanaka, K. One-Pot Primary Aminomethylation of Aryl and Heteroaryl Halides with Sodium Phthalimidomethyltrifluoroborate. Org. Lett. 2012, 14, 2818–2821. [Google Scholar] [CrossRef] [PubMed]
- Amberchan, G.; Snelling, R.A.; Moya, E.; Landi, M.; Lutz, K.; Gatihi, R.; Singaram, B. Reaction of Diisobutylaluminum Borohydride, a Binary Hydride, with Selected Organic Compounds Containing Representative Functional Groups. J. Org. Chem. 2021, 86, 6207–6227. [Google Scholar] [CrossRef]
- Demong, D.E.; Ng, I.; Miller, M.W.; Stamford, A.W. A Novel Method for the Preparation of 4-Arylimidazolones. Org. Lett. 2013, 15, 2830–2833. [Google Scholar] [CrossRef]
- Taher, A.; Lee, D.J.; Lee, I.M.; Rahman, M.L.; Sarker, M.S. A Novel Graphene-Supported Palladium Catalyst for Suzuki-Miyaura Coupling of Less Reactive Heteroaryl Halides in Water. Bull. Korean Chem. Soc. 2016, 37, 1478–1485. [Google Scholar] [CrossRef]
- Aw, J.; Widjaja, F.; Ding, Y.; Mu, J.; Liang, Y.; Xing, B. Enzyme-Responsive Reporter Molecules for Selective Localization and Fluorescence Imaging of Pathogenic Biofilms. Chem. Commun. 2017, 53, 3330–3333. [Google Scholar] [CrossRef]
Entry | Reagent | Solvent | Time(h) | 3 b (%) |
---|---|---|---|---|
1 c | 2a | THF | 3 | 0 |
2 | 2b | THF | 3 | 94 |
3 | 2c | THF | 3 | 99 |
4 d | 2b | THF | 10 min | 58 |
5 d | 2c | THF | 10 min | 81 |
6 | 2c | MeCN | 3 | 93 |
7 | 2c | DMSO | 3 | 95 |
8 | 2c | DMF | 3 | 96 |
9 | 2c | CH2Cl2 | 3 | >99 |
10 | 2c | Toluene | 3 | 97 |
11 d,e | 2c | THF/H2O (1:1) | 3 | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, Z.; Luo, W.; Wang, Z.; Yin, K.; Li, L. Ortho-Phosphinoarenesulfonamide-Mediated Staudinger Reduction of Aryl and Alkyl Azides. Molecules 2022, 27, 5707. https://doi.org/10.3390/molecules27175707
Li X, Wang Z, Luo W, Wang Z, Yin K, Li L. Ortho-Phosphinoarenesulfonamide-Mediated Staudinger Reduction of Aryl and Alkyl Azides. Molecules. 2022; 27(17):5707. https://doi.org/10.3390/molecules27175707
Chicago/Turabian StyleLi, Xingzhuo, Zhenguo Wang, Wenjun Luo, Zixu Wang, Keshu Yin, and Le Li. 2022. "Ortho-Phosphinoarenesulfonamide-Mediated Staudinger Reduction of Aryl and Alkyl Azides" Molecules 27, no. 17: 5707. https://doi.org/10.3390/molecules27175707