Separation of Mandelic Acid by a Reactive Extraction Method Using Tertiary Amine in Different Organic Diluents
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cma | Molar concentration of acid in the aqueous phase (mol.L−1) |
Cma0 | Initial molar concentration of acid in the aqueous phase (mol.L−1) |
Cma,org | Molar concentration of acid in the organic phase (mol.L−1) |
CTOA,org | Molar concentration of amine in the organic phase (mol.L−1) |
D | Distribution coefficient |
DMP | Dimethyl phthalate |
E | Extraction efficiency |
MA | Mandelic acid |
MIBK | Methyl isobutyl ketone |
TBA | Tri-n-butylamine |
TBP | Tri-n-butyl phosphate |
TOA | Tri-n-octylamine |
TOPO | Tri-n-octyl phosphine oxide |
TPA | Tri-n-propylamine |
Z | Loading factor |
References
- Brittain, H.G. Mandelic acid. In Analytical Profiles of Drug Substances and Excipients; Academic Press: Cambridge, UK, 2002; Volume 29, pp. 179–211. [Google Scholar]
- Sun, Z.; Ning, Y.; Liu, L.; Liu, Y.; Sun, B.; Jiang, W.; Yang, C.; Yang, S. Metabolic engineering of the L-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic Acid. Microb. Cell Fact. 2011, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.P.; Cheng, H.M.; Cui, S.M.; Wang, X.R.; Song, L.Y.; Zhou, W.; Li, S.J. DL-mandelic acid intercalated Zn-Al layered double hydroxide: A novel antimicrobial layered material. Colloids Surf. B Biointerfaces 2018, 165, 111–117. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X.; Shen, K.; Fu, Y.; Zhang, M.; Zhu, C.; Cheng, Y. Enantioselective fluorescent recognition of mandelic acid by unsymmetrical salalen and salan sensors. Org. Biomol. Chem. 2011, 9, 6011–6021. [Google Scholar] [CrossRef] [PubMed]
- Jartarkar, S.R.; Gangadhar; Manjunatha. Mandelic acid chemical peel in acne vulgaris: A Boon or a Bane? IOSR J. Dent. Med. Sci. Ver. VII 2015, 14, 32–35. [Google Scholar] [CrossRef]
- Taylor, M.B. Summary of mandelic acid for the improvement of skin conditions. Cosmet. Dermatol. 1999, 12, 26–28. [Google Scholar]
- Hussain, S.; Rahim, S.A.; Farooqui, M. Studies of binary complexes of metal ions with mandelic acid by potentiometry. Chem. J. 2012, 2, 206–209. [Google Scholar] [CrossRef]
- Green, B.A.; Yu, R.J.; Van Scott, E.J. Clinical and cosmeceutical uses of hydroxyacids. Clin. Dermatol. 2009, 27, 495–501. [Google Scholar] [CrossRef]
- Salam, A.; Dadzie, O.E.; Galadari, H. Chemical peeling in ethnic skin: An Update. Br. J. Dermatol. 2013, 169, 82–90. [Google Scholar] [CrossRef]
- Sharon, M.; Durve, A.; Pandey, A.; Pathak, M. Mandelic Acid: Aha; Partridge Publishing: Bloomington, India, 2018. [Google Scholar]
- Mori, T.; Masakatsu, F.; Nakamichi, K.; Takashashi, E. The Process for Producing D-Mandelic Acid. European Patent 0596466A2, 11 May 1994. [Google Scholar]
- Wang, S.P.; Liao, C.S. Comparison of ion-pair chromatography and capillary zone electrophoresis for the assay of organic acids as markers of abnormal metabolism. J. Chromatogr. A 2004, 1051, 213–219. [Google Scholar] [CrossRef]
- Husson, S.M.; King, C.J. Multiple-acid equilibria in adsorption of carboxylic acids from dilute aqueous solution. Ind. Eng. Chem. Res. 1999, 38, 502–511. [Google Scholar] [CrossRef]
- Boyaval, P.; Corre, C.; Terre, S. Continuous lactic acid fermentation with concentrated product recovery by ultrafiltration and electrodialysis. Biotechnol. Lett. 1987, 9, 207–212. [Google Scholar] [CrossRef]
- Cao, X.; Yun, H.S.; Koo, Y.M. Recovery of L-(+)-lactic acid by anion exchange resin amberlite IRA-400. Biochem. Eng. J. 2002, 11, 189–196. [Google Scholar] [CrossRef]
- Wardell, J.M.; King, C.J. Solvent equilibriums for extraction of carboxylic acids from water. J. Chem. Eng. Data 1978, 23, 144–148. [Google Scholar] [CrossRef]
- Juang, R.S.; Huang, R.H.; Wu, R.T. Separation of citric and lactic acids in aqueous solutions by solvent extraction and liquid membrane processes. J. Membr. Sci. 1997, 136, 89–99. [Google Scholar] [CrossRef]
- Timmer, J.M.K.; Kromkamp, J.; Robbertsen, T. Lactic acid separation from fermentation broths by reverse osmosis and nanofiltration. J. Membr. Sci. 1994, 92, 185–197. [Google Scholar] [CrossRef]
- Pazouki, M.; Panda, T. Recovery of citric acid—A Review. Bioprocess Eng. 1998, 19, 435–439. [Google Scholar] [CrossRef]
- Djas, M.; Henczka, M. Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: A Review. Sep. Purif. Technol. 2018, 201, 106–119. [Google Scholar] [CrossRef]
- Antony, F.M.; Wasewar, K.L. Reactive separation of protocatechuic acid using tri-n-octyl amine and di-(2-ethylhexyl) phosphoric acid in methyl isobutyl ketone. Sep. Purif. Technol. 2018, 207, 99–107. [Google Scholar] [CrossRef]
- Hong, Y.K.; Hong, W.H. Removal of acetic acid from aqueous solutions containing succinic acid and acetic acid by tri-n-octylamine. Sep. Purif. Technol. 2005, 42, 151–157. [Google Scholar] [CrossRef]
- Yunhai, S.; Houyong, S.; Deming, L.; Qinghua, L.; Dexing, C.; Yongchuan, Z. Separation of glycolic acid from glycolonitrile hydrolysate by reactive extraction with tri-n-octylamine. Sep. Purif. Technol. 2006, 49, 20–26. [Google Scholar] [CrossRef]
- Marti, M.E.; Zeidan, H.; Uslu, H. Reactive extraction of pimelic (heptanedioic) acid from dilute aqueous solutions using trioctylamine in decan-1-ol. Fluid Phase Equilib. 2016, 417, 197–202. [Google Scholar] [CrossRef]
- Rasrendra, C.B.; Girisuta, B.; Van de Bovenkamp, H.H.; Winkelman, J.G.M.; Leijenhorst, E.J.; Venderbosch, R.H.; Windt, M.; Meier, D.; Heeres, H.J. Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using tri-n-octylamine. Chem. Eng. J. 2011, 176, 244–252. [Google Scholar] [CrossRef]
- Jun, Y.S.; Lee, E.Z.; Huh, Y.S.; Hong, Y.K.; Hong, W.H.; Lee, S.Y. Kinetic Study for the extraction of succinic acid with toa in fermentation broth; effects of ph, salt and contaminated acid. Biochem. Eng. J. 2007, 36, 8–13. [Google Scholar] [CrossRef]
- Krzyzaniak, A.; Leeman, M.; Vossebeld, F.; Visser, T.J.; Schuur, B.; De Haan, A.B. Novel extractants for the recovery of fermentation derived lactic acid. Sep. Purif. Technol. 2013, 111, 82–89. [Google Scholar] [CrossRef]
- Uslu, H.; Kirbaşlar, Ş.I. Extraction of aqueous of malic acid by trioctylamine extractant in various diluents. Fluid Phase Equilib. 2010, 287, 134–140. [Google Scholar] [CrossRef]
- Keshav, A.; Wasewar, K.L.; Chand, S. Extraction of propionic acid with tri-n-octyl amine in different diluents. Sep. Purif. Technol. 2008, 63, 179–183. [Google Scholar] [CrossRef]
- Hong, Y.K.; Hong, W.H. Extraction of succinic acid with 1-octanol/n-heptane solutions of mixed tertiary amine. Bioprocess Eng. 2000, 23, 535–538. [Google Scholar] [CrossRef]
- Caşcaval, D.; Kloetzer, L.; Galaction, A.I. Influence of organic phase polarity on interfacial mechanism and efficiency of reactive extraction of acetic acid with tri-n-octylamine. J. Chem. Eng. Data 2011, 56, 2521–2526. [Google Scholar] [CrossRef]
- Thakre, N.; Datta, D.; Prajapati, A.K.; Chaudhari, P.K.; Pal, D. Reactive Extraction of citric acid using different extractants: Equilibrium, kinetics and modeling. Chem. Biochem. Eng. Q. 2018, 31, 437–446. [Google Scholar] [CrossRef]
- Datta, D.; Aşçı, Y.S.; Tuyun, A.F. Extraction equilibria of glycolic acid using tertiary amines: Experimental data and theoretical predictions. J. Chem. Eng. Data 2015, 60, 3262–3267. [Google Scholar] [CrossRef]
- Tamada, J.A.; Kertes, A.S.; King, C.J. Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modeling. Ind. Eng. Chem. Res. 1990, 29, 1319–1326. [Google Scholar] [CrossRef]
- Marti, M.E.; Gurkan, T.; Doraiswamy, L.K. Equilibrium and kinetic studies on reactive extraction of pyruvic acid with trioctylamine in 1-octanol. Ind. Eng. Chem. Res. 2011, 50, 13518–13525. [Google Scholar] [CrossRef]
- Uslu, H.; Inci, I. (Liquid + liquid) equilibria of the (water + propionic acid + aliquat 336 + organic solvents) at T = 298.15 K. J. Chem. Thermodyn. 2007, 39, 804–809. [Google Scholar] [CrossRef]
- Aşçı, Y.S.; Inci, I. Extraction equilibria of acrylic acid from aqueous solutions by amberlite LA-2 in various diluents. J. Chem. Eng. Data 2010, 55, 2385–2389. [Google Scholar] [CrossRef]
- Bayazit, Ş.S.; Uslu, H.; Inci, I. Comparative equilibrium studies for citric acid by amberlite LA-2 or tridodecylamine (TDA). J. Chem. Eng. Data 2009, 54, 1991–1996. [Google Scholar] [CrossRef]
- Uslu, H. Extraction of gibberellic acid from aqueous solution by amberlite LA-2 in different diluents. J. Chem. Eng. Data 2012, 57, 3685–3689. [Google Scholar] [CrossRef]
- Aşcı, Y.S.; Inci, I. Extraction of glycolic acid from aqueous solutions by amberlite LA-2 in different diluent solvents. J. Chem. Eng. Data 2009, 54, 2791–2794. [Google Scholar] [CrossRef]
- Uslu, H.; Kırbaşlar, Ş.İ. Solvent effects on the extraction of malic acid from aqueous solution by secondary amine extractant. Sep. Purif. Technol. 2010, 71, 22–29. [Google Scholar] [CrossRef]
- Caşcaval, D.; Blaga, A.C.; Cămăruţ, M.; Galaction, A.I. Comparative study on reactive extraction of nicotinic acid with amberlite LA-2 and D2EHPA. Sep. Sci. Technol. 2007, 42, 389–401. [Google Scholar] [CrossRef]
- Uslu, H.; Datta, D.; Kumar, S. Reactive extraction of oxoethanoic acid (glyoxylic acid) using amberlite-LA2 in different diluents. J. Chem. Eng. Data 2014, 59, 2623–2629. [Google Scholar] [CrossRef]
- Uslu, H.; Bamufleh, H.S.; Keshav, A.; Pal, D.; Demir, G. Extractive separation of pentanedioic acid by amberlite LA-2 in various solvents. J. Chem. Eng. Data 2016, 61, 2450–2457. [Google Scholar] [CrossRef]
- Uslu, H.; Marti, M.E. Equilibrium data on the reactive extraction of picric acid from dilute aqueous solutions using amberlite LA-2 in ketones. J. Chem. Eng. Data 2017, 62, 2132–2135. [Google Scholar] [CrossRef]
- Kloetzer, L.; Poştaru, M.; Galaction, A.I.; Blaga, A.C.; Caşcaval, D. Comparative study on rosmarinic acid separation by reactive extraction with Amberlite LA-2 and D2EHPA. 1. Interfacial reaction mechanism and influencing factors. Ind. Eng. Chem. Res. 2013, 52, 13785–13794. [Google Scholar] [CrossRef]
- Aşci, Y.S.; İncί, I. Extraction equilibria of succinic acid from aqueous solutions by amberlite LA-2 in various diluents. J. Chem. Eng. Data 2009, 55, 847–851. [Google Scholar] [CrossRef]
- Inci, I.; Asci, Y.S.; Tuyun, A.F. Reactive extraction of L (+) tartaric acid by amberlite LA-2 in different solvents. E-J. Chem. 2011, 8, 509–515. [Google Scholar] [CrossRef]
- Keshav, A.; Wasewar, K.L.; Chand, S. Reactive extraction of propionic acid using tri-n-butyl phosphate in petroleum ether: Equilibrium study. Chem. Biochem. Eng. 2008, 22, 433–437. [Google Scholar]
- Kumar, S.; Mavely, T.R.; Babu, B.V. Reactive extration of carboxylic acids (butyric-, lactic-, tartaric-, itaconic-, succinic-and citric acids) using tri-nbutylphosphate (tbp) dissolved in 1-dodecanol and n-octane (1:1 v/v). In Proceedings of the International Symposium & 63rd Annual Session of IIChE in Association with International Partners (CHEMCON-2010), Annamalainagar, India, 27–29 December 2010. [Google Scholar]
- Labbaci, A.; Kyuchoukov, G.; Albet, J.; Molinier, J. Detailed investigation of lactic acid extraction with tributylphosphate dissolved in dodecane. J. Chem. Eng. Data 2010, 55, 228–233. [Google Scholar] [CrossRef]
- Wasewar, K.L.; Keshav, A.; Agarwal, V.K.; Sonawane, S.S. Reactive extraction of citric acid from aqueous solutions using tri-n-octylamine in MIBK. IUP J. Chem. 2010, 3, 7–19. [Google Scholar]
- Pehlivanoglu, N.; Uslu, H.; Kırbaşlar, S.I. Experimental and modeling studies on the extraction of glutaric acid by trioctylamine. J. Chem. Eng. Data 2009, 54, 3202–3207. [Google Scholar] [CrossRef]
- Juang, R.S.; Huang, R.H. Equilibrium studies on reactive extraction of lactic acid with an amine extractant. Chem. Eng. J. 1997, 65, 47–53. [Google Scholar] [CrossRef]
- Datta, D.; Kumar, S. Equilibrium and kinetic studies of the reactive extraction of nicotinic acid with tri-n-octylamine dissolved in MIBK. Ind. Eng. Chem. Res. 2013, 52, 14680–14686. [Google Scholar] [CrossRef]
- Datta, D.; Kumar, S. Reactive extraction of picolinic acid using tri-n-octylamine dissolved in different diluents: Effect of solvent polarity. J. Chem. Eng. Data 2015, 60, 2709–2716. [Google Scholar] [CrossRef]
- Pal, D.; Tripathi, A.; Shukla, A.; Gupta, K.R.; Keshav, A. Reactive extraction of pyruvic acid using tri-n-octylamine diluted in decanol/kerosene: Equilibrium and effect of temperature. J. Chem. Eng. Data 2015, 60, 860–869. [Google Scholar] [CrossRef]
- Kumar, S.; Wasewar, K.L.; Babu, B.V. Intensification of nicotinic acid separation using organophosphorous solvating extractants by reactive extraction. Chem. Eng. Technol. 2008, 31, 1584–1590. [Google Scholar] [CrossRef]
- Fahim, M.A.; Qader, A.; Hughes, M.A. Extraction equilibria of acetic and propionic acids from dilute aqueous solution by several solvents. Sep. Sci. Technol. 1992, 27, 1809–1821. [Google Scholar] [CrossRef]
- Hong, Y.K.; Hong, W.H. Reactive extraction of lactic acid with mixed tertiary amine extractants. Biotechnol. Tech. 1999, 13, 915–918. [Google Scholar] [CrossRef]
- Uslu, H. Liquid+ liquid equilibria of the (water+tartaric acid + alamine 336 + organic solvents) at 298.15 K. Fluid Phase Equilib. 2007, 253, 12–18. [Google Scholar] [CrossRef]
- Biźek, V.; Horáček, J.; Koušová, M.; Heyberger, A.; Procházka, J. Mathematical model of extraction of citric acid with amine. Chem. Eng. Sci. 1992, 47, 1433–1440. [Google Scholar] [CrossRef]
Type of Extractant | Type of Carboxylic Acid | Ref. |
---|---|---|
Alamine 336 | Acetic acid, lactic acid, succinic acid, malonic acid, fumaric acid, maleic acid | [34] |
Pyruvic acid | [35] | |
Aliquat 336 | Propionic acid | [36] |
Amberlite LA-2 | Acrylic acid | [37] |
Citric acid | [38] | |
Gibberellic acid | [39] | |
Glycolic acid | [40] | |
Malic acid | [41] | |
Nicotinic acid | [42] | |
Oxoethanoic acid | [43] | |
Pentanedioic acid | [44] | |
Picric acid | [45] | |
Rosmarinic acid | [46] | |
Succinic acid | [47] | |
Tartaric acid | [48] | |
Tri-n-butylamine | Acetic acid | [16] |
Tri-n-butyl phosphate | Propionic acid | [49] |
Butyric acid, lactic acid, tartaric acid, itaconic acid, succinic acid, citric acid | [50] | |
Lactic acid | [51] | |
Tri-n-octylamine | Acetic acid | [22] |
Citric acid | [52] | |
Glutaric acid | [53] | |
Glycolic acid | [33] | |
Lactic acid | [54] | |
Malic acid | [28] | |
Nicotinic acid | [55] | |
Picolinic acid | [56] | |
Propionic acid | [29] | |
Pyruvic acid | [57] | |
Succinic acid | [26] | |
Tri-n-octylphosphine oxide | Nicotinic acid | [58] |
Propionic acid | [59] | |
Tri-n-propylamine | Acetic acid | [60] |
Diluent | CTOA,org (mol.L−1) | Cma (mol.L−1) | Cma,org (mol.L−1) | D | Z | E (%) |
---|---|---|---|---|---|---|
DMP | 0.000 | 0.151 | 0.589 | 3.91 | - | 79.65 |
0.092 | 0.108 | 0.632 | 5.84 | 6.87 | 85.37 | |
0.183 | 0.072 | 0.668 | 9.31 | 3.65 | 90.30 | |
0.275 | 0.045 | 0.695 | 15.44 | 2.53 | 93.92 | |
0.366 | 0.027 | 0.713 | 2635 | 1.95 | 96.34 | |
0.458 | 0.014 | 0.726 | 52.50 | 1.59 | 98.13 | |
MIBK | 0.000 | 0.125 | 0.615 | 4.91 | 83.07 | |
0.092 | 0.097 | 0.643 | 6.60 | 6.99 | 86.84 | |
0.183 | 0.065 | 0.675 | 10.38 | 3.69 | 91.21 | |
0.275 | 0.038 | 0.702 | 18.64 | 2.55 | 94.91 | |
0.366 | 0.024 | 0.716 | 29.32 | 1.96 | 96.70 | |
0.458 | 0.020 | 0.720 | 35.20 | 1.57 | 97.24 | |
2-Octanone | 0.000 | 0.201 | 0.539 | 2.68 | 72.81 | |
0.092 | 0.139 | 0.601 | 4.33 | 6.53 | 81.23 | |
0.183 | 0.095 | 0.645 | 6.82 | 3.53 | 87.21 | |
0.275 | 0.058 | 0.682 | 11.68 | 2.48 | 92.11 | |
0.366 | 0.030 | 0.710 | 23.36 | 1.94 | 95.90 | |
0.458 | 0.015 | 0.725 | 47.84 | 1.58 | 97.95 | |
1-Octanol | 0.000 | 0.171 | 0.569 | 3.34 | 76.95 | |
0.092 | 0.118 | 0.622 | 5.25 | 6.76 | 84.00 | |
0.183 | 0.086 | 0.654 | 7.61 | 3.57 | 88.39 | |
0.275 | 0.065 | 0.675 | 10.38 | 2.45 | 91.21 | |
0.366 | 0.042 | 0.698 | 16.48 | 1.91 | 94.28 | |
0.458 | 0.026 | 0.714 | 27.76 | 1.56 | 96.52 | |
n-Pentane | 0.000 | 0.732 | 0.008 | 0.01 | 1.09 | |
0.092 | 0.512 | 0.228 | 0.44 | 2.48 | 30.78 | |
0.183 | 0.308 | 0.432 | 1.40 | 2.36 | 58.34 | |
0.275 | 0.190 | 0.550 | 2.89 | 2.00 | 74.32 | |
0.366 | 0.083 | 0.657 | 7.97 | 1.80 | 88.85 | |
0.458 | 0.038 | 0.702 | 18.30 | 1.53 | 94.82 | |
Octyl acetate | 0.000 | 0.415 | 0.325 | 0.78 | 43.91 | |
0.092 | 0.278 | 0.462 | 1.66 | 5.02 | 62.41 | |
0.183 | 0.176 | 0.564 | 3.20 | 3.08 | 76.20 | |
0.275 | 0.096 | 0.644 | 6.71 | 2.34 | 87.02 | |
0.366 | 0.048 | 0.692 | 14.31 | 1.89 | 93.47 | |
0.458 | 0.024 | 0.716 | 30.16 | 1.56 | 96.79 | |
Toluene | 0.000 | 0.721 | 0.019 | 0.03 | 2.51 | |
0.092 | 0.513 | 0.227 | 0.44 | 2.47 | 30.67 | |
0.183 | 0.324 | 0.416 | 1.28 | 2.27 | 56.19 | |
0.275 | 0.175 | 0.565 | 3.22 | 2.05 | 76.29 | |
0.366 | 0.089 | 0.651 | 7.29 | 1.78 | 87.94 | |
0.458 | 0.024 | 0.716 | 30.16 | 1.56 | 96.79 |
Diluent | CTOA,org (mol.L−1) | K11 (mol.L−1) | K12 (L2.mol−2) | K23 (L4.mol−4) |
---|---|---|---|---|
DMP | 0.092 | 63.45 | 586.19 | |
0.183 | 50.88 | 709.07 | ||
0.275 | 56.16 | 1247.94 | ||
0.366 | 71.99 | 2660.25 | ||
0.458 | 114.63 | 8286.93 | ||
MIBK | 0.092 | 71.72 | 736.49 | |
0.183 | 56.70 | 871.57 | ||
0.275 | 67.78 | 1798.76 | ||
0.366 | 80.10 | 3281.31 | ||
0.458 | 76.87 | 3760.70 | ||
2-Octanone | 0.092 | 47.02 | 338.46 | |
0.183 | 37.25 | 393.38 | ||
0.275 | 42.48 | 727.90 | ||
0.366 | 63.83 | 2101.43 | ||
0.458 | 104.45 | 6893.06 | ||
1-Octanol | 0.092 | 57.04 | 620.05 | |
0.183 | 41.61 | 227.38 | ||
0.275 | 37.73 | 137.20 | ||
0.366 | 45.02 | 123.02 | ||
0.458 | 60.60 | 132.32 | ||
n-Pentane | 0.092 | 4.83 | 9.43 | |
0.183 | 7.65 | 24.82 | ||
0.275 | 10.52 | 55.38 | ||
0.366 | 21.77 | 263.76 | ||
0.458 | 39.95 | 1041.92 | ||
Octyl acetate | 0.092 | 18.05 | 64.89 | |
0.183 | 17.49 | 99.30 | ||
0.275 | 24.38 | 253.92 | ||
0.366 | 39.10 | 808.89 | ||
0.458 | 65.85 | 2773.00 | ||
Toluene | 0.092 | 4.81 | 9.37 | |
0.183 | 7.01 | 21.62 | ||
0.275 | 11.70 | 66.68 | ||
0.366 | 19.92 | 223.09 | ||
0.458 | 65.85 | 2773.00 |
Molecular Formula | C6H5CH(OH)COOH |
---|---|
Molecular weight | 152.147 g/mol |
Appearance | White crystalline solid |
Density | 1.3 g/cm3 |
Melting point | 131–135 °C |
Solubility (in water) | 158.7 g/cm3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiriş, B.; Aşçı, Y.S.; Zahoor, M.; Hassan, S.S.u.; Bungau, S. Separation of Mandelic Acid by a Reactive Extraction Method Using Tertiary Amine in Different Organic Diluents. Molecules 2022, 27, 5986. https://doi.org/10.3390/molecules27185986
Kiriş B, Aşçı YS, Zahoor M, Hassan SSu, Bungau S. Separation of Mandelic Acid by a Reactive Extraction Method Using Tertiary Amine in Different Organic Diluents. Molecules. 2022; 27(18):5986. https://doi.org/10.3390/molecules27185986
Chicago/Turabian StyleKiriş, Barış, Yavuz Selim Aşçı, Muhammad Zahoor, Syed Shams ul Hassan, and Simona Bungau. 2022. "Separation of Mandelic Acid by a Reactive Extraction Method Using Tertiary Amine in Different Organic Diluents" Molecules 27, no. 18: 5986. https://doi.org/10.3390/molecules27185986
APA StyleKiriş, B., Aşçı, Y. S., Zahoor, M., Hassan, S. S. u., & Bungau, S. (2022). Separation of Mandelic Acid by a Reactive Extraction Method Using Tertiary Amine in Different Organic Diluents. Molecules, 27(18), 5986. https://doi.org/10.3390/molecules27185986