Production of Salvianic Acid A from l-DOPA via Biocatalytic Cascade Reactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biotransformation of l-DOPA to DHPPA by BL21(DE3)-pET-28a-mlaad
2.2. Biotransformation of DHPPA to SAA
2.3. Two-Step Catalytic Synthesis of SAA from l-DOPA
3. Materials and Methods
3.1. Chemicals
3.2. Microorganisms and Shake-Flask Fermentation
3.3. Optimization of the ml-AAD-Catalyzed Reaction
3.4. Biotransformation of DHPPA to SAA
3.5. Production of SAA from l-DOPA Using a Two-Step Cascade Reaction
3.6. Analysis Test Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhao, G.R.; Zhang, H.M.; Ye, T.X.; Xiang, Z.J.; Yuan, Y.J.; Guo, Z.X.; Zhao, L.B. Characterization of the Radical Scavenging and Antioxidant Activities of Danshensu and Salvianolic Acid B. Food Chem. Toxicol. 2008, 46, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.L.; Jiang, W.; Zhao, Y.; Hou, J.W.; Xin, W.J. Scavenging Effects of Salvia Miltiorrhiza on Free Radicals and Its Protection for Myocardial Mitochondrial Membranes from Ischemia-Reperfusion Injury. Biochem. Mol. Biol. Int. 1996, 38, 1171–1182. [Google Scholar] [PubMed]
- Tang, M.-K.; Ren, D.-C.; Zhang, J.-T.; Du, G.-H. Effect of Salvianolic Acids from Radix Salviae Miltiorrhizae on Regional Cerebral Blood Flow and Platelet Aggregation in Rats. Phytomedicine 2002, 9, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.S.; Zeng, C.L.; Zhu, L.J.; Jiang, L.; Li, N.; Hu, H. Salvianolic Acid A Inhibits Platelet Activation and Arterial Thrombosis via Inhibition of Phosphoinositide 3-Kinase. J. Thromb. Haemost. 2010, 8, 1383–1393. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, Y.; han, X.; Zhang, Y.; Zhang, X.; Gao, Y.; Zhang, J.; Chu, L.; Zhao, S. Potential Mechanisms Underlying the Protective Effects of Salvianic Acid A against Atherosclerosis in Vivo and Vitro. Biomed. Pharmacother. 2019, 109, 945–956. [Google Scholar] [CrossRef]
- Wang, X.-J.; Xu, J.-X. Salvianic Acid A Protects Human Neuroblastoma SH-SY5Y Cells against MPP+-Induced Cytotoxicity. Neurosci. Res. 2005, 51, 129–138. [Google Scholar] [CrossRef]
- Oh, K.-S.; Oh, B.K.; Mun, J.; Seo, H.W.; Lee, B.H. Salvianolic Acid A Suppress Lipopolysaccharide-Induced NF-ΚB Signaling Pathway by Targeting IKKβ. Int. Immunopharmacol. 2011, 11, 1901–1906. [Google Scholar] [CrossRef]
- Yang, Y.; Han, Z.; Wang, Y.; Wang, L.; Pan, S.; Liang, S.; Wang, S. Plasma Metabonomic Analysis Reveals the Effects of Salvianic Acid on Alleviating Acute Alcoholic Liver Damage. RSC Adv. 2015, 5, 36732–36741. [Google Scholar] [CrossRef]
- Song, Q.; Chu, X.; Zhang, X.; Bao, Y.; Zhang, Y.; Guo, H.; Liu, Y.; Liu, H.; Zhang, J.; Zhang, Y.; et al. Mechanisms Underlying the Cardioprotective Effect of Salvianic Acid A against Isoproterenol-Induced Myocardial Ischemia Injury in Rats: Possible Involvement of L-Type Calcium Channels and Myocardial Contractility. J. Ethnopharmacol. 2016, 189, 157–164. [Google Scholar] [CrossRef]
- Bao, D.; Wang, J.; Liu, J.; Qin, T.; Liu, H. The Attenuation of HIV-1 Tat-Induced Neurotoxicity by Salvianic Acid A and Danshen Granule. Int. J. Biol. Macromol. 2019, 124, 863–870. [Google Scholar] [CrossRef]
- Zhou, L.; Zuo, Z.; Chow, M.S.S. Danshen: An Overview of Its Chemistry, Pharmacology, Pharmacokinetics, and Clinical Use. J. Clin. Pharmacol. 2005, 45, 1345–1359. [Google Scholar] [CrossRef]
- Li, Y.-J.; Duan, C.-L.; Liu, J.-X. Salvianolic Acid A Promotes the Acceleration of Neovascularization in the Ischemic Rat Myocardium and the Functions of Endothelial Progenitor Cells. J. Ethnopharmacol. 2014, 151, 218–227. [Google Scholar] [CrossRef]
- Pan, L.-L.; Wang, J.; Jia, Y.-L.; Zheng, H.-M.; Wang, Y.; Zhu, Y.-Z. Asymmetric Synthesis and Evaluation of Danshensu-Cysteine Conjugates as Novel Potential Anti-Apoptotic Drug Candidates. Int. J. Mol. Sci. 2015, 16, 628–644. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Wang, Y.; Zhu, Y.Z. Asymmetric Synthesis and Biological Evaluation of Danshensu Derivatives as Anti-Myocardial Ischemia Drug Candidates. Bioorg. Med. Chem. 2009, 17, 3499–3507. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chan, S.W.; Tseng, H.L.; Deng, Y.; Hoi, P.M.; Choi, P.S.; Or, P.M.Y.; Yang, J.; Lam, F.F.Y.; Lee, S.M.Y.; et al. Danshensu Is the Major Marker for the Antioxidant and Vasorelaxation Effects of Danshen (Salvia Miltiorrhiza) Water-Extracts Produced by Different Heat Water-Extractions. Phytomedicine 2012, 19, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.M.; Qi, W.; He, Z.M.; Wang, H.L. Process of multi-enzyme assisted extraction of Danshensu from Salvia mitiorrhiza. Chin. Tradit. Herb. Drugs 2008, 39, 1161–1164. [Google Scholar]
- Lam, F.F.Y.; Yeung, J.H.K.; Chan, K.M.; Mei Yu Or, P. Relaxant Effects of Danshen Aqueous Extract and Its Constituent Danshensu on Rat Coronary Artery Are Mediated by Inhibition of Calcium Channels. Vascul. Pharmacol. 2007, 46, 271–277. [Google Scholar] [CrossRef]
- Bubl, E.C.; Butts, J.S. A Method of Synthesis of Phenyllactic Acid and Substituted Phenyllactic Acids. J. Am. Chem. Soc. 1951, 73, 4972. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, Q.; Jia, P.; Yang, L.; Sun, Y.; Nan, Y.; Wang, S.; Meng, X.; Wu, Y.; Qin, F.; et al. Improved Process for Pilot-Scale Synthesis of Danshensu ((±)-DSS) and Its Enantiomer Derivatives. Org. Process Res. Dev. 2014, 18, 1667–1673. [Google Scholar] [CrossRef]
- Wilson, M.L.; Coscia, C.J. Improved Synthesis of 3,4-Dihydroxyphenylpyruvic Acid. J. Org. Chem. 1979, 44, 301–302. [Google Scholar] [CrossRef]
- Findrilk, Z.; Poijanac, M.; Vasic-Racki, D. Modelling and Optimization of the (R)-(+)-3,4-Dihydroxyphenyllactic Acid Production Catalyzed with D-Lactate Dehydrogenase from Lactobacillus Leishmannii Using Genetic Algorithm. Chem. Biochem. Eng. Q. 2005, 19, 351–358. [Google Scholar]
- Yang, L.Y.; zeng, Q.Y.; Yang, D.M. Chemoenzymatic Synthesis of Danshensu. Chin. J. Appl. Chem. 2016, 33, 1073–1078. [Google Scholar]
- Zheng, R.-C.; Tang, X.-L.; Suo, H.; Feng, L.-L.; Liu, X.; Yang, J.; Zheng, Y.-G. Biochemical Characterization of a Novel Tyrosine Phenol-Lyase from Fusobacterium Nucleatum for Highly Efficient Biosynthesis of l-DOPA. Enzym. Microb. Technol. 2018, 112, 88–93. [Google Scholar] [CrossRef]
- Min, K.; Park, K.; Park, D.-H.; Yoo, Y.J. Overview on the Biotechnological Production of L-DOPA. Appl. Microbiol. Biotechnol. 2015, 99, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Schadewaldt, P.; Adelmeyer, F. Coupled Enzymatic Assay for Estimation of Branched-Chainl-Amino Acid Aminotransferase Activity with 2-Oxo Acid Substrates. Anal. Biochem. 1996, 238, 65–71. [Google Scholar] [CrossRef]
- Ödman, P.; Wellborn, W.B.; Bommarius, A.S. An Enzymatic Process to α-Ketoglutarate from l-Glutamate: The Coupled System l-Glutamate Dehydrogenase/NADH Oxidase. Tetrahedron Asymmetry 2004, 15, 2933–2937. [Google Scholar] [CrossRef]
- Niu, P.; Dong, X.; Wang, Y.; Liu, L. Enzymatic Production of α-Ketoglutaric Acid from l-Glutamic Acid via l-Glutamate Oxidase. J. Biotechnol. 2014, 179, 56–62. [Google Scholar] [CrossRef]
- Song, Y.; Li, J.; Shin, H.; Du, G.; Liu, L.; Chen, J. One-Step Biosynthesis of α-Ketoisocaproate from L-Leucine by an Escherichia Coli Whole-Cell Biocatalyst Expressing an L-Amino Acid Deaminase from Proteus Vulgaris. Sci. Rep. 2015, 5, 12614. [Google Scholar] [CrossRef]
- Hossain, G.S.; Li, J.; Shin, H.; Du, G.; Wang, M.; Liu, L.; Chen, J. One-Step Biosynthesis of α-Keto-γ-Methylthiobutyric Acid from L-Methionine by an Escherichia Coli Whole-Cell Biocatalyst Expressing an Engineered L-Amino Acid Deaminase from Proteus Vulgaris. PLoS ONE 2014, 9, e114291. [Google Scholar] [CrossRef]
- Zhao, W.; Ding, H.; Hu, S.; Huang, J.; Lv, C.; Mei, J.; Jin, Z.; Yao, S.; Mei, L. An Efficient Biocatalytic Synthesis of Imidazole-4-Acetic Acid. Biotechnol. Lett. 2018, 40, 1049–1055. [Google Scholar] [CrossRef]
- Pham, S.Q.; Gao, P.; Li, Z. Engineering of Recombinant E. Coli Cells Co-Expressing P450pyrTM Monooxygenase and Glucose Dehydrogenase for Highly Regio- and Stereoselective Hydroxylation of Alicycles with Cofactor Recycling. Biotechnol. Bioeng. 2013, 110, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Mitsuhashi, K.; Kimoto, N.; Kobayashi, Y.; Esaki, N. Robust NADH-Regenerator: Improved α-Haloketone-Resistant Formate Dehydrogenase. Appl. Microbiol. Biotechnol. 2005, 67, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.-O.; Seo, J.-W.; Kwon, O.; Seong, S.-I.; Kim, I.-H.; Kim, C.H. Expression and Characterization of a Second L-Amino Acid Deaminase Isolated from Proteus Mirabilis in Escherichia Coli. J. Basic Microbiol. 2011, 51, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Zhao, W.; Lü, C.; Huang, J.; Hu, S.; Yao, S.; Mei, L.; Wang, J.; Mei, J. Biosynthesis of 4-Hydroxyphenylpyruvic Acid from l-Tyrosine Using Recombinant Escherichia Coli Cells Expressing Membrane Bound l-Amino Acid Deaminase. Chin. J. Chem. Eng. 2018, 26, 380–385. [Google Scholar] [CrossRef]
- Kim, K.H.; Janiak, V.; Petersen, M. Purification, Cloning and Functional Expression of Hydroxyphenylpyruvate Reductase Involved in Rosmarinic Acid Biosynthesis in Cell Cultures of Coleus Blumei. Plant Mol. Biol. 2004, 54, 311–323. [Google Scholar] [CrossRef]
- Ju, Y.; Tong, S.; Gao, Y.; Zhao, W.; Liu, Q.; Gu, Q.; Xu, J.; Niu, L.; Teng, M.; Zhou, H. Crystal Structure of a Membrane-Bound l-Amino Acid Deaminase from Proteus Vulgaris. J. Struct. Biol. 2016, 195, 306–315. [Google Scholar] [CrossRef]
- Bai, C.-L.; Zhao, G.-R. Separation of Salvianic Acid A from the Fermentation Broth of Engineered Escherichia Coli Using Macroporous Resins. J. Sep. Sci. 2015, 38, 2833–2840. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, K.S.; Chen, C.L.; Ding, H.R.; Wang, T.Y.; Zhu, Q.; Zhou, Y.C.; Chen, J.M.; Mei, J.Q.; Hu, S.; Huang, J.; et al. Production of Salvianic Acid A from l-DOPA via Biocatalytic Cascade Reactions. Molecules 2022, 27, 6088. https://doi.org/10.3390/molecules27186088
Hu KS, Chen CL, Ding HR, Wang TY, Zhu Q, Zhou YC, Chen JM, Mei JQ, Hu S, Huang J, et al. Production of Salvianic Acid A from l-DOPA via Biocatalytic Cascade Reactions. Molecules. 2022; 27(18):6088. https://doi.org/10.3390/molecules27186088
Chicago/Turabian StyleHu, Ke Shun, Chong Le Chen, Huan Ru Ding, Tian Yu Wang, Qin Zhu, Yi Chen Zhou, Jia Min Chen, Jia Qi Mei, Sheng Hu, Jun Huang, and et al. 2022. "Production of Salvianic Acid A from l-DOPA via Biocatalytic Cascade Reactions" Molecules 27, no. 18: 6088. https://doi.org/10.3390/molecules27186088
APA StyleHu, K. S., Chen, C. L., Ding, H. R., Wang, T. Y., Zhu, Q., Zhou, Y. C., Chen, J. M., Mei, J. Q., Hu, S., Huang, J., Zhao, W. R., & Mei, L. H. (2022). Production of Salvianic Acid A from l-DOPA via Biocatalytic Cascade Reactions. Molecules, 27(18), 6088. https://doi.org/10.3390/molecules27186088