Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research
Abstract
:1. Introduction
2. Ions Formation in MALDI Source
3. Mass Analyzers for MALDI Ionization Source
4. Applications of MALDI-MS/MS-Based Proteomics
4.1. Applications of MALDI-MS/MS for Solid Tissues Proteomics
4.1.1. Applications of MALDI-MS/MS for In-Tissue Proteomics
4.1.2. Applications of MALDI-MS/MS for Off-Tissue Proteomics
4.2. Applications of MALDI-MS/MS in Biofluids Proteomics
4.3. MALDI Tandem Mass Spectrometry Applications in Microbial Proteomics-Based Analyses
4.4. MALDI Tandem Mass Spectrometry Applications in Proteoforms Analysis
4.5. Applications of MALDI Tandem Mass Spectrometry in Oncoproteomics and Neuroproteomics
4.6. Applications of MALDI-MS/MS for Identification of Bioactive Peptides and Proteins
4.7. Application of MALDI-MS/MS-Based Proteomics in Exposomics and Foodomics
4.8. Applications of MALDI Tandem Mass Spectrometry in Other Domains
5. Advantages and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Processes 1987, 78, 53–68. [Google Scholar] [CrossRef]
- Wysocki, V.H.; Resing, K.A.; Zhang, Q.F.; Cheng, G.L. Mass spectrometry of peptides and proteins. Methods 2005, 35, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Tabet, J.C.; Rebuffat, S. Nobel Prize 2002 for chemistry: Mass spectrometry and nuclear magnetic resonance. M S-Med. Sci. 2003, 19, 865–872. [Google Scholar] [CrossRef]
- Brodbelt, J.S.; Reid, G.E. Special Focus: Honoring John Yates for Receiving the 2019 John B. Fenn Award for a Distinguished Contribution in Mass Spectrometry. J. Am. Soc. Mass Spectr. 2020, 31, 1326. [Google Scholar] [CrossRef]
- Nadler, W.M.; Waidelich, D.; Kerner, A.; Hanke, S.; Berg, R.; Trumpp, A.; Rösli, C. MALDI versus ESI: The Impact of the Ion Source on Peptide Identification. J. Proteome Res. 2017, 16, 1207–1215. [Google Scholar] [CrossRef]
- Gogichaeva, N.V.; Williams, T.; Alterman, M.A. MALDI TOF/TOF Tandem Mass Spectrometry as a New Tool for Amino Acid Analysis. J. Am. Soc. Mass Spectr. 2007, 18, 279–284. [Google Scholar] [CrossRef]
- Gu, H.; Ma, K.; Zhao, W.; Qiu, L.; Xu, W. A general purpose MALDI matrix for the analyses of small organic, peptide and protein molecules. Analyst 2021, 146, 4080–4086. [Google Scholar] [CrossRef]
- Herkt, M.; Foinquinos, A.; Batkai, S.; Thum, T.; Pich, A. Pharmacokinetic Studies of Antisense Oligonucleotides Using MALDI-TOF Mass Spectrometry. Front. Pharm. 2020, 11, 220. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Nie, S.; Xie, M.; Li, S. Rapid profiling strategy for oligosaccharides and polysaccharides by MALDI TOF mass spectrometry. Food Hydrocoll. 2022, 124, 107237. [Google Scholar] [CrossRef]
- Fresnais, M.; Yildirim, E.; Karabulut, S.; Jäger, D.; Zörnig, I.; Benzel, J.; Pajtler, K.W.; Pfister, S.M.; Burhenne, J.; Haefeli, W.E.; et al. Rapid MALDI-MS Assays for Drug Quantification in Biological Matrices: Lessons Learned, New Developments, and Future Perspectives. Molecules 2021, 26, 1281. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.H.; Kim, K.-H.; Cho, J.Y.; Woo, S.M.; Yoo, B.C.; Kim, S.C. Profiling of Serum Metabolites Using MALDI-TOF and Triple-TOF Mass Spectrometry to Develop a Screen for Ovarian Cancer. Cancer Res. Treat 2018, 50, 883–893. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Shen, H.; Yang, P.; Zhou, X. Optimized MALDI-TOF MS Strategy for Characterizing Polymers. Front. Chem. 2021, 9, 698297. [Google Scholar] [CrossRef]
- Glocker, M.O.; Bauer, S.H.J.; Kast, J.; Volz, J.; Przybylski, M. Characterization of specific noncovalent protein complexes by UV matrix-assisted laser desorption ionization mass spectrometry. J. Mass Spectrom. 1996, 31, 1221–1227. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef]
- El-Aneed, A.; Cohen, A.; Banoub, J. Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers. Appl. Spectrosc. Rev. 2009, 44, 210–230. [Google Scholar] [CrossRef]
- Gobey, J.; Cole, M.; Janiszewski, J.; Covey, T.; Chau, T.; Kovarik, P.; Corr, J. Characterization and Performance of MALDI on a Triple Quadrupole Mass Spectrometer for Analysis and Quantification of Small Molecules. Anal. Chem. 2005, 77, 5643–5654. [Google Scholar] [CrossRef]
- Magparangalan, D.P.; Garrett, T.J.; Drexler, D.M.; Yost, R.A. Analysis of Large Peptides by MALDI Using a Linear Quadrupole Ion Trap with Mass Range Extension. Anal. Chem. 2010, 82, 930–934. [Google Scholar] [CrossRef]
- Fox, A. Mass spectrometry for species or strain identification after culture or without culture: Past, present, and future. J. Clin. Microbiol. 2006, 44, 2677–2680. [Google Scholar] [CrossRef]
- Intelicato-Young, J.; Fox, A. Mass spectrometry and tandem mass spectrometry characterization of protein patterns, protein markers and whole proteomes for pathogenic bacteria. J. Microbiol. Methods 2013, 92, 381–386. [Google Scholar] [CrossRef]
- Nakashima, Y.; Nahar, S.; Miyagi-Shiohira, C.; Kinjo, T.; Toyoda, Z.; Kobayashi, N.; Saitoh, I.; Watanabe, M.; Fujita, J.; Noguchi, H. A Liquid Chromatography with Tandem Mass Spectrometry-Based Proteomic Analysis of the Proteins Secreted by Human Adipose-Derived Mesenchymal Stem Cells. Cell Transpl. 2018, 27, 1469–1494. [Google Scholar] [CrossRef] [Green Version]
- Neagu, A.-N.; Jayathirtha, M.; Baxter, E.; Donnelly, M.; Petre, B.A.; Darie, C.C. Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules 2022, 27, 2411. [Google Scholar] [CrossRef]
- Fernández-Puente, P.; Mateos, J.; Blanco, F.J.; Ruiz-Romero, C. LC-MALDI-TOF/TOF for Shotgun Proteomics. In Shotgun Proteomics: Methods and Protocols; Martins-de-Souza, D., Ed.; Springer: New York, NY, USA, 2014; pp. 27–38. [Google Scholar]
- Bashyal, A.; Sanders, J.D.; Holden, D.D.; Brodbelt, J.S. Top-Down Analysis of Proteins in Low Charge States. J. Am. Soc. Mass Spectr. 2019, 30, 704–717. [Google Scholar] [CrossRef]
- Campuzano, I.D.G.; Robinson, J.H.; Hui, J.O.; Shi, S.D.H.; Netirojjanakul, C.; Nshanian, M.; Egea, P.F.; Lippens, J.L.; Bagal, D.; Loo, J.A.; et al. Native and Denaturing MS Protein Deconvolution for Biopharma: Monoclonal Antibodies and Antibody-Drug Conjugates to Polydisperse Membrane Proteins and Beyond. Anal. Chem. 2019, 91, 9472–9480. [Google Scholar] [CrossRef]
- Hebert, A.S.; Prasad, S.; Belford, M.W.; Bailey, D.J.; McAlister, G.C.; Abbatiello, S.E.; Huguet, R.; Wouters, E.R.; Dunyach, J.J.; Brademan, D.R.; et al. Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer. Anal. Chem. 2018, 90, 9529–9537. [Google Scholar] [CrossRef]
- Griffiths, R.L.; Hughes, J.W.; Abbatiello, S.E.; Belford, M.W.; Styles, I.B.; Cooper, H.J. Comprehensive LESA Mass Spectrometry Imaging of Intact Proteins by Integration of Cylindrical FAIMS. Anal. Chem. 2020, 92, 2885–2890. [Google Scholar] [CrossRef]
- Spraggins, J.M.; Djambazova, K.V.; Rivera, E.S.; Migas, L.G.; Neumann, E.K.; Fuetterer, A.; Suetering, J.; Goedecke, N.; Ly, A.; Van de Plas, R.; et al. High-Performance Molecular Imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) Mass Spectrometry. Anal. Chem. 2019, 91, 14552–14560. [Google Scholar] [CrossRef]
- Neagu, A.-N. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. In Advancements of Mass Spectrometry in Biomedical Research; Springer: Berlin/Heidelberg, Germany, 2019; pp. 55–98. [Google Scholar]
- Quanico, J.; Franck, J.; Dauly, C.; Strupat, K.; Dupuy, J.; Day, R.; Salzet, M.; Fournier, I.; Wisztorski, M. Development of liquid microjunction extraction strategy for improving protein identification from tissue sections. J. Proteom. 2012, 79, 200. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.M.; Ibrahim, K.; Smith, L.M. ProteaseGuru: A Tool for Protease Selection in Bottom-Up Proteomics. J. Proteome Res. 2021, 20, 1936–1942. [Google Scholar] [CrossRef]
- Kertesz, V.; Cahill, J.F. Spatially resolved absolute quantitation in thin tissue by mass spectrometry. Anal. Bioanal. Chem. 2021, 413, 2619–2636. [Google Scholar] [CrossRef]
- Lamont, L.; Hadavi, D.; Viehmann, B.; Flinders, B.; Heeren, R.M.A.; Vreeken, R.J.; Porta Siegel, T. Quantitative mass spectrometry imaging of drugs and metabolites: A multiplatform comparison. Anal. Bioanal. Chem. 2021, 413, 2779–2791. [Google Scholar] [CrossRef] [PubMed]
- Koeniger, S.L.; Talaty, N.; Luo, Y.; Ready, D.; Voorbach, M.; Seifert, T.; Cepa, S.; Fagerland, J.A.; Bouska, J.; Buck, W.; et al. A quantitation method for mass spectrometry imaging. Rapid Commun. Mass Spectrom. RCM 2011, 25, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Vertes, A.; Irinyi, G.; Gijbels, R. Hydrodynamic Model of Matrix-Assisted Laser-Desorption Mass-Spectrometry. Anal. Chem. 1993, 65, 2389–2393. [Google Scholar] [CrossRef]
- Zenobi, R.; Knochenmuss, R. Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 1998, 17, 337–366. [Google Scholar] [CrossRef]
- Batoy, S.M.A.B.; Akhmetova, E.; Miladinovic, S.; Smeal, J.; Wilkins, C.L. Developments in MALDI mass spectrometry: The quest for the perfect matrix. Appl. Spectrosc. Rev. 2008, 43, 485–550. [Google Scholar] [CrossRef]
- Knochenmuss, R.; Dubois, F.; Dale, M.J.; Zenobi, R. The matrix suppression effect and ionization mechanisms in matrix-assisted laser desorption/ionization. Rapid Commun. Mass Sp. 1996, 10, 871–877. [Google Scholar] [CrossRef]
- Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons. Anal. Chem. 1988, 60, 2299–2301. [Google Scholar] [CrossRef]
- Tingting Tu, M.L.G. Miniaturizing sample spots for matrix-assisted laser desorption/ionization mass spectrometry. Trends Anal. Chem 2019, 28, 833–841. [Google Scholar]
- Leopold, J.; Popkova, Y.; Engel, K.M.; Schiller, J. Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Lipids. Biomolecules 2018, 8, 173. [Google Scholar] [CrossRef]
- Wang, Y.-H.L.a.Y.-S. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Mechanistic Studies and Methods for Improving the Structural Identification of Carbohydrates. Mass Spectrom. 2017, 6, S0072. [Google Scholar]
- Guerrera, I.C.; Kleiner, O. Application of mass spectrometry in proteomics. Biosci. Rep. 2005, 25, 71–93. [Google Scholar] [CrossRef]
- Monopoli, A.; Nacci, A.; Cataldi, T.R.I.; Calvano, C.D. Synthesis and Matrix Properties of alpha-Cyano-5-phenyl-2,4-pentadienic Acid (CPPA) for Intact Proteins Analysis by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Molecules 2020, 25, 6054. [Google Scholar] [CrossRef]
- Cadene, M.; Chait, B.T. A robust, detergent-friendly method for mass spectrometric analysis of integral membrane proteins. Anal. Chem. 2000, 72, 5655–5658. [Google Scholar] [CrossRef]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef]
- Vermillion-Salsbury, R.; Hercules, D. General equation for calculating the dissociation constants of polyprotic acids and bases from measured retention factors in high-performance liquid chromatography. Rapid Commun. Mass Spectrom. 2002, 16, 1575–1581. [Google Scholar] [CrossRef]
- Cramer, R.; Pirkl, A.; Hillenkamp, F.; Dreisewerd, K. Liquid AP-UV-MALDI enables stable ion yields of multiply charged peptide and protein ions for sensitive analysis by mass spectrometry. Angew. Chem. Int. Ed. Engl. 2013, 52, 2364–2367. [Google Scholar] [CrossRef]
- Ryumin, P.; Brown, J.; Morris, M.; Cramer, R. Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS. Methods 2016, 104, 11–20. [Google Scholar] [CrossRef]
- Piras, C.; Ceniti, C.; Hartmane, E.; Costanzo, N.; Morittu, V.M.; Roncada, P.; Britti, D.; Cramer, R. Rapid Liquid AP-MALDI MS Profiling of Lipids and Proteins from Goat and Sheep Milk for Speciation and Colostrum Analysis. Proteomes 2020, 8, 20. [Google Scholar] [CrossRef]
- Siuzdak, G. Mass Spectrometry for Biotechnology; Elsevier: Amsterdam, The Netherlands, 1996; ISBN 0-12-647471-0. [Google Scholar]
- Guilhaus, M.; Selby, D.; Mlynski, V. Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom. Rev. 2000, 19, 65–107. [Google Scholar] [CrossRef]
- Zubarev, R.A.; Makarov, A. Orbitrap Mass Spectrometry. Anal. Chem. 2013, 85, 5288–5296. [Google Scholar] [CrossRef]
- Liu, X.R.; Zhang, M.M.; Gross, M.L. Mass Spectrometry-Based Protein Footprinting for High Order Structure Analysis: Fundamentals and Applications. Chem. Rev. 2022, 120, 4355–4454. [Google Scholar] [CrossRef]
- Chen, Y.; Leach, F.E., III; Kaiser, N.K.; Dang, X.; Ibrahim, Y.M.; Norheim, R.V.; Gordon, A.A.; Richard, D.S.; Alan, G.M. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer. J. Mass Spectrom. 2015, 50, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Chernushevich, I.V.; Loboda, A.V.; Thomson, B.A. An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 2001, 36, 849–865. [Google Scholar] [CrossRef] [PubMed]
- Petre, B.A.; Youhnovski, N.; Lukkari, J.; Weber, R.; Przybylski, M. Structural Characterisation of tyrosine-nitrated peptides by ultraviolet and infrared matrix-assisted laser desorption/ionization Fourier transforms ion cyclotron resonance mass spectrometry. Eur. J. Mass Spectrom. 2005, 11, 513–518. [Google Scholar] [CrossRef] [PubMed]
- March, R.E. Quadrupole ion trap mass spectrometry: A view at the turn of the century. Int. J. Mass Spectrom. 2000, 200, 285–312. [Google Scholar] [CrossRef]
- Lu, I.C.; Lin, J.L.; Lai, S.-H.; Chen, C.-H. Frequency-Scanning MALDI Linear Ion Trap Mass Spectrometer for Large Biomolecular Ion Detection. Anal. Chem. 2011, 83, 8273–8277. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.G.; Hendrickson, C.L.; Emmett, M.R.; Rodgers, R.P.; Blakney, G.T.; Nilsson, C.L. Fourier transform ion cyclotron resonance: State of the art. Eur. J. Mass Spectrom. 2007, 13, 57–59. [Google Scholar] [CrossRef]
- Huang, L.; Baldwin, M.; Maltby, D.; Medzihradszky, K.; Baker, P.; Allen, N.; Rexach, M.; Edmondson, R.; Campbell, J.; Juhasz, P.; et al. The Identification of Protein-Protein Interactions of the Nuclear Pore Complex of Saccharomyces cerevisiae Using High Throughput Matrix-assisted Laser Desorption Ionization Time-of-Flight Tandem Mass Spectrometry. Mol. Cell. Proteom. MCP 2002, 1, 434–450. [Google Scholar] [CrossRef]
- Santacruz, C.P.; Ayala, E.; Costa-Vera, C. Design and performance of a matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometer. Braz. J. Phys. 2006, 36, 789–794. [Google Scholar] [CrossRef]
- Dave, K.; Headlam, M.; Wallis, T.; Gorman, J. Preparation and analysis of proteins and peptides using MALDI TOF/TOF mass spectrometry. Curr. Protoc. Protein Sci. 2011, 63, 16.13.1–16.13.21. [Google Scholar] [CrossRef]
- Giampà, M.; Sgobba, E. Insight to Functional Conformation and Noncovalent Interactions of Protein-Protein Assembly Using MALDI Mass Spectrometry. Molecules 2020, 25, 4979. [Google Scholar] [CrossRef]
- Tannu, N.S.; Hemby, S.E. De novo protein sequence analysis of Macaca mulatta. BMC Genom. 2007, 8, 270. [Google Scholar] [CrossRef]
- Yergey, A.L.; Coorssen, J.R.; Backlund, P.S.; Blank, P.S.; Humphrey, G.A.; Zimmerberg, J.; Campbell, J.M.; Vestal, M.L. De novo sequencing of peptides using MALDI/TOF-TOF. J. Am. Soc. Mass Spectr. 2002, 13, 784–791. [Google Scholar] [CrossRef] [Green Version]
- Slowinska, M.; Nynca, J.; Arnold, G.J.; Fröhlich, T.; Jankowski, J.; Kozłowski, K.; Mostek, A. Proteomic identification of turkey (Meleagris gallopavo) seminal plasma proteins1,2. Poult. Sci. 2017, 96, 3422–3435. [Google Scholar] [CrossRef]
- Siva, A.B.; Kameshwari, D.B.; Singh, V.; Pavani, K.; Sundaram, C.S.; Rangaraj, N.; Deenadayal, M.; Shivaji, S. Proteomics-based study on asthenozoospermia: Differential expression of proteasome alpha complex. Mol. Hum. Reprod. 2010, 16, 452–462. [Google Scholar] [CrossRef]
- Iq, K.C.; Shu-Chien, A.C. Proteomics of buccal cavity mucus in female tilapia fish (Oreochromis spp.): A comparison between parental and non-parental fish. PLoS ONE 2011, 6, e18555. [Google Scholar] [CrossRef]
- Bouallegui, Y.; Ben Younes, R.; Oueslati, R.; Sheehan, D. Redox proteomic insights into involvement of clathrin-mediated endocytosis in silver nanoparticles toxicity to Mytilus galloprovincialis. PLoS ONE 2018, 13, e0205765. [Google Scholar] [CrossRef]
- Chong, K.; Joshi, S.; Jin, L.; Shu-Chien, A. Proteomics profiling of epidermal mucus secretion of a cichlid (Symphysodon aequifasciata) demonstrating parental care behavior. Proteomics 2006, 6, 2251–2258. [Google Scholar] [CrossRef]
- Tan, N.; Daim, L.; Mohd Jamil, A.; Mohtarrudin, N.; Karuppiah, T. Spontaneous Unexplained Preterm Labor with Intact Membrane: Finding Protein Biomarkers through Placenta Proteome; IntechOpen Limited: London, UK, 2018. [Google Scholar]
- Xu, W.; Hu, H.; Wang, Z.; Chen, X.; Yang, F.; Zhu, Z.; Fang, P.; Dai, J.; Wang, L.; Shi, H.; et al. Proteomic characteristics of spermatozoa in normozoospermic patients with infertility. J. Proteom. 2012, 75, 5426–5436. [Google Scholar] [CrossRef]
- Li, J.; Guo, W.; Li, F.; He, J.; Yu, Q.; Wu, X.; Li, J.; Mao, X. HnRNPL as a key factor in spermatogenesis: Lesson from functional proteomic studies of azoospermia patients with sertoli cell only syndrome. J. Proteom. 2012, 75, 2879–2891. [Google Scholar] [CrossRef]
- Dupree, E.J.; Jayathirtha, M.; Yorkey, H.; Mihasan, M.; Petre, B.A.; Darie, C.C. A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of this Field. Proteomes 2020, 8, 14. [Google Scholar] [CrossRef]
- González de San Román, E.; Bidmon, H.-J.; Malisic, M.; Susnea, I.; Küppers, A.; Hübbers, R.; Wree, A.; Nischwitz, V.; Amunts, K.; Huesgen, P.F. Molecular composition of the human primary visual cortex profiled by multimodal mass spectrometry imaging. Brain Struct. Funct. 2018, 223, 2767–2783. [Google Scholar] [CrossRef]
- Ho Kim, J.; Franck, J.; Kang, T.; Heinsen, H.; Ravid, R.; Ferrer, I.; Hee Cheon, M.; Lee, J.-Y.; Shin Yoo, J.; Steinbusch, H.W.; et al. Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer’s disease. Sci. Rep. 2015, 5, 11138. [Google Scholar] [CrossRef] [Green Version]
- Rocha, B.; Cillero-Pastor, B.; Blanco, F.J.; Ruiz-Romero, C. MALDI mass spectrometry imaging in rheumatic diseases. Biochim. Et Biophys. Acta (BBA)-Proteins Proteom. 2017, 1865, 784–794. [Google Scholar] [CrossRef]
- Nilsson, A.; Peric, A.; Strimfors, M.; Goodwin, R.J.A.; Hayes, M.A.; Andrén, P.E.; Hilgendorf, C. Mass Spectrometry Imaging proves differential absorption profiles of well-characterised permeability markers along the crypt-villus axis. Sci. Rep. 2017, 7, 6352. [Google Scholar] [CrossRef] [PubMed]
- Martin-Lorenzo, M.; Balluff, B.; Sanz-Maroto, A.; van Zeijl, R.J.M.; Vivanco, F.; Alvarez-Llamas, G.; McDonnell, L.A. 30μm spatial resolution protein MALDI MSI: In-depth comparison of five sample preparation protocols applied to human healthy and atherosclerotic arteries. J. Proteom. 2014, 108, 465–468. [Google Scholar] [CrossRef]
- Franck, J.; el Ayed, M.; Wisztorski, M.; Salzet, M.; Fournier, I. On Tissue Protein Identification Improvement by N-Terminal Peptide Derivatization. Methods Mol. Biol. 2010, 656, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Guran, R.; Vanickova, L.; Horak, V.; Krizkova, S.; Michalek, P.; Heger, Z.; Zitka, O.; Adam, V. MALDI MSI of MeLiM melanoma: Searching for differences in protein profiles. PLoS ONE 2017, 12, e0189305. [Google Scholar] [CrossRef] [PubMed]
- Schulz, S.; Römpp, A.; Kummer, W.; Spengler, B. AP-MALDI Imaging of Neuropeptides in Mouse Pituitary Gland with 5 ??m Spatial Resolution and High Mass Accuracy; Elsevier BV: Berlin, Germany, 2011; Volume 305, pp. 228–237. [Google Scholar]
- Dilillo, M.; Ait-Belkacem, R.; Esteve, C.; Pellegrini, D.; Nicolardi, S.; Costa, M.; Vannini, E.; Graaf, E.L.d.; Caleo, M.; McDonnell, L.A. Ultra-High Mass Resolution MALDI Imaging Mass Spectrometry of Proteins and Metabolites in a Mouse Model of Glioblastoma. Sci. Rep. 2017, 7, 603. [Google Scholar] [CrossRef]
- Yajima, Y.; Hiratsuka, T.; Kakimoto, Y.; Ogawa, S.; Shima, K.; Yamazaki, Y.; Yoshikawa, K.; Tamaki, K.; Tsuruyama, T. Region of Interest analysis using mass spectrometry imaging of mitochondrial and sarcomeric proteins in acute cardiac infarction tissue. Sci. Rep. 2018, 8, 7493. [Google Scholar] [CrossRef]
- Lahiri, S.; Aftab, W.; Walenta, L.; Strauss, L.; Poutanen, M.; Mayerhofer, A.; Imhof, A. MALDI-IMS combined with shotgun proteomics identify and localize new factors in male infertility. Life Sci. Alliance 2021, 4, e202000672. [Google Scholar] [CrossRef]
- Kaya, I.; Sämfors, S.; Levin, M.; Borén, J.; Fletcher, J.S. Multimodal MALDI Imaging Mass Spectrometry Reveals Spatially Correlated Lipid and Protein Changes in Mouse Heart with Acute Myocardial Infarction. J. Am. Soc. Mass Spectr. 2020, 31, 2133–2142. [Google Scholar] [CrossRef]
- Do, T.; GurâH, R.; Jarpaová, R.; Ondrac Kova, P.; Sládek, Z.; Faldyna, M.; Adam, V.c.; Zítka, O. MALDI MSI Reveals the Spatial Distribution of Protein Markers in Tracheobronchial Lymph Nodes and Lung of Pigs after Respiratory Infection. Molecules 2020, 25, 5723. [Google Scholar] [CrossRef]
- Kelley, A.; Perry, G.; Bach, S. Characterization of Proteins Present in Isolated Senile Plaques from Alzheimer’s Diseased Brains by MALDI-TOF MS with MS/MS. ACS Chem. Neurosci. 2018, 9, 708–714. [Google Scholar] [CrossRef]
- Pan, S.; Shi, M.; Jin, J.; Albin, R.; Lieberman, A.; Gearing, M.; Lin, B.; Pan, C.; Yan, X.; Kashima, D.T.; et al. Proteomics Identification of Proteins in Human Cortex Using Multidimensional Separations and MALDI Tandem Mass Spectrometer; MCP Papers in Press: Rockville, MD, USA, 2007. [Google Scholar]
- Barik, S.; Banerjee, S.; Bhattacharjee, S.; Das Gupta, S.; Mohanty, S.; Mohanty, B. Proteomic Analysis of Sarcoplasmic Peptides of Two Related Fish Species for Food Authentication. Appl. Biochem. Biotechnol. 2013, 171, 1011–1021. [Google Scholar] [CrossRef]
- Kan, F.; Ye, L.; Yan, T.; Cao, J.; Zheng, J.; Li, W. Proteomic and transcriptomic studies of HBV-associated liver fibrosis of an AAV-HBV-infected mouse model. BMC Genom. 2017, 18, 641. [Google Scholar] [CrossRef]
- Lee, H.; Chung, H.; Lee, S.H.; Jahng, W.J. Light-Induced Phosphorylation of Crystallins in the Retinal Pigment Epithelium. Int. J. Biol. Macromol. 2011, 48, 194–201. [Google Scholar] [CrossRef]
- Xinqiang, S.; Kaiming, L.; Lei, C.; Lim, T.K.; Lee, Y.M.; Yuan, L. Quantitative proteomic analysis of peripheral blood mononuclear cells in rheumatoid arthritis. Rheumatol. Orthop. Med. 2018, 3, 1–7. [Google Scholar] [CrossRef]
- Dietrich, M.A.; Ciereszko, A. Proteomic characterization of fresh spermatozoa and supernatant after cryopreservation in relation to freezability of carp (Cyprinus carpio L) semen. PLoS ONE 2018, 13, e0192972. [Google Scholar] [CrossRef]
- Poetsch, A.; Schlüsener, D.; Florizone, C.; Eltis, L.; Menzel, C.; Rögner, M.; Steinert, K.; Roth, U. Improved Identification of Membrane Proteins by MALDI-TOF MS/MS Using Vacuum Sublimated Matrix Spots on an Ultraphobic Chip Surface. J. Biomol. Tech. JBT 2008, 19, 129–138. [Google Scholar]
- Meier-Credo, J.; Preiss, L.; Wüllenweber, I.; Resemann, A.; Nordmann, C.; Zabret, J.; Suckau, D.; Michel, H.; Nowaczyk, M.M.; Meier, T.; et al. Top-Down Identification and Sequence Analysis of Small Membrane Proteins Using MALDI-MS/MS. J. Am. Soc. Mass Spectr. 2022, 33, 1293–1302. [Google Scholar] [CrossRef]
- Alonso, J.; Rodriguez, J.M.; Baena-López, L.A.; Santarén, J.F. Characterization of the Drosophila melanogaster Mitochondrial Proteome. J. Proteome Res. 2005, 4, 1636–1645. [Google Scholar] [CrossRef]
- Chen, X.; Sans, M.D.; Strahler, J.R.; Karnovsky, A.; Ernst, S.A.; Michailidis, G.; Andrews, P.C.; Williams, J.A. Quantitative Organellar Proteomics Analysis of Rough Endoplasmic Reticulum from Normal and Acute Pancreatitis Rat Pancreas. J. Proteome Res. 2010, 9, 885–896. [Google Scholar] [CrossRef]
- Burkova, E.E.; Grigor’eva, A.E.; Bulgakov, D.V.; Dmitrenok, P.S.; Vlassov, V.V.; Ryabchikova, E.I.; Sedykh, S.E.; Nevinsky, G.A. Extra Purified Exosomes from Human Placenta Contain an Unpredictable Small Number of Different Major Proteins. Int. J. Mol. Sci. 2019, 20, 2434. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-j.; Chen, C.; Xie, P.-f.; Pan, Y.; Tan, Y.-h.; Tang, L.-j. Proteomic analysis and immune properties of exosomes released by macrophages infected with Mycobacterium avium. Microbes Infect. 2014, 16, 283–291. [Google Scholar] [CrossRef]
- Hu, S.; Qiu, N.; Liu, Y.; Zhao, H.; Gao, D.; Song, R.; Ma, M. Identification and comparative proteomic study of quail and duck egg white protein using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry analysis. Poult. Sci. 2016, 95, 1137–1144. [Google Scholar] [CrossRef]
- Fox, K.; Castanha, E.; Fox, A.; Feigley, C.; Salzberg, D. Human K10 epithelial keratin is the most abundant protein in airborne dust of both occupied and unoccupied school rooms. J. Environ. Monit. JEM 2008, 10, 55–59. [Google Scholar] [CrossRef]
- Maity, P.P.; Dutta, D.; Ganguly, S.; Kapat, K.; Dixit, K.; Chowdhury, A.R.; Samanta, R.; Das, N.C.; Datta, P.; Das, A.K.; et al. Isolation and mass spectrometry based hydroxyproline mapping of type II collagen derived from Capra hircus ear cartilage. Commun. Biol. 2019, 2, 146. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guan, X.; Fan, Z.; Ching, L.-M.; Li, Y.; Wang, X.; Cao, W.-M.; Liu, D.-X. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers 2020, 12, 2767. [Google Scholar] [CrossRef] [PubMed]
- Swiatly, A.; Horala, A.; Hajduk, J.; Matysiak, J.; Nowak-Markwitz, E.; Kokot, Z.J. MALDI-TOF-MS analysis in discovery and identification of serum proteomic patterns of ovarian cancer. BMC Cancer 2017, 17, 472. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.l.; Stasyk, T.; Morandell, S.; Dieplinger, H.; Falkensammer, G.; Griesmacher, A.; Mogg, M.; Schreiber, M.; Feuerstein, I.; Huck, C.; et al. Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis 2006, 27, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Romson, J.; Emmer, Å. An antibody-free sample pretreatment method for osteopontin combined with MALDI-TOF MS/MS analysis. PLoS ONE 2019, 14, e0213405. [Google Scholar] [CrossRef]
- Oros, D.; Ceprnja, M.; Zucko, J.; Cindric, M.; Hozic, A.; Skrlin, J.; Barisic, K.; Melvan, E.; Uroic, K.; Kos, B.; et al. Identification of pathogens from native urine samples by MALDI-TOF/TOF tandem mass spectrometry. Clin. Proteom. 2020, 17, 25. [Google Scholar] [CrossRef]
- Banach, P.; Dereziński, P.; Matuszewska, E.; Matysiak, J.; Bochyński, H.; Kokot, Z.J.; Nowak-Markwitz, E. MALDI-TOF-MS Analysis in the Identification of Urine Proteomic Patterns of Gestational Trophoblastic Disease. Metabolites 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, E.; Landuyt, B.; Baggerman, G.; Cuyvers, R.; Lavigne, R.; Luyten, W.; Schoofs, L. Peptidomic analysis of human reflex tear fluid. Peptides 2013, 42, 63–69. [Google Scholar] [CrossRef]
- Hardenborg, E.; Taube, A.; Hanrieder, J.; Andersson, M.; Alm, A.; Bergquist, J. Protein content in aqueous humor from patients with pseudoexfoliation (PEX) investigated by capillary LC MALDI-TOF/TOF MS. PROTEOMICS-Clin. Appl. 2009, 3, 299–306. [Google Scholar] [CrossRef]
- Chaiyarit, P.; Taweechaisupapong, S.; Jaresitthikunchai, J.; Phaonakrop, N.; Roytrakul, S. Comparative evaluation of 5–15-kDa salivary proteins from patients with different oral diseases by MALDI-TOF/TOF mass spectrometry. Clin. Oral Investig. 2014, 19, 729–737. [Google Scholar] [CrossRef]
- Ellias, M.; Ariffin, S.; Karsani, S.; Abdul Rahman, M.; Senafi, S.; Megat Abdul Wahab, R. Proteomic Analysis of Saliva Identifies Potential Biomarkers for Orthodontic Tooth Movement. Sci. World J. 2012, 2012, 647240. [Google Scholar] [CrossRef]
- Lamy, E.; Graça, G.; Costa, G.; Franco, C.; Capela e Silva, F.; Baptista, E.; Coelho, A. Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet. Proteome Sci. 2010, 8, 65. [Google Scholar] [CrossRef]
- Fu, Y.R.; Yi, Z.J.; Guan, S.Z.; Zhang, S.Y.; Li, M. Proteomic analysis of sputum in patients with active pulmonary tuberculosis. Clin. Microbiol. Infect. 2012, 18, 1241–1247. [Google Scholar] [CrossRef]
- Preianò, M.; Maggisano, G.; Murfuni, M.S.; Villella, C.; Colica, C.; Fregola, A.; Pelaia, C.; Lombardo, N.; Pelaia, G.; Savino, R.; et al. Rapid Detection and Identification of Antimicrobial Peptide Fingerprints of Nasal Fluid by Mesoporous Silica Particles and MALDI-TOF/TOF Mass Spectrometry: From the Analytical Approach to the Diagnostic Applicability in Precision Medicine. Int. J. Mol. Sci. 2018, 19, 4005. [Google Scholar] [CrossRef]
- Poth, A.; Deeth, H.; Alewood, P.; Holland, J. Analysis of the human casein phosphoproteome by 2-D electrophoresis and MALDI-TOF/TOF MS reveals new phosphoforms. J. Proteome Res. 2008, 7, 5017–5027. [Google Scholar] [CrossRef]
- Van Raemdonck, G.A.A.; Tjalma, W.A.A.; Coen, E.P.; Depuydt, C.E.; Van Ostade, X.W.M. Identification of protein biomarkers for cervical cancer using human cervicovaginal fluid. PLoS ONE 2014, 9, e106488. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, B.; Prinz, M.; Siegel, D. Proteomic analysis of menstrual blood. Mol. Cell. Proteom. MCP 2012, 11, 1024–1035. [Google Scholar] [CrossRef] [Green Version]
- Casado-Vela, J.; Rodriguez-Suarez, E.; Iloro, I.; Ametzazurra, A.; Alkorta, N.; García-Velasco, J.A.; Matorras, R.; Prieto, B.; González, S.; Nagore, D.; et al. Comprehensive Proteomic Analysis of Human Endometrial Fluid Aspirate. J. Proteome Res. 2009, 8, 4622–4632. [Google Scholar] [CrossRef]
- Shen, X.; Liu, X.; Zhu, P.; Zhang, Y.; Wang, J.; Wang, Y.; Wang, W.; Liu, J.; Li, N.; Liu, F. Proteomic analysis of human follicular fluid associated with successful in vitro fertilization. Reprod. Biol. Endocrinol. RBE 2017, 15, 58. [Google Scholar] [CrossRef]
- Zuberovic, A.; Wetterhall, M.; Hanrieder, J.; Bergquist, J. CE MALDI-TOF/TOF MS for multiplexed quantification of proteins in human ventricular cerebrospinal fluid. Electrophoresis 2009, 30, 1836–1843. [Google Scholar] [CrossRef]
- Muratovic, A.; Hanrieder, J.; Hellman, U.; Bergquist, J.; Wetterhall, M. Proteome Profiling of Human Cerebrospinal Fluid: Exploring the Potential of Capillary Electrophoresis with Surface Modified Capillaries for Analysis of Complex Biological Samples. Eur. J. Mass Spectrom. 2008, 14, 249–260. [Google Scholar] [CrossRef]
- Mateos Martín, J.; Lourido, L.; Fernández-Puente, P.; Calamia, V.; Fernández-López, C.; Oreiro, N.; Ruiz-Romero, C.; Blanco, F. Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC-MALDI TOF/TOF. J. Proteom. 2012, 75, 2869–2878. [Google Scholar] [CrossRef]
- Wang, F.; Chen, F.-F.; Gao, W.-B.; Wang, H.-Y.; Zhao, N.-W.; Xu, M.; Gao, D.-Y.; Yu, W.; Yan, X.-L.; Zhao, J.-N.; et al. Identification of citrullinated peptides in the synovial fluid of patients with rheumatoid arthritis using LC-MALDI-TOF/TOF. Clin. Rheumatol. 2016, 35, 2185–2194. [Google Scholar] [CrossRef]
- Oliveira, M.; Oliveira, R.; Lima, A.; Andrade, E.; Abreu, J.; Oliveira, F. Physical evaluation, morphological and identification of seminal proteins in Santa Ines sheep. Rev. Bras. De Saúde E Produção Anim. 2017, 18, 211–220. [Google Scholar] [CrossRef]
- Dietrich, M.A.; Irnazarow, I.; Ciereszko, A. Proteomic identification of seminal plasma proteins related to the freezability of carp semen. J. Proteom. 2017, 162, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Cui, Y.-Z.; Song, G.-H.; Zong, M.-J.; Zhou, X.-Y.; Chen, Y.; Han, J.-X. Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients. BMC Cancer 2008, 8, 241. [Google Scholar] [CrossRef] [PubMed]
- Fétaud, V.; Frossard, J.-L.; Farina, A.; Pastor, C.M.; Bühler, L.; Dumonceau, J.-M.; Hadengue, A.; Hochstrasser, D.F.; Lescuyer, P. Proteomic profiling in an animal model of acute pancreatitis. Proteomics 2008, 8, 3621–3631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.C.; Huang, M.S.; Yang, C.J.; Wang, W.Y.; Lai, T.C.; Hsiao, M.; Chen, C.H. Dermcidin identification from exhaled air for lung cancer diagnosis. Eur. Respir. J. 2010, 35, 1182–1185. [Google Scholar] [CrossRef]
- Matysiak, J.; Hajduk, J.; Mayer, F.; Hebeler, R.; Kokot, Z. Hyphenated LC-MALDI-ToF/ToF and LC-ESI-QToF approach in proteomic characterization of honeybee venom. J. Pharm. Biomed. Anal. 2016, 121, 69–76. [Google Scholar] [CrossRef]
- Chapeaurouge, A.; Silva, A.; Carvalho, P.; McCleary, R.J.R.; Modahl, C.M.; Perales, J.; Kini, R.M.; Mackessy, S.P. Proteomic Deep Mining the Venom of the Red-Headed Krait, Bungarus flaviceps. Toxins 2018, 10, 373. [Google Scholar] [CrossRef]
- Hoffmann, H.J.; Tabaksblat, L.M.; Enghild, J.J.; Dahl, R. Human skin keratins are the major proteins in exhaled breath condensate. Eur. Respir. J. 2008, 31, 380–384. [Google Scholar] [CrossRef]
- Hsieh, W.Y.; Chen, M.W.; Ho, H.T.; You, T.M.; Lu, Y.-T. Identification of differentially expressed proteins in human malignant pleural effusions. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2007, 28, 1178–1185. [Google Scholar] [CrossRef]
- Jabbour, R.E.; Snyder, A.P. 14-Mass spectrometry-based proteomics techniques for biological identification. In Biological Identification; Schaudies, R.P., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 370–430. [Google Scholar]
- Kolmeder, C.; Lähteenmäki, K.; Wacklin, P.; Kotovuori, A.; Ritamo, I.; Mättö, J.; Vos, W.M.d.; Valmu, L. Tandem Mass Spectrometry in Resolving Complex Gut Microbiota Functions; Elsevier BV: Berlin, Germany, 2017. [Google Scholar]
- Zhang, R.; Zhang, Y.; Zhang, T.; Xu, M.; Wang, H.; Zhang, S.; Zhang, T.; Zhou, W.; Shi, G. Establishing a MALDI-TOF-TOF-MS method for rapid identification of three common Gram-positive bacteria (Bacillus cereus, Listeria monocytogenes, and Micrococcus luteus) associated with foodborne diseases. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Lingpeng, Z.; Xi, H.; Xue, J.; Liu, H.; Xiong, C.; Nie, Z. MALDI-TOF/TOF Tandem Mass Spectrometry Imaging Reveals Non-uniform Distribution of Disaccharide Isomers in Plant Tissues; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Feucherolles, M.; Cauchie, H.-M.; Penny, C. MALDI-TOF Mass Spectrometry and Specific Biomarkers: Potential New Key for Swift Identification of Antimicrobial Resistance in Foodborne Pathogens. Microorganisms 2019, 7, 593. [Google Scholar] [CrossRef]
- Fagerquist, C.K.; Dodd, C.E. Top-down proteomic identification of plasmid and host proteins produced by pathogenic Escherichia coli using MALDI-TOF-TOF tandem mass spectrometry. PLoS ONE 2021, 16, e0260650. [Google Scholar] [CrossRef]
- Clark, C.M.; Costa, M.S.; Sanchez, L.M.; Murphy, B.T. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. Proc. Natl. Acad. Sci. USA 2018, 115, 4981–4986. [Google Scholar] [CrossRef]
- Lebeau, A.; Bruyere, D.; Roncarati, P.; Peixoto, P.; Hervouet, E.; Cobraiville, G.; Taminiau, B.; Masson, M.; Gallego, C.; Mazzucchelli, G.; et al. HPV infection alters vaginal microbiome through down-regulating host mucosal innate peptides used by Lactobacilli as amino acid sources. Nat. Commun. 2022, 13, 1076. [Google Scholar] [CrossRef]
- Conrotto, P.; Hellman, U. Sulfonation chemistry as a powerful tool for MALDI TOF/TOF de novo sequencing and post-translational modification analysis. J. Biomol. Tech. JBT 2005, 16, 441–452. [Google Scholar]
- Pekov, S.; Indeykina, M.; Popov, I.; Kononikhin, A.; Bocharov, K.; Kozin, S.; Makarov, A.; Nikolaev, E. Application of MALDI-TOF/TOF-MS for relative quantitation of α- and β-Asp7 isoforms of amyloid-β peptide. Eur. J. Mass Spectrom. 2017, 24, 146906671773054. [Google Scholar] [CrossRef]
- Koehbach, J.; Gruber, C.W.; Becker, C.; Kreil, D.P.; Jilek, A. MALDI TOF/TOF-Based Approach for the Identification of d- Amino Acids in Biologically Active Peptides and Proteins. J. Proteome Res. 2016, 15, 1487–1496. [Google Scholar] [CrossRef]
- Franc, V.; Rehulka, P.; Medda, R.; Padiglia, A.; Floris, G.; Sebela, M. Analysis of the glycosylation pattern of plant copper amine oxidases by MALDI-TOF/TOF MS coupled to a manual chromatographic separation of glycans and glycopeptides. Electrophoresis 2013, 34, 2357–2367. [Google Scholar] [CrossRef]
- Irungu, J.; Go, E.; Zhang, Y.; Dalpathado, D.; Liao, H.-X.; Haynes, B.; Desaire, H. Comparison of HPLC/ESI-FTICR MS versus MALDI-TOF/TOF MS for glycopeptide analysis of a highly glycosylated HIV envelope glycoprotein. J. Am. Soc. Mass Spectr. 2008, 19, 1209–1220. [Google Scholar] [CrossRef]
- Scholten, A.; Visser, N.; Heuvel, R.; Heck, A. Analysis of protein-protein interaction surfaces using a combination of efficient lysine acetylation and nanoLC-MALDI-MS/MS applied to the E9:Im9 bacteriotoxin—immunity protein complex. J. Am. Soc. Mass Spectr. 2006, 17, 983–994. [Google Scholar] [CrossRef]
- Jagannadham, M.; Kameshwari, D.; Pratapa, G.; Nagaraj, R. Detection of peptides with intact phosphate groups using MALDI TOF/TOF and comparison with the ESI-MS/MS. Eur. J. Mass Spectrom. 2017, 24, 1469066717748115. [Google Scholar] [CrossRef]
- Xu, C.-F.; Lu, Y.; Ma, J.; Mohammadi, M.; Neubert, T.A. Identification of Phosphopeptides by MALDI Q-TOF MS in Positive and Negative Ion Modes after Methyl Esterification*S. Mol. Cell. Proteom. 2005, 4, 809–818. [Google Scholar] [CrossRef]
- Söderberg, C.; Lambert, W.; Kjellström, S.; Wiegandt, A.; Wulff, R.; Månsson, C.; Rutsdottir, G.; Emanuelsson, C. Detection of crosslinks within and between proteins by LC-MALDI-TOFTOF and the software FINDX to reduce the MSMS-data to acquire for validation. PLoS ONE 2012, 7, e38927. [Google Scholar] [CrossRef]
- Mascini, N.E.; Teunissen, J.; Noorlag, R.; Willems, S.M.; Heeren, R.M.A. Tumor classification with MALDI-MSI data of tissue microarrays: A case study. Methods 2018, 151, 21–27. [Google Scholar] [CrossRef]
- Everest-Dass, A.V.; Briggs, M.T.; Kaur, G.; Oehler, M.K.; Hoffmann, P.; Packer, N.H. N-glycan MALDI Imaging Mass Spectrometry on Formalin-Fixed Paraffin-Embedded Tissue Enables the Delineation of Ovarian Cancer Tissues*. Mol. Cell. Proteom. 2016, 15, 3003–3016. [Google Scholar] [CrossRef] [Green Version]
- Balluff, B.; Frese, C.K.; Maier, S.; Schone, C.; Kuster, B.; Schmitt, M.; Aubele, M.; Hofler, H.; Deelder, A.M.; Heck, A.; et al. De novo discovery of phenotypic intratumour heterogeneity using imaging mass spectrometry. J. Pathol. 2014, 235, 3–13. [Google Scholar] [CrossRef]
- Tan, H.; Lim, T.; Chung, M.; Lin, Q. iTRAQ™ Labeling Coupled with LC-MALDI Mass Spectrometry for Monitoring Temporal Response of Colorectal Cancer Cells to Butyrate Treatment. Methods Mol. Biol. 2011, 716, 207–224. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, V.C.; Agarwal, V.; Elfadl, D.; Fox, J.N.; McManus, P.L.; Mahapatra, T.K.; Kneeshaw, P.J.; Drew, P.J.; Lind, M.J.; Cawkwell, L. Pilot and feasibility study: Comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer. J. Proteom. 2012, 75, 2745–2752. [Google Scholar] [CrossRef]
- Kang, S.; Maeng, H.; Kim, B.G.; Qing, G.M.; Choi, Y.P.; Kim, H.Y.; Kim, P.S.; Kim, Y.; Kim, Y.H.; Choi, Y.D.; et al. In situ Identification and Localization of IGHA2 in the Breast Tumor Microenvironment by Mass Spectrometry. J. Proteome Res. 2012, 11, 4567–4574. [Google Scholar] [CrossRef]
- Chi, L.-M.; Lee, C.-W.; Chang, K.-P.; Hao, S.-P.; Lee, H.-M.; Liang, Y.; Hsueh, C.; Yu, C.-J.; Lee, I.N.; Chang, Y.-J.; et al. Enhanced Interferon Signaling Pathway in Oral Cancer Revealed by Quantitative Proteome Analysis of Microdissected Specimens Using 16O/18O Labeling and Integrated Two-dimensional LC-ESI-MALDI Tandem MS*. Mol. Cell. Proteom. 2009, 8, 1453–1474. [Google Scholar] [CrossRef]
- Gawin, M.; Kurczyk, A.; Stobiecka, E.; Frątczak, K.; Polańska, J.; Pietrowska, M.; Widłak, P. Molecular Heterogeneity of Papillary Thyroid Cancer: Comparison of Primary Tumors and Synchronous Metastases in Regional Lymph Nodes by Mass Spectrometry Imaging. Endocr. Pathol. 2019, 30, 250–261. [Google Scholar] [CrossRef]
- Panderi, I.; Perez, K.; Cao, L.; Noble, L.; Lombardo, K.; Walsh, T.; Pantazatos, D. Assessment of molecular differentiation in FFPE colon adenocarcinoma tissues using PCA analysis of MALDI IMS spectral data. J. Appl. Bioanal. 2017, 3, 81–97. [Google Scholar] [CrossRef]
- Jiang, J.; Parker, C.; Hoadley, K.; Perou, C.; Boysen, G.; Borchers, C. Development of an immuno tandem mass spectrometry (iMALDI) assay for EGFR diagnosis. Proteomics. Clin. Appl. 2007, 1, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, G.; Kasap, M.; Canturk, N.Z.; Zulfigarova, M.; Islek, E.E.; Guler, S.A.; Simsek, T.; Canturk, Z. Proteomics Analysis of Tissue Samples Reveals Changes in Mitochondrial Protein Levels in Parathyroid Hyperplasia over Adenoma. Cancer Genom. Proteom. 2017, 14, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, C.; Iavorschi, M.; Drochioiu, G. Aluminium Binding to Modified Amyloid-β Peptides: Implications for Alzheimer’s Disease. Molecules 2020, 25, 4536. [Google Scholar] [CrossRef] [PubMed]
- Khorjestan, S.; Abtahi, B.; Siadat, S.; Motevalli, S.m.; Rezadoost, H.; Ghezellou, P.; Ghassempour, A. Analysis of annulated sea snake venom, Hydrophis Cyanocinctus, using liquid chromatography and MALDI-TOF/TOF. Curr. Proteom. 2015, 12, 45–55. [Google Scholar] [CrossRef]
- Rubakhin, S.S.; Sweedler, J.V. Quantitative Measurements of Cell–Cell Signaling Peptides with Single-Cell MALDI MS. Anal. Chem. 2008, 80, 7128–7136. [Google Scholar] [CrossRef]
- Nachman, R.; Russell, W.; Predel, R. MALDI-TOF/TOF Mass Spectrometric Assignment of Leu/Ile in PVK-CAP2b Neuropeptides From Single Neurohemal Organ Preparations of Four Flies; Elsevier Inc.: Berlin, Germany, 2005; pp. 3–4. [Google Scholar]
- Jia, C.; Hui, L.; Cao, W.; Lietz, C.; Jiang, X.; Chen, R.; Catherman, A.; Thomas, P.; Ge, Y.; Kelleher, N.; et al. High-definition De Novo Sequencing of Crustacean Hyperglycemic Hormone (CHH)-family Neuropeptides. Mol. Cell. Proteom. MCP 2012, 11, 1951–1964. [Google Scholar] [CrossRef]
- Duffy, C.; Sorolla, A.; Wang, E.; Golden, E.; Woodward, E.; Davern, K.; Ho, D.; Johnstone, E.; Pfleger, K.; Redfern, A.; et al. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. npj Precis. Oncol. 2020, 4, 24. [Google Scholar] [CrossRef]
- Gu, H.; Han, S.M.; Park, K.-K. Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins 2020, 12, 195. [Google Scholar] [CrossRef]
- Nguyen, H.; Heger, Z.; Kominkova, M.; Michálek, P.; Gumulec, J.; Guráň, R.; Pridal, A.; Fernández, C.; Hynek, D.; Adam, V.; et al. The Electrochemical and Statistical Evaluation of Isolation of Mellitin and Apamin from Honey Bee (Apis Mellifera) Venom. Int. J. Electrochem. Sci. 2014, 10, 1249–1260. [Google Scholar]
- Galán, J.A.; Sánchez, E.E.; Bashir, S.; Pérez, J.C. Characterization and identification of disintegrins in Crotalus horridus venom by liquid chromatography and tandem matrix-assisted laser desorption ionization-quadrupole ion trap time-of-flight (MALDI-QIT-TOF) mass spectrometry. Can. J. Chem. 2005, 83, 1124–1131. [Google Scholar] [CrossRef]
- Arruda Macêdo, J.K.; Fox, J.W.; de Souza Castro, M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr. Protein Pept. Sci. 2015, 16, 532–548. [Google Scholar] [CrossRef]
- Chen, C.; Laviolette, S.R.; Whitehead, S.N.; Renaud, J.B.; Yeung, K.K.C. Imaging of Neurotransmitters and Small Molecules in Brain Tissues Using Laser Desorption/Ionization Mass Spectrometry Assisted with Zinc Oxide Nanoparticles. J. Am. Soc. Mass Spectr. 2021, 32, 1065–1079. [Google Scholar] [CrossRef]
- Nayak, T.; Mandal, S.M.; Neog, K.; Ghosh, A. Characterization of a Gloverin-Like Antimicrobial Peptide Isolated from Muga Silkworm, Antheraea assamensis. Int. J. Pept. Res. Ther. 2018, 24, 1–10. [Google Scholar] [CrossRef]
- Kumar, J.; Sharma, V.K.; Singh, D.K.; Mishra, A.; Gond, S.K.; Verma, S.K.; Kumar, A.; Kharwar, R.N. Epigenetic Activation of Antibacterial Property of an Endophytic Streptomyces coelicolor Strain AZRA 37 and Identification of the Induced Protein Using MALDI TOF MS/MS. PLoS ONE 2016, 11, e0147876. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.; Baker, M.; Leong, G.; Letcher, R.; Gee, S.; Hammock, B.; Li, Q. Exploring adduct formation between human serum albumin and eleven organophosphate ester flame retardants and plasticizers using MALDI-TOF/TOF and LC-Q/TOF. Chemosphere 2017, 180, 169–177. [Google Scholar] [CrossRef]
- Ruttkay-Nedecky, B.; Nejdl, L.; Gumulec, J.; Zitka, O.; Masarik, M.; Eckschlager, T.; Stiborova, M.; Adam, V.; Kizek, R. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 2013, 14, 6044–6066. [Google Scholar] [CrossRef]
- Elvis, O.; Smith, J.; Clark, C.; Schlager, J.; Shih, M. MALDI-ToF/MS as a diagnostic tool for the confirmation of sulfur mustard exposure. J. Appl. Toxicol. JAT 2001, 20 (Suppl. S1), S193–S197. [Google Scholar] [CrossRef]
- Alam, S.; Kumar, B.; Kamboj, D. Multiplex Detection of Protein Toxins Using MALDI-TOF-TOF Tandem Mass Spectrometry: Application in Unambiguous Toxin Detection from Bioaerosol. Anal. Chem. 2012, 84, 10500–10507. [Google Scholar] [CrossRef]
- Calvano, C.; Bianco, M.; Losito, I.; Cataldi, T. Proteomic Analysisof Food Allergens by MALDI TOF/TOF Mass Spectrometry; Humana: New York, NY, USA, 2021. [Google Scholar]
- Mohammadi, M.; Falak, R.; Mokhtarian, K.; Khorramizadeh, M.R.; Kardar, G. Identification and Characterization of Main Allergic Proteins in Cooked Wolf Herring Fish. Iran. J. Allergy Asthma Immunol. 2016, 15, 363–371. [Google Scholar]
- Aiello, D.; Materazzi, S.; Risoluti, R.; Thangavel, H.; Di Donna, L.; Mazzotti, F.; Casadonte, F.; Siciliano, C.; Sindona, G.; Napoli, A. A major allergen in rainbow trout (Oncorhynchus mykiss): Complete sequences of parvalbumin by MALDI tandem mass spectrometry. Mol. BioSystems 2015, 11, 2373–2382. [Google Scholar] [CrossRef]
- Ballardini, N.; Nopp, A.; Hamsten, C.; Vetander, M.; Melen, E.; Nilsson, C.; Ollert, M.; Flohr, C.; Kuehn, A.; Hage, M. Anaphylactic Reactions to Novel Foods: Case Report of a Child With Severe Crocodile Meat Allergy. Pediatrics 2017, 139. [Google Scholar] [CrossRef]
- Piras, C.; Hale, O.J.; Reynolds, C.K.; Jones, A.K.; Taylor, N.; Morris, M.; Cramer, R. Speciation and milk adulteration analysis by rapid ambient liquid MALDI mass spectrometry profiling using machine learning. Sci. Rep. 2021, 11, 3305. [Google Scholar] [CrossRef]
- Wahab, N.; Abdullah, N.; Aminudin, N. Characterisation of Potential Antidiabetic-Related Proteins from Pleurotus pulmonarius (Fr.) Quél. (Grey Oyster Mushroom) by MALDI-TOF/TOF Mass Spectrometry. BioMed Res. Int. 2014, 2014, 131607. [Google Scholar] [CrossRef]
- Rakhee; Sethy, N.; Bhardwaj, A.; Singh, V.; Sharma, R.; Deswal, R.; Bhargava, K.; Misra, K. Characterization of ganoderma lucidum: Phytochemical and proteomic approach. J. Proteins Proteom. 2017, 8, 25–33. [Google Scholar]
- Matuszewska, E.; Matysiak, J.; Rosiński, G.; Kędzia, E.; Ząbek, W.; Zawadziński, J.; Matysiak, J. Mining the Royal Jelly Proteins: Combinatorial Hexapeptide Ligand Library Significantly Improves the MS-Based Proteomic Identification in Complex Biological Samples. Molecules 2021, 26, 2762. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Wang, J.; Lin, L.; Hong, H.; Wang, D. Proteome profiles in medaka (Oryzias melastigma) liver and brain experimentally exposed to acute inorganic mercury. Aquat. Toxicol. 2011, 103, 129–139. [Google Scholar] [CrossRef]
- Tripković, T.; Charvy, C.; Alves, S.; Lolić, A.Đ.; Baošić, R.M.; Nikolić-Mandić, S.D.; Tabet, J.C. Identification of protein binders in artworks by MALDI-TOF/TOF tandem mass spectrometry. Talanta 2013, 113, 49–61. [Google Scholar] [CrossRef]
- Cleland, T.; Schroeter, E. A Comparison of Common Mass Spectrometry Approaches for Paleoproteomics. J. Proteome Res. 2018, 17, 936–945. [Google Scholar] [CrossRef]
Matrix | Application | References |
---|---|---|
ɑ-cyano-4-hydroxycinnamic acid (CHCA) | small molecules, peptides/proteins < 6 kDa | [40,41,42] |
2,5-dihydroxybenzoic acid (DHB) | small molecules, peptides/proteins < 6 kDa, polymers, carbohydrates | [40,41,42] |
α-cyano-5-phenyl-2,4-pentadienic acid (CPPA) | proteins | [43,44] |
3,5-dimethoxy-4-hydroxycinnamic acid (SA, sinapinic acid) | proteins | [43,44] |
2-(4-Hydroxyphenylazo)benzoic acid (HABA) | peptides, proteins, glycoproteins | [45] |
9-aminoacridine (9-AA) | small molecules, lipids, MALDI (−) | [46] |
Tissue/Organ | References |
---|---|
human brain | [75,76] |
human acute myocardial infraction tissue | [84] |
human articular cartilage | [77] |
human atherosclerotic carotid | [79] |
rat brain | [29,80] |
rat intestine | [78] |
pig skin (normal and melanoma) | [81] |
mouse model glioblastoma | [83] |
mouse testis | [85] |
mouse heart | [86] |
mouse pituitary gland | [82] |
Organ/Tissue/Cell Homogenates and Cell Lysates | References |
---|---|
senile plaques from AD brain | [88] |
human frontal cortex | [89] |
human testis | [73] |
human placenta | [71] |
fish white muscles | [90] |
mouse model liver fibrosis | [91] |
retinal pigment epithelium (RPE) | [92] |
mononuclear cells | [93] |
spermatozoa | [72,94] |
plasma membrane | [95,96] |
mitochondria | [97] |
rough endoplasmic reticulum (RER) | [98] |
exosomes | [99,100] |
nuclear pore complex | [60] |
egg white | [101] |
cytokeratins in household dust | [102] |
collagens from cartilage | [103] |
Biofluids | References |
---|---|
blood/serum/plasma | [105,106] |
urine | [109] |
human reflex tear fluid | [110] |
aqueous humor | [111] |
saliva | [112,113,114] |
sputum | [115] |
nasal fluid | [116] |
human milk | [117] |
human cervicovaginal fluid (CVF) | [118] |
menstrual blood | [119] |
human endometrial fluid aspirate | [120] |
human follicular fluid (HFF) | [121] |
human cerebrospinal fluid (CSF) | [122,123] |
synovial fluid | [124,125] |
seminal plasma | [66,126,127] |
pancreatic juice | [128,129] |
exhaled breath condensate (EBC) | [130] |
venom | [131,132] |
oral cavity mucus | [68] |
epidermal mucus | [70] |
human malignant pleural effusions | [134] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darie-Ion, L.; Whitham, D.; Jayathirtha, M.; Rai, Y.; Neagu, A.-N.; Darie, C.C.; Petre, B.A. Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research. Molecules 2022, 27, 6196. https://doi.org/10.3390/molecules27196196
Darie-Ion L, Whitham D, Jayathirtha M, Rai Y, Neagu A-N, Darie CC, Petre BA. Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research. Molecules. 2022; 27(19):6196. https://doi.org/10.3390/molecules27196196
Chicago/Turabian StyleDarie-Ion, Laura, Danielle Whitham, Madhuri Jayathirtha, Yashveen Rai, Anca-Narcisa Neagu, Costel C. Darie, and Brînduşa Alina Petre. 2022. "Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research" Molecules 27, no. 19: 6196. https://doi.org/10.3390/molecules27196196
APA StyleDarie-Ion, L., Whitham, D., Jayathirtha, M., Rai, Y., Neagu, A.-N., Darie, C. C., & Petre, B. A. (2022). Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research. Molecules, 27(19), 6196. https://doi.org/10.3390/molecules27196196