Identification, Quantification, and Characterization of the Phenolic Fraction of Brunfelsia grandiflora: In Vitro Antioxidant Capacity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content and Antioxidant Capacity
2.2. LC-QToF Identification of the Phenolic Fraction of Brunfelsia grandiflora
2.3. LC-QToF Quantification of the Phenolic Content of Brunfelsia grandiflora
3. Materials and Methods
3.1. Chemical Reagents
3.2. Sample Preparation
3.3. Polyphenolic Content by Folin–Ciocalteu
3.4. Determination of Antioxidant Capacity
3.5. Phenolic Characterization of Brunfelsia grandiflora by LC-ESI-QTOF Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plowman, T. Brunfelsia in Ethnomedicine. Bot. Mus. Lealf. Harv. Univ. 1977, 25, 289–320. [Google Scholar] [CrossRef] [PubMed]
- Polesna, L.; Polesny, Z.; Clavo, M.Z.; Hansson, A.; Kokoska, L. Ethnopharmacological inventory of plants used in Coronel Portillo province of Ucayali Department. Peru. Pharm. Biol. 2011, 49, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.C. Hallucinogenic plants of the shuar and related indigenous groups in amazonian Ecuador and Peru. Brittonia 1992, 44, 483–493. [Google Scholar] [CrossRef]
- Schultes, R.E.; Hofmann, A.; Rätsch, C. Plants of the Gods. In Their Sacred, Healing and Hallucinogenic Powers; Healing Arts Press: Rochester, VT, USA, 1998. [Google Scholar]
- Gilman, E.F. Brunfelsia Grandiflora Yesterday, Today, and Tomorrow. FPS77. Available online: https://edis.ifas.ufl.edu/publication/FP077 (accessed on 1 September 2022).
- Moon, P.D.; Lee, B.H.; Jeong, H.J.; An, H.J.; Park, S.J.; Kim, H.R.; Ko, S.G.; Um, J.Y.; Hong, S.H.; Kim, H.M. Use of Scopoletin to Inhibit the Production of Inflammatory Cytokines through Inhibition of the IκB/NF-ΚB Signal Cascade in the Human Mast Cell Line HMC-1. Eur. J. Pharmacol. 2007, 555, 218–225. [Google Scholar] [CrossRef]
- Lloyd, H.A.; Fales, H.M.; Goldman, M.E.; Jerina, D.M.; Plowman, T.; Schultes, R.E. Brunfelsamidine: A novel convulsant from the medicinal plant Brunfelsia Grandiflora. Tetrahedron Lett. 1985, 26, 2623–2624. [Google Scholar] [CrossRef]
- Rubio, V.; García-Pérez, A.I.; Herráez, A.; Tejedor, M.C.; Diez, J.C. Esculetin modulates cytotoxicity induced by oxidants in NB4 human leukemia cells. Exp. Toxicol. Pathol. 2017, 69, 700–712. [Google Scholar] [CrossRef]
- Minina, S.A.; Astakhova, T.A.; Gromova, E.G.; Vaichageva, Y.V. Preparation and Pharmacological Study of Cuscohygrine bis (methyl benzenesulfonate). Pharm. Chem. J. 1977, 11, 478–481. [Google Scholar] [CrossRef]
- Luzuriaga-Quichimbo, C.X.; Hernández del Barco, M.; Blanco-Salas, J.; Cerón-Martínez, C.E.; Ruiz-Téllez, T. Chiricaspi (Brunfelsia grandiflora, Solanaceae), a pharmacologically promising plant. Plants 2018, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Fuchino, H.; Sekita, S.; Mori, K.; Kawahara, N.; Satake, M.; Kiuchi, F. A new leishmanicidal saponin from Brunfelsia grandiflora. Chem. Pharm. Bull. 2008, 56, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Tanase, C.; Coșarcă, S.; Daniela-Lucia Muntean, D.-L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 2019, 24, 1182. [Google Scholar] [CrossRef]
- Fraga, C.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weimer, P.; Spies, L.M.; Haubert, R.; de Lima, J.A.S.; Maluf, R.W.; Rossi, R.C.; Suyenaga, E.S. Anti-inflammatory activity of Brunfelsia uniflora root extract: Phytochemical characterization and pharmacologic potential of this under-investigated species. Nat. Prod. Res. 2021, 35, 6122–6128. [Google Scholar] [CrossRef] [PubMed]
- Borneo, R.; Leon, A.E.; Aguirre, A.; Ribotta, P.; Cantero, J.J. Antioxidant capacity of medicinal plants from the province of Cordoba (Argentina) and their in vitro testing in a model food system. Food Chem. 2009, 112, 664–670. [Google Scholar] [CrossRef]
- Rebolledo, V.; Otero, M.C.; Delgado, J.M.; Torres, F.; Herrera, M.; Rios, M.; Cabanas, M.; Martinez, J.L.; Rodriguez-Diaz, M. Phytochemical profile and antioxidant activity of extracts of the peruvian peppertree Schinus areira L. from Chile. Saudi J. Biol. Sci. 2021, 28, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L.; Goya, L.; Lecumberri, E. LC/MS characterization of phenolic constituents of mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages. Food Res. Int. 2007, 40, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Granado-Serrano, A.B.; Martín, M.A.; Izquierdo-Pulido, M.; Goya, L.; Bravo, L.; Ramos, S. Molecular mechanisms of (-)-epicatechin and chlorogenic acid on the regulation of the apoptotic and survival/proliferation pathways in a human hepatoma cell line (HepG2). J. Agric. Food Chem. 2007, 55, 2020–2027. [Google Scholar] [CrossRef]
- León-González, A.; Mateos, R.; Ramos, S.; Martín, M.A.; Sarriá, B.; Martín-Cordero, C.; López-Lázaro, M.; Bravo, L.; Goya, L. Chemo-protective activity and characterization of phenolic extracts from Corema album. Food Res. Int. 2012, 49, 728–738. [Google Scholar] [CrossRef] [Green Version]
- Baeza, G.; Amigo-Benavent, M.; Sarriá, B.; Goya, L.; Mateos, R.; Bravo, L. Green coffee hydroxycinnamic acids but not caffeine protect human HepG2 cells against oxidative stress. Food Res. Int. 2014, 62, 1038–1046. [Google Scholar] [CrossRef] [Green Version]
- Martín, M.A.; Ramos, S.; Mateos, R.; Marais, J.; Bravo, L.; Khoo, C.; Goya, L. Chemical characterization and chemo-protective activity of cranberry phenolic extracts in a model cell culture. Response of the antioxidant defences and regulation of signaling pathways. Food Res. Int. 2015, 71, 68–82. [Google Scholar] [CrossRef]
- Wang, S.-L.; Sarriá, B.; Mateos, R.; Goya, L.; Bravo, L. TNF-α induced inflammation in human EA.hy926 endothelial cells is prevented by yerba mate and green coffee extracts, their main hydroxycinnamic acids, and microbial metabolites. Int. J. Food Sci. Nutr. 2019, 70, 267–284. [Google Scholar] [CrossRef]
- Palomino, O.; Garcia-Aguilar, A.; Gonzalez, A.; Guillen, C.; Benito, M.; Goya, L. Biological actions and molecular mechanisms of Sambucus nigra L. in neurodegeneration: A cell culture approach. Molecules 2021, 26, 4829. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L.; Mateos, R.; Sarriá, B.; Lecumberri, E.; Ramos, S.; Goya, L. Hypocholesterolaemic and antioxidant effects of yerba mate (Ilex paraguarensis) in high-cholesterol fed rats. Fitoterapia 2014, 92, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Perez-Jimenez, J.; Arranz, S.; Tabernero, M.; Díaz- Rubio, M.E.; Serrano, J.; Goni, I.; Saura-Calixto, F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res. Int. 2008, 41, 274–285. [Google Scholar] [CrossRef]
- ISO 14502-1; Determination of Substances Characteristic of Green and Black Tea—Part 1: Content of Total Polyphenols in Tea—Colorimetric Method Using Folin-Ciocalteu Reagent. International Organization of Standardization: Geneva, Switzerland, 2005; pp. 1–10.
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Walker, R.B.; Everette, J.D. Comparative reaction rates of various antioxidants with ABTS radical cation. J. Agric. Food Chem. 2009, 57, 1156–1161. [Google Scholar] [CrossRef]
- Sayago-Ayerdi, S.G.; Venema, K.; Tabernero, M.; Sarriá, B.; Bravo, L.; Mateos, R. Bioconversion by gut microbiota of predigested mango (Mangifera indica L.) ‘Ataulfo’ peel polyphenols assessed in a dynamic (TIM-2) in vitro model of the human colon. Food Res. Int. 2021, 139, 109963. [Google Scholar] [CrossRef]
Brunfelsia grandiflora | |
---|---|
Total Phenolic content by Folin (g/100 g d.m.) | 3.02 ± 0.33 |
DPPH (mg Trolox/g d.m.) | 11.86 ± 1.45 |
ABTS (mg Trolox/g d.m.) | 80.38 ± 4.22 |
IC50 by DPPH (μg/mL) | 2.55 ± 0.12 |
IC50 by ABTS (μg/mL) | 4.55 ± 0.10 |
Identified Compound | RT (min) | Molecular Formula | Molecular Weight | [M − H]− | Fragment MS2 |
---|---|---|---|---|---|
HYDROXYCOUMARINS | |||||
Esculin | 3.7 | C15H16O9 | 340.0794 | 339.0722 | 177; 133 |
Esculetin | 5.7 | C9H6O4 | 178.0266 | 177.0193 | 133; 105; 149 |
Scopoletin | 8.9 | C10H8O4 | 192.0423 | 191.0350 | 104; 120; 148 |
GALLATES | |||||
Gallic acid | 2.0 | C7H6O5 | 170.0215 | 169.0142 | 125 |
Methyl-gallate | 3.6 | C8H8O5 | 184.0372 | 183.0299 | 168; 124 |
Galloyl-glucose | 5.0 | C13H16O10 | 332.0743 | 331.0671 | 169 |
Methyl-gallate | 6.6 | C8H8O5 | 184.0372 | 183.0299 | 124 |
Ethyl-gallate | 6.3 | C9H10O5 | 198.0528 | 197.0455 | 169; 124 |
Ethyl-gallate | 7.2 | C9H10O5 | 198.0528 | 197.0455 | 169; 124 |
Methyl-gallate | 9.4 | C8H8O5 | 184.0372 | 183.0299 | 168 |
Ethyl-gallate | 11.4 | C9H10O5 | 198.0528 | 197.0455 | 169; 124 |
Ethyl-gallate | 13.0 | C9H10O5 | 198.0528 | 197.0455 | 169; 124 |
HYDROXYCINNAMIC ACIDS AND HYDROXYCINNAMATES | |||||
5-Caffeoylquinic acid | 4.7 | C16H18O9 | 354.0951 | 353.0878 | 191; 93; 173 |
Caffeoylquinic acid | 5.0 | C16H18O9 | 354.0951 | 353.0878 | 191 |
Caffeoylquinic acid | 5.1 | C16H18O9 | 354.0951 | 353.0878 | 191 |
Caffeic acid | 5.9 | C9H8O4 | 180.0423 | 179.0350 | 135 |
Coumaric acid | 8.0 | C9H8O3 | 164.0473 | 163.0401 | 119 |
Ferulic acid | 9.0 | C10H10O4 | 194.0579 | 193.0506 | 134; 149 |
Sinapic acid | 9.4 | C11H12O5 | 224.0685 | 223.0612 | 193, 149, 165 |
Dehydrodiferulic acid | 10.2 | C20H18O8 | 386.1002 | 385.0929 | 193; 177; 149 |
Caffeic acid-O-glucoside | 11.3 | C15H18O9 | 342.0951 | 341.0878 | 179; 161 |
Coumaric acid-O-glucoside | 12.5 | C15H18O8 | 326.1002 | 325.0929 | 163; 119 |
Coumaroylquinic acid | 12.8 | C16H18O8 | 338.1002 | 337.0929 | 191; 163 |
Ferulic acid-O-glucoside | 13.0 | C16H20O9 | 356.1107 | 355.1035 | 193; 149; 134 |
Sinapic acid-O-glucoside | 13.1 | C17H22O10 | 386.1213 | 385.1140 | 223 |
Ferulic acid-O-glucoside | 13.4 | C16H20O9 | 356.1107 | 355.1035 | 193; 134 |
Feruloylquinic acid | 13.4 | C17H20O9 | 368.1107 | 367.1035 | 191; 193 |
Sinapoylquinic acid | 13.5 | C18H22O10 | 398.1213 | 397.1140 | 223 |
Feruloylquinic acid | 13.7 | C17H20O9 | 368.1107 | 367.1035 | 193; 191 |
Ferulic acid-O-glucoside | 13.8 | C16H20O9 | 356.1107 | 355.1035 | 193; 134 |
Sinapic acid-O-glucoside | 15.2 | C17H22O10 | 386.1213 | 385.1140 | 223; 149 |
Coumaric acid-O-glucoside | 15.6 | C15H18O8 | 326.1002 | 325.0929 | 163 |
Coumaric acid-O-glucoside | 17.4 | C15H18O8 | 326.1002 | 325.0929 | 119 |
FLAVANOLS | |||||
Gallocatechin | 6.1 | C15H14O7 | 306.0740 | 305.0667 | 125; 137 |
Methyl-epigallocatechin | 14.2 | C16H16O7 | 320.0896 | 319.0823 | 275; 137 |
FLAVANONES | |||||
Eriodictyol | 10.2 | C15H12O6 | 288.0634 | 287.0561 | 285; 283; 287; 255 |
Naringenin-O-glucoside | 12.1 | C21H22O10 | 434.1213 | 433.1140 | 271; 151 |
Eriodictyol-O-glucoside | 12.3 | C21H22O11 | 450.1162 | 449.1089 | 287; 255 |
Naringenin | 15.9 | C15H12O5 | 272.0685 | 271.0612 | 151; 177 |
Eriodictyol-O-glucoside | 16.2 | C21H22O11 | 450.1162 | 449.1089 | 287 |
Hesperetin | 16.9 | C16H14O6 | 302.0790 | 301.0718 | 286; 242 |
Naringenin-O-glucoside | 18.0 | C21H22O10 | 434.1213 | 433.1140 | 271 |
FLAVONOLS | |||||
Kaempherol-O-rutinoside | 4.9 | C27H30O15 | 594.1585 | 593.1512 | 284, 285, 255 |
Isorhamnetin-O-rutinoside | 10.6 | C28H32O16 | 624.1690 | 623.1618 | 315 |
Kaempherol-O-galactoside-O-rhamnoside | 12.0 | C27H30O15 | 594.1585 | 593.1512 | 285; 257; 284 |
Isorhamnetin-O-glucoside-O-rhamnoside | 12.2 | C28H32O16 | 624.1690 | 623.1618 | 315 |
LIGNANS | |||||
Pinoresinol | 8.8 | C20H22O6 | 358.1416 | 357.1344 | N.D. |
Matairesinol | 9.5 | C20H22O6 | 358.1416 | 357.1344 | N.D. |
Hydroxysecoisolariciresinol isomer | 9.6 | C20H26O7 | 378.1679 | 377.1606 | 329 |
Secoisolariciresinol isomer | 9.8 | C20H26O6 | 362.1729 | 361.1657 | 165 |
Hydroxysecoisolariciresinol isomer | 9.9 | C20H26O7 | 378.1679 | 377.1606 | 329 |
Sesamol | 11.3 | C7H6O3 | 138.0317 | 137.0244 | N.D. |
Secoisolariciresinol | 11.8 | C20H26O6 | 362.1729 | 361.1657 | 346; 165 |
Cyclolariciresinol or Isolariciresinol | 12.7 | C20H24O6 | 360.1573 | 359.15 | 313 |
Hydroxymatairesinol/Nortrachelogenin | 12.9 | C20H22O7 | 374.1366 | 373.1293 | 355 |
Sesamin | 13.4 | C20H18O6 | 354.1103 | 353.1031 | 96 |
Secoisolariciresinol Isomer | 15.2 | C20H26O6 | 362.1729 | 361.1657 | 165 |
Episesamin | 19.4 | C20H18O6 | 354.1103 | 353.1031 | 96 |
OTHER PHENOLIC ACIDS | |||||
Methoxy-hydroxybenzoic acid glucoside | 2.3 | C14H18O9 | 330.0951 | 329.0878 | 167; 108 |
Dihydroxybenzoic acid glucose | 2.4 | C13H16O9 | 316.0794 | 315.0722 | 153; 109 |
Dihydroxybenzoic acid glucose | 2.6 | C13H16O9 | 316.0794 | 315.0722 | 153; 109 |
3,4-Dihydroxybenzoic acid (protocatechuic acid) | 3.2 | C7H6O4 | 154.0266 | 153.0193 | 109 |
3-Hydroxybenzoic acid | 4.8 | C7H6O3 | 138.0317 | 137.0244 | 93 |
3-Hydroxyphenylpropionic acid | 4.9 | C9H10O3 | 166.0630 | 165.0557 | 121 |
Dihydroxybenzoic acid | 5.1 | C7H6O4 | 154.0266 | 153.0193 | 109 |
3,4-Dihydroxyphenylpropionic acid | 5.4 | C9H10O4 | 182.0579 | 181.0506 | 137; 109 |
Hydroxyphenylacetic acid | 5.4 | C8H8O3 | 152.0473 | 151.0401 | 107 |
3-Methoxy-4-hydroxybenzoic acid (vanillic acid) | 5.9 | C8H8O4 | 168.0423 | 167.0350 | 152; 108 |
4-Hydroxybenzoic acid | 6.1 | C7H6O3 | 138.0317 | 137.0244 | 93 |
Dihydroxybenzoic acid | 6.4 | C7H6O4 | 154.0266 | 153.0193 | 109 |
3-Methoxy-4-hydroxyphenylacetic acid (Homovanillic acid) | 6.4 | C9H10O4 | 182.0579 | 181.0506 | 137; 122 |
Dihydroxybenzoic acid | 6.7 | C7H6O4 | 154.0266 | 153.0193 | 109 |
Methoxy-hydroxybenzoic acid | 6.8 | C8H8O4 | 168.0423 | 167.0350 | 108 |
Hydroxyphenylacetic acid | 8.0 | C8H8O3 | 152.0473 | 151.0401 | 107 |
Dihydroxybenzoic acid glucose | 8.1 | C13H16O9 | 316.0794 | 315.0722 | 153 |
3-Methoxy-4-hydroxyphenylpropionic acid | 8.4 | C10H12O4 | 196.0736 | 195.0663 | 136 |
4-Hydroxyphenylpropionic acid | 8.7 | C9H10O3 | 166.0630 | 165.0557 | 121 |
Methoxy-hydroxyphenylpropionic acid | 9.8 | C10H12O4 | 196.0736 | 195.0663 | 136 |
Methoxy-hydroxybenzoic acid | 11.3 | C8H8O4 | 168.0423 | 167.0350 | 152; 108 |
RT (min) | Proposed Compound | Brunfelsia grandiflora (mg/100 g d.w.) |
---|---|---|
HYDROXYCINNAMIC ACIDS and HYDROXYCINNAMATES | ||
4.7 | 5-Chlorogenic acid | 3.13 ± 0.18 |
5.0 | Caffeoylquinic acid | 1.89 ± 0.07 |
5.1 | Caffeoylquinic acid | 0.70 ± 0.05 |
5.9 | Caffeic acid | 0.21 ± 0.01 |
8.0 | p-Coumaric acid | 0.10 ± 0.01 |
9.0 | Ferulic acid | 3.99 ± 0.10 |
9.4 | Sinapic acid | 0.31 ± 0.02 |
10.2 | Dehydrodiferulic acid | 7.62 ± 0.11 |
11.3 | Caffeic acid-O-glucoside | 533.86 ± 8.29 |
12.5 | Coumaric acid-O-glucoside | 57.57 ± 0.50 |
12.8 | Coumaroylquinic acid | 2.26 ± 0.10 |
13.0 | Ferulic acid-O-glucoside | 391.46 ± 17.08 |
13.1 | Sinapic acid-O-glucoside | 81.55 ± 1.66 |
13.4 | Ferulic acid-O-glucoside | 19.33 ± 1.00 |
13.4 | Feruloylquinic acid | 151.04 ± 4.07 |
13.5 | Sinapoylquinic acid | 6.54 ± 0.09 |
13.7 | Feruloylquinic acid | 7.51 ± 0.22 |
13.8 | Ferulic acid-O-glucoside | 64.22 ± 2.11 |
15.2 | Sinapic acid-O-glucoside | 8.76 ± 0.30 |
15.6 | Coumaric acid-O-glucoside | 1.61 ± 0.14 |
17.4 | Coumaric acid-O-glucoside | 1.48 ± 0.04 |
TOTAL HYDROXYCINNAMIC ACIDS (mg/100 g) (%) | 1345.13 ± 36.16 (66.77%) | |
HYDROXYCOUMARINS | ||
3.7 | Esculin | 4.71 ± 1.16 |
5.7 | Esculetin | 21.49 ± 0.66 |
8.9 | Scopoletin | 286.77 ± 21.28 |
TOTAL HYDROXYCOUMARINS (mg/100 g) (%) | 312.97 ± 23.11 (15.13%) | |
LIGNANS | ||
8.8 | Pinoresinol | 0.77 ± 0.03 |
9.5 | Matairesinol | 2.45 ± 0.29 |
9.6 | Hydroxysecoisolariciresinol isomer | 5.19 ± 0.19 |
9.8 | Secoisolariciresinol isomer | 3.35 ± 0.20 |
9.9 | Hydroxysecoisolariciresinol isomer | 4.43 ± 0.10 |
11.3 | Sesamol | 55.36 ± 2.46 |
11.8 | Secoisolariciresinol | 2.42 ± 0.09 |
12.7 | Cyclolariciresinol or Isolariciresinol | 9.70 ± 0.57 |
12.9 | Hydroxymatairesinol/Nortrachelogenin | 15.23 ± 0.75 |
13.4 | Sesamin | 16.00 ± 0.47 |
15.2 | Secoisolariciresinol isomer | 2.95 ± 0.20 |
19.4 | Episesamin | 5.51 ± 0.13 |
TOTAL LIGNANS (mg/100 g) (%) | 123.36 ± 5.48 (6.12%) | |
FLAVONOLS | ||
4.9 | Kaempherol-O-rutinoside | 3.97 ± 2.21 |
10.6 | Isorhamnetin-O-rutinoside | 8.09 ± 0.09 |
12.0 | Kaempherol-O-galactoside-O-rhamnoside | 7.62 ± 0.29 |
12.2 | Isorhamnetin-O-glucoside-O-rhamnoside | 94.51 ± 2.47 |
TOTAL FLAVONOLS (mg/100 g) (%) | 114.18 ± 5.06 (5.67%) | |
PHENOLIC ACIDS | ||
2.3 | Methoxy-hydroxybenzoic acid glucoside | 2.86 ± 0.22 |
2.4 | Dihydroxybenzoic acid glucose | 2.16 ± 0.10 |
2.6 | Dihydroxybenzoic acid glucose | 2.80 ± 0.20 |
3.2 | 3,4-Dihydroxybenzoic acid (protocatechuic acid) | 5.23 ± 0.25 |
4.8 | 3-Hydroxybenzoic acid | 6.97 ± 0.15 |
4.9 | 3-Hydroxyphenylpropionic acid | 3.99 ± 0.24 |
5.1 | Dihydroxybenzoic acid | 1.03 ± 0.04 |
5.4 | 3,4-Dihydroxyphenylpropionic acid | 3.81 ± 0.15 |
5.9 | 3-Methoxy-4-hydroxybenzoic acid (vanillic acid) | 2.73 ± 0.16 |
6.1 | 4-Hydroxybenzoic acid | 1.50 ± 0.02 |
6.4 | Dihydroxybenzoic acid | 1.22 ± 0.06 |
6.4 | 3-Methoxy-4-hydroxyphenylacetic acid (Homovanillic acid) | 0.17 ± 0.01 |
6.5 | 4-Hydroxyphenylacetic acid | 7.61 ± 0.09 |
6.7 | Dihydroxybenzoic acid | 0.59 ± 0.06 |
6.8 | Methoxy-hydroxybenzoic acid | 2.11 ± 0.06 |
8.0 | Hydroxyphenylacetic acid | 3.98 ± 0.07 |
8.1 | Dihydroxybenzoic acid glucose | 0.81 ± 0.02 |
8.4 | 3-Methoxy-4-hydroxyphenylpropionic acid | 1.08 ± 0.05 |
8.7 | 4-Hydroxyphenylpropionic acid | 2.73 ± 0.10 |
9.8 | Methoxy-hydroxyphenylpropionic acid | 1.85 ± 0.07 |
11.3 | Methoxy-hydroxybenzoic acid | 7.23 ± 0.24 |
TOTAL PHENOLIC ACIDS (mg/100 g) (%) | 62.46 ± 2.38 (3.10%) | |
GALLATES | ||
2.0 | Gallic acid | 0.97 ± 0.13 |
3.6 | Methyl-gallate | 0.66 ± 0.06 |
5.0 | Galloyl-glucose | 1.82 ± 0.13 |
6.3 | Ethyl-gallate | 3.99 ± 0.09 |
6.6 | Methyl-gallate | 2.89 ± 0.10 |
7.2 | Ethyl-gallate | 12.38 ± 0.38 |
9.4 | Methyl-gallate | 0.57 ± 0.06 |
11.4 | Ethyl-gallate | 19.92 ± 0.56 |
13.0 | Ethyl-gallate | 3.28 ± 0.10 |
TOTAL GALLATES (mg/100 g) (%) | 46.48 ± 1.62 (2.31%) | |
FLAVANOLS | ||
6.1 | Gallocatechin | 5.54 ± 0.12 |
14.2 | Methyl-epigallocatechin | 0.29 ± 0.02 |
TOTAL FLAVANOLS (mg/100 g) (%) | 5.83 ± 0.14 (0.29%) | |
FLAVANONES | ||
10.2 | Eriodictyol | 0.54 ± 0.05 |
12.1 | Naringenin-O-glucoside | 1.59 ± 0.06 |
12.3 | Eriodictyol-O-glucoside | 0.65 ± 0.02 |
15.9 | Naringenin | 0.06 ± 0.01 |
16.2 | Eriodictyol-O-glucoside | 1.00 ± 0.07 |
16.9 | Hesperetin | 0.09 ± 0.01 |
18.0 | Naringenin-O-glucoside | 0.37 ± 0.05 |
TOTAL FLAVANONES (mg/100 g) (%) | 4.30 ± 0.27 (0.21%) | |
TOTAL PHENOLIC COMPOUNDS | 2014.71 ± 74.23 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateos, R.; Ramos-Cevallos, N.; Castro-Luna, A.; Ramos-Gonzalez, M.; Clavo, Z.-M.; Quispe-Solano, M.; Goya, L.; Rodríguez, J.-L. Identification, Quantification, and Characterization of the Phenolic Fraction of Brunfelsia grandiflora: In Vitro Antioxidant Capacity. Molecules 2022, 27, 6510. https://doi.org/10.3390/molecules27196510
Mateos R, Ramos-Cevallos N, Castro-Luna A, Ramos-Gonzalez M, Clavo Z-M, Quispe-Solano M, Goya L, Rodríguez J-L. Identification, Quantification, and Characterization of the Phenolic Fraction of Brunfelsia grandiflora: In Vitro Antioxidant Capacity. Molecules. 2022; 27(19):6510. https://doi.org/10.3390/molecules27196510
Chicago/Turabian StyleMateos, Raquel, Norma Ramos-Cevallos, Americo Castro-Luna, Mariella Ramos-Gonzalez, Zoyla-Mirella Clavo, Miguel Quispe-Solano, Luis Goya, and José-Luis Rodríguez. 2022. "Identification, Quantification, and Characterization of the Phenolic Fraction of Brunfelsia grandiflora: In Vitro Antioxidant Capacity" Molecules 27, no. 19: 6510. https://doi.org/10.3390/molecules27196510
APA StyleMateos, R., Ramos-Cevallos, N., Castro-Luna, A., Ramos-Gonzalez, M., Clavo, Z. -M., Quispe-Solano, M., Goya, L., & Rodríguez, J. -L. (2022). Identification, Quantification, and Characterization of the Phenolic Fraction of Brunfelsia grandiflora: In Vitro Antioxidant Capacity. Molecules, 27(19), 6510. https://doi.org/10.3390/molecules27196510