Design, Synthesis, and Bioactivity Study of Novel Tryptophan Derivatives Containing Azepine and Acylhydrazone Moieties
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Antiviral Activities
2.3. Larvicidal Activity
2.4. Fungicidal Activities
3. Materials and Methods
3.1. Materials
3.2. General Synthesis
3.2.1. Synthesis of (S)-methyl 2-amino-3-(1H-indol-3-yl)propanoate (1)
3.2.2. Synthesis of (S)-methyl 3-(1H-indol-3-yl)-2-(4-methylphenylsulfonamido)propanoate (2)
3.2.3. General Procedures for the Preparation of Compounds 3a–3c
3.2.4. General Procedures for the Preparation of Compounds 4a–4c
3.2.5. General Procedures for the Preparation of Compounds 5a–5c
3.2.6. General Procedures for the Preparation of Compounds 6a–6c
3.2.7. General Procedures for the Preparation of Compounds 6d–6aa
3.3. Biological Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Barba-Ostria, C.; Carrera-Pacheco, S.E.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L.P. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022, 27, 4490. [Google Scholar] [CrossRef] [PubMed]
- Clardy, J.; Walsh, C. Lessons from natural molecules. Nature 2004, 432, 829–837. [Google Scholar] [CrossRef]
- Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today 2016, 21, 204–207. [Google Scholar] [CrossRef]
- Wang, S.; Dong, G.; Sheng, C. Structural Simplification of Natural Products. Chem. Rev. 2019, 119, 4180–4220. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-C.; Chiou, G.; Chooi, Y.-H.; McMahon, T.C.; Xu, W.; Garg, N.K.; Tang, Y. Elucidation of the Concise Biosynthetic Pathway of the Communesin Indole Alkaloids. Angew. Chem. Int. Ed. 2015, 54, 3004–3007. [Google Scholar] [CrossRef]
- Appelt, C.; Schrey, A.K.; Arvid Söderhäll, J.; Schmieder, P. Design of antimicrobial compounds based on peptide structures. Bioorg. Med. Chem. Lett. 2007, 17, 2334–2337. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Liu, Y.X.; Liu, Y.X.; Song, H.J.; Wang, Q.M. C ring may be dispensable for b-carboline: Design, synthesis, and bioactivities evaluation of tryptophan analog derivatives based on the biosynthesis of b-carboline alkaloids. Bioorg. Med. Chem. 2016, 24, 462–473. [Google Scholar] [CrossRef]
- Chung, H.S.; Hon, P.M.; Lin, G.; But, P.P.H.; Dong, H. Antitussive activity of Stemona alkaloids from Stemona tuberosa. Planta Med. 2003, 69, 914–920. [Google Scholar]
- Gozler, T.; Gozler, B.; Weiss, I.; Freyer, A.J.; Shamma, M. (+)-Turkiyenine: An unusual extension of the biogenetic sequence for the isoquinoline alkaloids. J. Am. Chem. Soc. 1984, 106, 6101–6102. [Google Scholar] [CrossRef]
- Shah, J.H.; Hindupur, R.M.; Pati, H.N. Pharmacological and Biological Activities of Benzazepines: An Overview. Curr. Bioact. Compd. 2015, 11, 170–188. [Google Scholar] [CrossRef]
- Iwasa, K.; Kamigauchi, M.; Takao, N. Biotransformation of the Protoberberines into Benzindanoazepine- and Spirobenzyli-soquinoline-Type Alkaloids by Tissue Cultures of Several Corydalis Species. J. Nat. Prod. 1988, 51, 1232–1235. [Google Scholar] [CrossRef]
- Huang, J.; Shi, Q.; Choudhry, N.; Li, H.M.; Yang, C.L.; Kalashova, J.; Yan, Z.Q.; Li, J.H.; Reddy, M.C.; Gopala, S.G.; et al. Discovery and Optimization of Seven-Membered Lactam-Based Com-pounds to Phenocopy the Inhibition of the Aurora Kinase B. ACS Med. Chem. Lett. 2022, 13, 1091–1098. [Google Scholar] [CrossRef]
- Schultz, C.; Link, A.; Leost, M.; Zaharevitz, D.W.; Gussio, R.; Sausville, E.A.; Meijer, A.L.; Kunick, C. Paullones, a Series of Cyclin-Dependent Kinase Inhibitors: Synthesis, Evaluation of CDK1/Cyclin B Inhibition, and in Vitro Antitumor Activity. J. Med. Chem. 1999, 42, 2909–2919. [Google Scholar] [CrossRef]
- Egert-Schmidt, A.M.; Dreher, J.; Dunkel, U.; Kohfeld, S.; Preu, L.; Weber, H.; Ehlert, J.E.; Mutschler, B.; Totzke, F.; Schächtele, C.; et al. Identification of 2-Anilino-9-methoxy-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-ones as Dual PLK1/VEGF-R2 Kinase Inhibitor Chemo-types by Structure-Based Lead Generation. J. Med. Chem. 2010, 53, 2433–2442. [Google Scholar] [CrossRef] [PubMed]
- Arya, K.; Dandia, A. The expedient synthesis of 1,5-benzothiazepines as a family of cytotoxic drugs. Bioorganic Med. Chem. Lett. 2008, 18, 114–119. [Google Scholar] [CrossRef]
- Ha, S.K.; Shobha, D.; Moon, E.; Chari, M.A.; Mukkanti, K.; Kim, S.H.; Ahn, K.H.; Kim, S.Y. Anti-neuroinflammatory ac-tivity of 1,5-benzodiazepine derivatives. Bioorg. Med. Chem. Lett. 2010, 20, 3969–3971. [Google Scholar] [CrossRef]
- Demchenko, S.; Lesyk, R.; Yadlovskyi, O.; Zuegg, J.; Elliott, A.G.; Drapak, I.; Fedchenkova, Y.; Suvorova, Z.; Demchenko, A. Synthesis, Antibacterial and Antifungal Activity of New 3-Aryl-5H-pyrrolo[1,2-a]imidazole and 5H-Imidazo[1,2-a]azepine Quaternary Salts. Molecules 2021, 26, 253. [Google Scholar] [CrossRef] [PubMed]
- Thota, S.; Rodrigues, D.A.; Pinheiro, P.S.M.; Lima, L.M.; Fraga, C.A.M.; Barreiro, E.J.B. N-Acylhydrazones as drugs. Bioorg. Med. Chem. Lett. 2018, 28, 2797–2806. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.A.; Pinto, A.C.S.; Duarte, C.L.; Taranto, A.G.; Junior, E.L.; Cordeiro, C.F.; Carvalho, D.T.; Varotti, F.P.; Fonseca, A.L. Evaluation of antiplasmodial activity in silico and in vitro of N-acylhydrazone derivatives. BMC Chem. 2022, 16, 1–13. [Google Scholar] [CrossRef]
- Gao, H.; Li, J.Q.; Kang, P.W.; Chigan, J.Z.; Wang, H.; Liu, L.; Xu, Y.S.; Zhai, L.; Yang, K.W. N-acylhydrazones confer in-hibitory efficacy against New Delhi metallo-β-lactamase-1. Bioorg. Chem. 2021, 114, 105138. [Google Scholar] [CrossRef] [PubMed]
- Haranahalli, K.; Lazzarini, C.; Sun, Y.; Zambito, J.; Pathiranage, S.; McCarthy, J.B.; Mallamo, J.; Del Poeta, M.; Ojima, I. SAR Studies on Aromatic Acylhydrazone-Based Inhibitors of Fungal Sphingolipid Synthesis as Next-Generation Antifungal Agents. J. Med. Chem. 2019, 62, 8249–8273. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.A.M.; Barreiro, E.J. Medicinal chemistry of N-acylhydrazones: New lead-compounds of analgesic, antiinflamma-tory and antithrombotic drugs. Curr. Med. Chem. 2006, 13, 167–198. [Google Scholar] [CrossRef]
- Liu, Y.X.; Song, H.J.; Huang, Y.Q.; Li, J.R.; Zhao, S.; Song, Y.C.; Yang, P.W.; Xiao, Z.X.; Liu, Y.X.; Li, Y.Q.; et al. Design, Synthesis, and Antiviral, Fungicidal, and Insecticidal Activities of Tetrahy-dro-β-carboline-3-carbohydrazide Derivatives. J. Agric. Food Chem. 2014, 62, 9987–9999. [Google Scholar] [CrossRef]
- Chen, L.; Xie, J.; Song, H.; Liu, Y.; Gu, Y.; Wang, L.; Wang, Q. Design, Synthesis, and Biological Activities of Spirooxindoles Containing Acylhydrazone Fragment Derivatives Based on the Biosynthesis of Alkaloids Derived from Tryptophan. J. Agric. Food Chem. 2016, 64, 6508–6516. [Google Scholar] [CrossRef]
- Xie, J.; Xu, W.; Song, H.; Liu, Y.; Zhang, J.; Wang, Q. Synthesis and Antiviral/Fungicidal/Insecticidal Activities Study of Novel Chiral Indole Diketopiperazine Derivatives Containing Acylhydrazone Moiety. J. Agric. Food Chem. 2020, 68, 5555–5571. [Google Scholar] [CrossRef]
- Wang, Q.M.; Song, H.J.; Li, L.L.; Liu, Y.X.; Wang, Z.W.; Li, Y.Q. Preparation of tetrahydroazepino[4,5-b]indole-2-carbohydrazide derivatives useful as agrochemical antiviral agents, fungicides and insecticide. CN110759913 A, 12 June 2020. [Google Scholar]
- Wang, K.; Su, B.; Wang, Z.; Wu, M.; Li, Z.; Hu, Y.; Fan, Z.; Mi, N.; Wang, Q. Synthesis and Antiviral Activities of Phenanthroindolizidine Alkaloids and Their Derivatives. J. Agric. Food Chem. 2009, 58, 2703–2709. [Google Scholar] [CrossRef]
- Zhao, H.P.; Liu, Y.X.; Cui, Z.P.; Beattie, D.; Gu, Y.C.; Wang, Q.M. Design, synthesis, and biological activities of arylme-thylamine substituted chlorotriazine and methylthiotriazine compounds. J. Agric. Food Chem. 2011, 59, 11711–11717. [Google Scholar] [CrossRef]
- Ni, W.; Li, C.; Liu, Y.; Song, H.; Wang, L.; Song, H.; Wang, Q. Various Bioactivity and Relationship of Structure–Activity of Matrine Analogues. J. Agric. Food Chem. 2017, 65, 2039–2047. [Google Scholar] [CrossRef]
Compd. | Concn. (µg/mL) | Inhibition Rate (%) | ||
---|---|---|---|---|
Inactivation Effect (%) | Curative Effect (%) | Protection Effect (%) | ||
5a | 500 | 44 ± 3 | 36 ± 2 | 42 ± 1 |
100 | 10 ± 1 | 4 ± 1 | 14 ± 1 | |
5b | 500 | 50 ± 2 | 46 ± 4 | 43 ± 3 |
100 | 20 ± 2 | 16 ± 1 | 19 ± 1 | |
5c | 500 | 55 ± 2 | 49 ± 3 | 50 ± 3 |
100 | 22 ± 1 | 20 ± 1 | 26 ± 1 | |
6a | 500 | 52 ± 1 | 54 ± 3 | 47 ± 2 |
100 | 16 ± 2 | 23 ± 1 | 18 ± 2 | |
6b | 500 | 35 ± 2 | ||
6c | 500 | 33 ± 1 | ||
6d | 500 | 41 ± 2 | 36 ± 2 | 38 ± 2 |
100 | 16 ± 1 | 5 ± 2 | 8 ± 1 | |
6e | 500 | 46 ± 2 | 47 ± 3 | 37 ± 2 |
100 | 10 ± 1 | 16 ± 1 | 12 ± 3 | |
6f | 500 | 40 ± 2 | 35 ± 2 | 44 ± 1 |
100 | 15 ± 1 | 6 ± 1 | 10 ± 1 | |
6g | 500 | 49 ± 1 | 43 ± 4 | 50 ± 3 |
100 | 21 ± 1 | 14 ± 1 | 17 ± 1 | |
6h | 500 | 54 ± 1 | 48 ± 2 | 45 ± 4 |
100 | 23 ± 1 | 10 ± 4 | 20 ± 1 | |
6i | 500 | 40 ± 3 | ||
6j | 500 | 36 ± 1 | ||
6k | 500 | 42 ± 3 | 45 ± 2 | 46 ± 1 |
100 | 9 ± 1 | 15 ± 1 | 12 ± 1 | |
6l | 500 | 34 ± 1 | ||
6m | 500 | 47 ± 2 | 49 ± 2 | 41 ± 3 |
100 | 14 ± 1 | 9 ± 3 | 13 ± 1 | |
6n | 500 | 51 ± 4 | 42 ± 1 | 38 ± 3 |
100 | 8 ± 2 | 11 ± 1 | 17 ± 1 | |
6o | 500 | 44 ± 1 | 43 ± 2 | 39 ± 1 |
100 | 7 ± 4 | 12 ± 1 | 6 ± 1 | |
6p | 500 | 37 ± 1 | ||
6q | 500 | 38 ± 5 | ||
6r | 500 | 32 ± 1 | ||
6s | 500 | 40 ± 1 | 39 ± 1 | 43 ± 4 |
100 | 11 ± 1 | 13 ± 1 | 8 ± 1 | |
6t | 500 | 52 ± 2 | 50 ± 2 | 46 ± 1 |
100 | 18 ± 1 | 19 ± 1 | 11 ± 1 | |
6u | 500 | 39 ± 3 | ||
6v | 500 | 56 ± 2 | 46 ± 4 | 49 ± 3 |
100 | 22 ± 1 | 19 ± 2 | 15 ± 1 | |
6w | 500 | 35 ± 2 | ||
6x | 500 | 38 ± 3 | ||
6y | 500 | 52 ± 3 | 54 ± 1 | 48 ± 1 |
100 | 21 ± 1 | 24 ± 1 | 16 ± 1 | |
6z | 500 | 37 ± 3 | ||
6aa | 500 | 37 ± 3 | ||
ningnanmycin | 500 | 57 ± 2 | 55 ± 3 | 58 ± 1 |
100 | 28 ± 1 | 26 ± 1 | 27 ± 2 | |
rabvirin | 500 | 40 ± 1 | 37 ± 1 | 39 ± 2 |
100 | 12 ± 1 | 11 ± 1 | 15 ± 1 |
Compd | Larvicidal Activity at Various Concentrations (mg/L) | |||||
---|---|---|---|---|---|---|
600 | 200 | 100 | 50 | 25 | 10 | |
5a | 90 ± 0 | 50 ± 0 | 0 | |||
5b | 100 | 100 | 60 ± 0 | 30 ± 0 | ||
5c | 100 | 100 | 76 ± 6 | 40 ± 0 | ||
6a | 50 ± 0 | |||||
6b | 90 ± 0 | 60 ± 0 | 30 ± 0 | |||
6c | 40 ± 0 | |||||
6d | 70 ± 0 | 50 ± 0 | ||||
6e | 60 ± 0 | 40 ± 0 | ||||
6f | 70 ± 0 | 40 ± 0 | ||||
6g | 100 | 80 ± 0 | 40 ± 0 | |||
6h | 100 | 70 ± 0 | 40 ± 0 | |||
6i | 70 ± 0 | 30 ± 0 | ||||
6j | 60 ± 0 | 30 ± 0 | ||||
6k | 100 | 100 | 80 ± 0 | 60 ± 0 | 40 ± 0 | |
6l | 100 | 70 ± 0 | 30 ± 10 | |||
6m | 100 | 100 | 80 ± 0 | 76 ± 6 | 40 ± 0 | |
6n | 90 ± 0 | 50 ± 0 | ||||
6o | 70 ± 0 | 30 ± 0 | ||||
6p | 76 ± 6 | 30 ± 0 | ||||
6q | 40 ± 0 | |||||
6r | 0 | |||||
6s | 70 ± 0 | 50 ± 0 | ||||
6t | 50 ± 0 | |||||
6u | 90 ± 0 | 70 ± 0 | 40 ± 0 | |||
6v | 100 | 100 | 50 ± 0 | |||
6w | 50 ± 0 | |||||
6x | 76 ± 6 | 43 ± 6 | ||||
6y | 100 | 70 ± 0 | 40 ± 0 | |||
6z | 100 | 100 | 86 ± 6 | 70 ± 0 | 56 ± 6 | 30 ± 0 |
6aa | 60 ± 0 | 20 ± 0 |
Compd. | y = ax + b | LC50 (mg/L) | Correlation Coefficient |
---|---|---|---|
6z | y = 1.5974x + 2.8799 | 21.2 | 0.9989 |
Compd. | Inhibition Rate (% at 50 mg/L) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A.S. | F.G. | P.I. | P.C. | S.S. | B.C. | R.S. | F.C. | C.H. | P.P. | R.C. | B.M. | C.O. | F.M. | |
5a | 56 ± 1 | 33 ± 1 | 51 ± 1 | 60 ± 2 | 69 ± 1 | 31 ± 1 | 28 ± 1 | 59 ± 1 | 83 ± 1 | 42 ± 2 | 90 ± 1 | 51 ± 1 | 50 ± 1 | 84 ± 1 |
5b | 58 ± 1 | 52 ± 2 | 51 ± 1 | 65 ± 1 | 66 ± 1 | 47 ± 1 | 35 ± 1 | 39 ± 1 | 41 ± 3 | 27 ± 1 | 52 ± 1 | 36 ± 2 | 50 ± 1 | 52 ± 1 |
5c | 45 ± 2 | 45 ± 2 | 74 ± 2 | 75 ± 2 | 76 ± 2 | 49 ± 2 | 66 ± 2 | 40 ± 2 | 52 ± 2 | 31 ± 2 | 60 ± 2 | 39 ± 1 | 47 ± 1 | 56 ± 1 |
6a | 33 ± 1 | 32 ± 1 | 59 ± 1 | 40 ± 0 | 42 ± 1 | 38 ± 1 | 33 ± 1 | 33 ± 1 | 46 ± 1 | 20 ± 1 | 44 ± 1 | 23 ± 1 | 40 ± 1 | 66 ± 2 |
6b | 47 ± 1 | 58 ± 1 | 39 ± 1 | 31 ± 1 | 57 ± 1 | 38 ± 1 | 28 ± 1 | 36 ± 1 | 56 ± 1 | 22 ± 1 | 53 ± 1 | 50 ± 1 | 53 ± 1 | 65 ± 1 |
6c | 33 ± 1 | 56 ± 1 | 35 ± 1 | 35 ± 1 | 42 ± 1 | 25 ± 1 | 32 ± 1 | 41 ± 1 | 36 ± 1 | 20 ± 0 | 50 ± 1 | 33 ± 1 | 57 ± 1 | 61 ± 1 |
6d | 52 ± 1 | 45 ± 1 | 43 ± 1 | 40 ± 1 | 49 ± 1 | 29 ± 1 | 37 ± 1 | 43 ± 1 | 62 ± 1 | 44 ± 1 | 92 ± 1 | 36 ± 1 | 47 ± 1 | 70 ± 0 |
6e | 58 ± 1 | 44 ± 1 | 35 ± 1 | 50 ± 0 | 32 ± 1 | 34 ± 1 | 35 ± 1 | 39 ± 1 | 36 ± 1 | 20 ± 1 | 35 ± 1 | 61 ± 1 | 47 ± 1 | 66 ± 1 |
6f | 50 ± 0 | 45 ± 1 | 30 ± 0 | 32 ± 1 | 42 ± 1 | 38 ± 1 | 39 ± 1 | 30 ± 0 | 52 ± 1 | 20 ± 1 | 57 ± 1 | 29 ± 1 | 50 ± 0 | 52 ± 1 |
6g | 43 ± 1 | 47 ± 3 | 28 ± 1 | 35 ± 1 | 55 ± 1 | 29 ± 1 | 35 ± 1 | 36 ± 1 | 36 ± 1 | 20 ± 1 | 53 ± 1 | 36 ± 1 | 57 ± 1 | 56 ± 1 |
6h | 33 ± 1 | 26 ± 1 | 43 ± 1 | 37 ± 1 | 32 ± 1 | 38 ± 1 | 28 ± 1 | 23 ± 1 | 42 ± 1 | 37 ± 1 | 64 ± 1 | 63 ± 1 | 50 ± 1 | 61 ± 1 |
6i | 39 ± 1 | 34 ± 1 | 31 ± 1 | 30 ± 0 | 27 ± 2 | 41 ± 1 | 32 ± 1 | 36 ± 1 | 46 ± 1 | 30 ± 1 | 70 ± 0 | 26 ± 1 | 40 ± 0 | 59 ± 1 |
6j | 45 ± 1 | 26 ± 2 | 35 ± 1 | 31 ± 1 | 42 ± 1 | 38 ± 1 | 30 ± 0 | 33 ± 1 | 46 ± 1 | 20 ± 1 | 53 ± 1 | 23 ± 1 | 50 ± 1 | 66 ± 1 |
6k | 47 ± 2 | 26 ± 1 | 28 ± 1 | 30 ± 1 | 54 ± 1 | 38 ± 1 | 28 ± 1 | 35 ± 1 | 73 ± 2 | 27 ± 1 | 53 ± 1 | 36 ± 1 | 50 ± 0 | 70 ± 1 |
6l | 59 ± 1 | 30 ± 1 | 37 ± 1 | 35 ± 1 | 30 ± 1 | 35 ± 1 | 31 ± 1 | 36 ± 1 | 78 ± 1 | 20 ± 1 | 46 ± 2 | 29 ± 1 | 40 ± 1 | 67 ± 1 |
6m | 33 ± 1 | 34 ± 1 | 35 ± 1 | 36 ± 1 | 37 ± 1 | 29 ± 1 | 39 ± 1 | 52 ± 1 | 46 ± 1 | 44 ± 1 | 100 | 42 ± 1 | 50 ± 1 | 71 ± 1 |
6n | 45 ± 1 | 26 ± 1 | 31 ± 1 | 40 ± 1 | 35 ± 1 | 34 ± 2 | 42 ± 1 | 36 ± 1 | 49 ± 1 | 37 ± 1 | 57 ± 1 | 36 ± 1 | 57 ± 1 | 61 ± 1 |
6o | 54 ± 1 | 24 ± 1 | 35 ± 2 | 30 ± 1 | 36 ± 1 | 34 ± 1 | 28 ± 1 | 39 ± 1 | 46 ± 1 | 57 ± 1 | 59 ± 1 | 43 ± 1 | 60 ± 0 | 56 ± 1 |
6p | 58 ± 3 | 33 ± 1 | 28 ± 1 | 25 ± 1 | 32 ± 1 | 31 ± 1 | 25 ± 1 | 43 ± 1 | 67 ± 3 | 59 ± 1 | 55 ± 1 | 45 ± 1 | 47 ± 1 | 66 ± 1 |
6q | 53 ± 1 | 38 ± 1 | 38 ± 1 | 35 ± 1 | 40 ± 0 | 29 ± 1 | 51 ± 1 | 30 ± 0 | 36 ± 1 | 32 ± 1 | 57 ± 1 | 33 ± 1 | 57 ± 1 | 47 ± 1 |
6r | 72 ± 1 | 45 ± 2 | 74 ± 2 | 24 ± 1 | 91 ± 1 | 38 ± 1 | 70 ± 0 | 30 ± 0 | 67 ± 1 | 20 ± 1 | 66 ± 1 | 57 ± 1 | 53 ± 2 | 56 ± 1 |
6s | 70 ± 0 | 35 ± 1 | 43 ± 1 | 37 ± 1 | 27 ± 1 | 34 ± 1 | 34 ± 1 | 36 ± 1 | 57 ± 1 | 25 ± 1 | 50 ± 0 | 29 ± 1 | 60 ± 1 | 56 ± 1 |
6t | 45 ± 1 | 26 ± 1 | 41 ± 1 | 30 ± 1 | 42 ± 1 | 29 ± 1 | 28 ± 2 | 46 ± 1 | 94 ± 1 | 27 ± 1 | 98 ± 1 | 33 ± 1 | 57 ± 1 | 100 |
6u | 33 ± 1 | 23 ± 1 | 51 ± 1 | 40 ± 1 | 57 ± 2 | 59 ± 2 | 39 ± 1 | 36 ± 1 | 41 ± 1 | 25 ± 1 | 59 ± 1 | 26 ± 1 | 53 ± 1 | 56 ± 3 |
6v | 70 ± 0 | 70 ± 0 | 35 ± 1 | 37 ± 1 | 49 ± 3 | 29 ± 1 | 35 ± 1 | 36 ± 1 | 57 ± 1 | 27 ± 1 | 55 ± 1 | 33 ± 1 | 57 ± 1 | 66 ± 1 |
6w | 45 ± 1 | 59 ± 1 | 51 ± 1 | 42 ± 1 | 37 ± 1 | 36 ± 1 | 28 ± 1 | 36 ± 1 | 41 ± 1 | 20 ± 1 | 90 ± 0 | 36 ± 1 | 53 ± 1 | 56 ± 1 |
6x | 58 ± 1 | 45 ± 1 | 46 ± 1 | 40 ± 1 | 44 ± 1 | 29 ± 1 | 25 ± 1 | 35 ± 1 | 52 ± 1 | 32 ± 1 | 53 ± 1 | 28 ± 1 | 67 ± 1 | 52 ± 1 |
6y | 54 ± 1 | 58 ± 1 | 74 ± 1 | 50 ± 1 | 69 ± 1 | 56 ± 1 | 32 ± 1 | 36 ± 1 | 31 ± 1 | 30 ± 0 | 55 ± 1 | 39 ± 1 | 57 ± 1 | 61 ± 1 |
6z | 58 ± 1 | 58 ± 1 | 45 ± 1 | 45 ± 2 | 69 ± 1 | 56 ± 1 | 40 ± 1 | 41 ± 1 | 73 ± 1 | 20 ± 1 | 63 ± 1 | 41 ± 1 | 60 ± 1 | 56 ± 1 |
6aa | 50 ± 0 | 33 ± 1 | 66 ± 1 | 43 ± 1 | 86 ± 1 | 75 ± 1 | 35 ± 1 | 42 ± 1 | 46 ± 1 | 37 ± 1 | 63 ± 1 | 29 ± 1 | 61 ± 1 | 61 ± 1 |
chlorothalonil | 38 ± 1 | 100 | 85 ± 1 | 90 ± 0 | 98 ± 1 | 82 ± 1 | 92 ± 1 | 71 ± 1 | 53 ± 1 | 10 ± 0 | 98 ± 1 | 56 ± 1 | 80 ± 1 | 41 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, R.; Li, L.; Liu, J.; Liu, Y.; Song, H.; Wang, Q. Design, Synthesis, and Bioactivity Study of Novel Tryptophan Derivatives Containing Azepine and Acylhydrazone Moieties. Molecules 2022, 27, 6700. https://doi.org/10.3390/molecules27196700
Zhang J, Yang R, Li L, Liu J, Liu Y, Song H, Wang Q. Design, Synthesis, and Bioactivity Study of Novel Tryptophan Derivatives Containing Azepine and Acylhydrazone Moieties. Molecules. 2022; 27(19):6700. https://doi.org/10.3390/molecules27196700
Chicago/Turabian StyleZhang, Jingjing, Rongxin Yang, Lili Li, Jianhua Liu, Yuxiu Liu, Hongjian Song, and Qingmin Wang. 2022. "Design, Synthesis, and Bioactivity Study of Novel Tryptophan Derivatives Containing Azepine and Acylhydrazone Moieties" Molecules 27, no. 19: 6700. https://doi.org/10.3390/molecules27196700
APA StyleZhang, J., Yang, R., Li, L., Liu, J., Liu, Y., Song, H., & Wang, Q. (2022). Design, Synthesis, and Bioactivity Study of Novel Tryptophan Derivatives Containing Azepine and Acylhydrazone Moieties. Molecules, 27(19), 6700. https://doi.org/10.3390/molecules27196700